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Abstract

Finetuning a large vision language model (VLM) on a
target dataset after large scale pretraining is a dominant
paradigm in visual question answering (VQA). Datasets for
specialized tasks such as knowledge-based VQA or VQA
in non natural-image domains are orders of magnitude
smaller than those for general-purpose VQA. While col-
lecting additional labels for specialized tasks or domains
can be challenging, unlabeled images are often available.
We introduce SelTDA (Self-Taught Data Augmentation),
a strategy for finetuning large VLMs on small-scale VQA
datasets. SelTDA uses the VLM and target dataset to build a
teacher model that can generate question-answer pseudola-
bels directly conditioned on an image alone, allowing us to
pseudolabel unlabeled images. SelTDA then finetunes the
initial VLM on the original dataset augmented with freshly
pseudolabeled images. We describe a series of experiments
showing that our self-taught data augmentation increases ro-
bustness to adversarially searched questions, counterfactual
examples and rephrasings, improves domain generalization,
and results in greater retention of numerical reasoning skills.
The proposed strategy requires no additional annotations or
architectural modifications, and is compatible with any mod-
ern encoder-decoder multimodal transformer. Code avail-
able at https://github.com/codezakh/SelTDA.

1. Introduction
Large, pretrained vision language foundation models [3,

20, 25, 26, 35, 49] are approaching human-level performance
on visual question answering (VQA) [26, 50–52, 54, 62], as
measured by the standard VQAv2 [13] benchmark. Yet on
more complex VQA tasks [37, 43] there is a larger gap be-
tween humans and machines. One difficulty is the small
scale of datasets for complex VQA tasks or those in domains
beyond natural images. The first solution to deal with the
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Figure 1. SelTDA expands the self-training paradigm to VQA. By
self-generating supervision (orange line) for an image I without
needing extra annotations, we can augment a target dataset with
new images and their pseudo-questions and answers (Q,A).

data scarcity is to employ transfer learning from a larger
VQA dataset (e.g. VQAv2) to the smaller, specialized VQA
dataset. However weaknesses of VQA models such as lack
of consistency [44], weakness to adversarially searched ques-
tions [27] and tendency to cheat by learning shortcuts [8]
can be exacerbated when fine-tuning on small datasets.

Collecting annotations to expand a dataset for knowledge-
intensive tasks or specialized domains is often prohibitively
expensive. However, unlabeled images are cheap and often
available. How can we exploit unlabeled images for specific
visual question answering tasks? One possibility is to gen-
erate new question+answer pairs for the unlabeled images,
and use them during training. However, existing methods for
visual question generation require images with annotations —
either ground truth captions [2,4], or bounding boxes [21,48].
Even if these annotations were to be acquired, they induce a
limited set of possible questions; they are limited to objects
and concepts included in the acquired annotation, which are
in turn limited by the finite label space of pretrained object
detectors and the information disparity between a caption
and an image (an image usually contains much more content
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Figure 2. Motivating experiment. We sample increasingly diverse captions from BLIP [26], convert them to questions, and pose the questions
to BLIP after finetuning on VQAv2. As caption diversity increases, self-agreement decreases (right panel). Despite the diversity, many
captions remain correct (middle panel), suggesting that the VLM has knowledge that is not exhausted by task-specific finetuning.

than a short caption can describe).

Motivating Experiment: In Fig 2, we show that a large
vision-language model (VLM) pretrained on web-scale data
contains knowledge that can be drawn out with image-
conditional text generation, but which the model cannot
verify when posed as a visual question-answering task. We
prompt the BLIP [26] VLM (pretrained on 129M image-text
pairs) to caption 1000 images from the CC3M [45] dataset
starting with the phrase “this is a”. We convert each
caption into a boolean question where the correct answer is
“yes” by inserting the caption into the template is this
a <caption>? Next, we ask a BLIP VLM finetuned on
the VQAv2 dataset [13] to choose between “yes” and “no”
for each caption turned into a question. Surprisingly, the
VQA-finetuned BLIP answers “no” to at least 5% of the
questions, increasing to 15% as the diversity of captions
increases (adjusted by top-p parameter in nucleus sampling).
This suggests the possibility that the VLM has knowledge it
cannot exploit when answering questions, but is accessible
when directly generating text conditioned on an image.

Approach: To exploit unlabeled images for VQA, we pro-
pose SelTDA, a three-stage framework for Self-Taught Data
Augmentation (Fig 1 bottom panel). We adapt the paradigm
of self-training used in object detection [29, 65] and image
classification [41, 60] for VQA. In classification / detection,
the task of labeling an image is identical to prediction, and
the teacher and student optimize identically structured ob-
jectives. In VQA self-training, the student and teacher tasks
are different. A teacher must pose and answer a question
given an image, while the student provides an answers given
a question and image. To handle this, we first cast the task
of the teacher as a direct image-to-text generation task, and
introduce a teacher model by updating the weights of the
VLM to learn an image-conditional visual question gener-
ation model VQGIC . Next, we use VQGIC as a teacher to

pseudolabel unlabeled images by sampling questions and
answers from VQGIC with stochastic decoding. Finally, we
augment the original VQA dataset with the newly labeled
image-question-answer pairs, and finetune the VLM for vi-
sual question answering on the augmented VQA dataset.
Benefits: SelTDA allows us generate synthetic training data
by approximating the distribution P (Q,A|I) of the target
VQA task, where Q,A, I represents a question, answer, and
image respectively. One benefit is that the synthetic data in-
creases the number of training pairs available for finetuning,
which effects an increase in raw performance. A second ben-
efit is an increase in the diversity of questions and answers
due to the introduction of new images and the stochastic
nature of the text decoding, which results in increased ro-
bustness and domain generalization. A third benefit is the
distillation of knowledge from pretraining and transfer learn-
ing into the synthetic training data, which can teach new
skills (e.g. domain generalization) or prevent the forget-
ting of specific skills (e.g. numerical reasoning). Finally
SelTDA is architecture-agnostic given a vision-language
model capable of image-conditional text-generation. Our
contributions can be summarized as follows:

1. We introduce SelTDA, a variant of the self-training
paradigm that is designed for VQA and large gener-
ative pretrained VLMs.

2. We propose treating visual question generation as a di-
rect image-to-text task by leveraging the autoregressive
decoder of a large, pretrained VLM, enabling us to gen-
erate questions and answers from an unlabeled image
with no auxillary annotations needed.

3. We show that a large VLM trained with the proposed
SelTDA gains increased robustness, domain general-
ization, numerical reasoning, and performance when
finetuning on small-scale VQA datasets.
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2. Related Work
Augmentation for VQA The method of [53] augments

images by using an MLP to classify possible answers in the
image and using an LSTM to generate questions matching
the answer. While this works with unlabeled images, it is
not used for self-training, has a limited label space, and
does not leverage large VLMs. KDDAug [6] augments
existing question answer pairs by generating pseudoanswers
and achieves increases in robustness. ConCat [19] similarly
trains more robust models by augmenting the existing QA
pairs in a dataset. In contrast to this line of work, we seek to
exploit unlabeled images by generating new questions and
answers, and using a large VLM to generate augmentation.

Few/Zero-shot Generalization Large VLMs have shown
impressive generalization to unseen tasks after large-scale
pretraining [1], echoing similar achievements in natural lan-
guage processing [7,55]. We explore zero-shot generaliza-
tion to similar tasks in new domains. Domain adaptation in
VQA has been explored, first by [5, 58] and most recently
by [63]. These fall into the general line of feature adaptation
methods for domain adaptation, as they align domain fea-
tures. Our method is more similar to pseudolabeling based
methods for domain adaptation [24, 31] with the difference
being that our pseudolabels are natural language rather than
distributions. Moreover, we do not focus on adaptation, but
zero-shot generalization.

Visual Question Generation is a well-explored topic
with a long history of prior work [23, 28, 38, 64]. In contrast
to prior work, our VQG teacher model does not rely on or
need paired ground truth annotations for an unlabeled image
to generate questions. SimpleAug [21] and GuidedVQG [48]
relies on annotations such as bounding boxes to generate new
questions, and requires pretrained object detectors, which
have a limited label space. WeaQ [2] requires captions to
already be present, as does [4], which additionally uses a
large language model (T5-XXL with 11B parameters) to
generate questions. One similarity of our approach to [4] is
that we both seek to use knowledge in a large model to gen-
erate questions, with the main differences being that we do
not require ground-truth captions for unlabeled images, and
we use a large vision-language model than a large language
model. VQAPG [61] is similar to our approach in not requir-
ing any ground-truth annotations, but focuses on creating a
joint question-generation and question answering model that
is consistent, rather than self-training a model with unlabeled
data. The authors of [17] propose a VQG method that does
not rely on ground-truth annotations, but their method is
LSTM-based, rather than based on self-training with a large
vision-language model.

Self-Training uses labeled data to train a teacher model.
The teacher model provides labels for auxiliary unlabeled
data. Finally, a student model is trained on the labeled data
augmented with newly-labeled data. Previous work in self-

training for computer vision focuses on image-classification
[57, 59] or object detection [29, 41, 60, 65]. A significant
difference between classical self-training and our setting is
that in the more traditional settings, the teacher and student
have the same task. In our setting, the task of the teacher (ask
a question) is different than the task of the student (answer
a question). More similar to us, [42] uses self-training for
question-answering. However, the teacher model of [42] has
a fundamentally different task, since it is a reading compre-
hension task, where the ground-truth answer is mentioned
within the passage itself. In our task, the teacher model
must generate the ground-truth answer from its own internal
knowledge and by inspecting an image.

3. Method
Our goal is to pseudolabel an unlabeled image I with a

generated question-answer pair (Q,A) using a teacher (ini-
tialized from the VLM), and then train a student model (the
initial VLM) on the real VQA pairs augmented with the
generated VQA pairs. To generate the pseudolabels, we
first learn a visual question generation model on the real
question-answer pairs and images as the teacher. We de-
note this model VQGIC to highlight the image-conditional
nature of the model, because the model generates both a
question and answer conditional on an image alone. This
approach is end-to-end, requires no ground truth annotations,
bounding boxes, or handcrafted guidance, and provides a
generative model approximating P (Q,A|I) that we can sam-
ple from. We then feed the teacher model unlabeled images
and stochastically decode from the teacher model to gener-
ate pseudolabels, which we parse into question answer pairs.
After the real samples in the dataset have been augmented
with the self-generated samples, VQA training can proceed
as normal. Our approach is compatible with any modern
encoder-decoder multimodal architecture. This is because
our approach relies entirely on direct image-to-text gener-
ation, which is possible in modern large vision language
models since their autoregressive decoders are designed to
produce text conditioned on an image.

3.1. The Teacher: Direct Image-Conditional VQG

Self-training requires a teacher model to produce pseu-
dolabels that the student model then learns to mimic. In
order to use unlabeled data for VQA, the teacher model must
be able to pose a question and provide an answer given an un-
labeled image, which is a different task from VQA. Given an
image I , a question Q and answer A, the VQA student must
approximate P (A | Q, I), while the teacher model must
approximate P (Q,A | I). Previous approaches to visual
question generation (VQG) cannot work with unlabeled data
because they approximate P (Q | I, A), that is, they gener-
ate a question conditional on the image and a potential an-
swer. In contrast to these previous, answer-conditional VQG
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Figure 3. Overview of the proposed framework. We first create the teacher VQGIC (§3.1), use VQGIC to pseudolabel unlabeled images
(§3.2), and finetune student on the original training pairs augmented with the pseudolabeled images. The pseudolabels are natural language.

Figure 4. Example questions and answers generated by the teacher on unlabeled images. The questions include unusual pairings (cat wearing
necktie) or require broad knowledge (identifying a baby shower or London landmarks) and inferences about scenes (the baby is learning).

approaches, we develop an image-conditional approach
(VQGIC) that we use as a teacher model. Our approach
also contrasts with self-training in image classification or
object detection, which benefit from having the teacher and
student both approximating and predicting identically struc-
tured distributions P (Y |I), where Y is often a distribution
over a (finite) label space.

To create the VQGIC teacher that approximates
P (Q,A|I), we treat the problem of learning such a model
as a text-generation problem, and wish to train the au-
toregressive decoder of the vision-language model to ap-
proximate P (T |I), where T = (Q,A). Let DQA be
a question-answer dataset we wish to create a teacher
from. For a sample (Q,A, I) ∈ DQA, we transform it
into a target sequence of tokens y1:N = (y1, y2, . . . yn)
by entering (Q,A) into a structured template of the form
“Question: <question>? Answer: <answer>.” where
<question> and <answer> are replaced by the content
of Q and A respectively. Once y1:N = (y1, y2, . . . yn) is

obtained, we train the model by optimizing

LVQG = −
N∑

n=1

logPθ (yn | y<n, x) (1)

over all question-image-answer pairs in DQA, where x is
the latent encoded features in the standard encoder-decoder
architecture and θ represents the VLM parameters. The
VQGIC thus learns to maximize the conditional likelihood
of a question-answer pair represented as a unified string,
given an image. Recall that VQGIC is initialized from the
parameters of an autoregressive VLM. The VLM is a quality
approximator of P (T |I), having been exposed to a diverse
number of images and paired text. The VQGIC teacher
can tap into this reservoir of knowledge, because a pseudo
question-answer pair (Q′, A′) is generated jointly as a text
T ′, allowing us to sample from P (T |I).

3.2. Training the Student with Unlabeled Data

Once the VQGIC teacher model has been obtained, self-
training with unlabeled data can proceed. To produce a
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pseudolabel (Q′, A′) for an unlabeled image Iu, we first
obtain L1:N = VQGIC(Iu), where L1:N are the logits
of the decoder. The logits L1:N define a distribution
P (LN | L1:N−1) over the tokens of the model’s natural
language vocabulary. We then apply nucleus sampling [15]
to stochastically decode a text T ′ from P (LN | L1:N−1).
The structured format of the generation template can then
be easily parsed by a regular expression to recover a pseudo-
question-answer pair (Q′, A′) from the decoded text T ′. This
pair (Q′, A′) = T ′ is a sample from P (T |I), and reflects
textual knowledge about the content of an image known to
the VLM.

We then proceed to pseudolabel the desired number
of images and obtain any number of triplets of the form
(Q′, A′, Iu), representing self-generated training data D′

QAin
the style of a target dataset DQA. We then augment the real
dataset DQA with the self-generated question-answer pairs
on unlabeled images D′

QA to create a self-augmented train-
ing dataset DAugQA = D′

QA ∪ DQA. The teacher model is
no longer needed, and the student can be initialized from
the checkpoint obtained after large-scale pretraining that
the teacher model was initialized from. At this point, VQA
training can proceed as normal. In our setting, we use the
training procedure of BLIP [26] in which VQA is treated as
an open-ended generation task, and the VQA objective can
be expressed as the standard language modeling loss

LVQA = −
N∑

n=1

logPθ (yn | y<n, xn) (2)

where xn is the n-th element of the multimodal sequence
embeddings X1:N produced by VLM(Q, I; θ)), Q, I are the
question and image, y1:N is the sequence of answer tokens,
and θ represents the VLM parameters, which we initialize
from the pretrained weights rather than the teacher. Why
can high quality pseudolabels (Q′, A′) be generated even
when DQA is small, and few pairs are available for adapting
the teacher VQGIC? Knowledge about the content of the
image in a textual form P (T |I) is already well-learned by
the VLM from which we initialize VQGIC . Thus, DQA

only needs sufficient pairs to teach VQGIC how to construct
annotations matching the style of DQA.

4. Experiments
Experimental Setup We implement our framework in Py-
Torch [39] and use the same hyperparameter settings for all
experiments. Our settings are taken from [26]. We train each
VQA model for 10 epochs, using the AdamW [33] optimizer
with a weight decay of 0.05 and a linear LR decay to 0 from
an initial LR 2e-5. Each VQG model is trained for 10 epochs
with the same weight decay and an initial LR of 2e-5. For
VQA, we use a global batch size of 64 on 4 GPUs, with a
per device batch size of 16. For VQG, we use a global batch

A-OKVQA

Model Validation Test

(a) ViLBERT [34] 49.1 41.5
(b) LXMERT [46] 51.4 41.6
(c) KRISP [36] 51.9 42.2
(d) GPV-2 [18] 60.3 53.7
(e) BLIP [26] 57.1
(f) BLIPVQAv2 [26] 67.8 59.5

(g) BLIP + SelTDA 62.1 54.5
% gain w.r.t baseline +5.0
% gain w.r.t best prior work +1.8 +0.8

(h) BLIPVQAv2 + SelTDA 68.9 59.5
% gain w.r.t baseline +1.1 +0.0
% gain w.r.t best prior work +8.6 +5.8

Table 1. SelTDA improves performance on knowledge-based VQA,
even on a strong baseline pretrained on 129M pairs.

ArtVQA Accuracy

Model Overall Grounded

(a) BAN [22] 22.4 -
(b) BLIP [26] 21.36 81.71
(c) VIKING [12] 55.5 78.74
(d) VIKINGVLM 55.9 81.9

(e) BLIP + SelTDA 21.68 83.86
% gain w.r.t baseline +0.32 +2.15

(f) VIKINGVLM + SelTDA 56.86 83.86
% gain w.r.t baseline +0.92 +1.96

Table 2. SelTDA improves VQA on fine art images [12] for VIKING
and BLIP models. Grounded denotes visually grounded questions.

size of 128, with a per device batch size of 32. All models
are initialized from pretrained BLIP [26] checkpoints. For
VQA, we use an image size of 480× 480 and an image size
of 384× 384 for VQG. For all datasets, we use the official
training, validation, and test splits.
Baseline As a strong baseline model, we use the ViT-B/16
version of the BLIP [26] model pretrained on 129M image-
text pairs. BLIP [26] has an autoregressive decoder and is
trained for text-generation, making it easy to adapt to text-
generation tasks. When decoding, we use nucleus sampling
with a top-p of 0.92. Additional experiments and visualiza-
tions can be found in the supplemental material.

4.1. Self-Training: A-OKVQA & ArtVQA

We evaluate SelTDA in two domains: outside knowledge
VQA on natural images with A-OKVQA [43] and outside
knowledge VQA on fine-art images with AQUA [12]. We
use the COCO 2017 unlabeled set [30] as a source of addi-
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Question Type Well-Posed Question Answers Correct Answerable % of Total (95% CI)

External Knowledge 73% 62% 70% 29.6% - 50.00%
Visual Identification 94% 88% 94% 11.18% - 27.65 %
Visual Reasoning 83% 70% 80% 32.54% - 53.17%

Overall (95% CI) 71.16% - 87.96% 59.77% - 78.98% 68.83% - 86.22%

Table 3. We manually inspect 100 questions and answers generated by the teacher model finetuned on A-OKVQA. We show the 95%
confidence interval obtained by a proportion test. Annotator agreement on A-OKVQA is about 79.5% on the validation set.

Figure 5. A T-SNE embedding shows that questions generated by a teacher finetuned on ArtVQA (orange) differ from real VQAv2 questions
(blue) and are more similar to the real ArtVQA questions (green), yet more diverse, covering a larger area. We use SimCSE [10] to obtain a
dense vector representation of each sentence. All the sets of questions are embedded together with T-SNE.

wh
at

w
hich

how
why

is

are
activity

country's

count
ry

can

one
color
country

many

are

next

on

near

be
hi
nd

inside

under

above
the

is

flag

does

be

of is is

of

types

pieces

they

to

top

the

th
e

thethethe

zebras

this

is

this

used

these

the

this

these

of
of

wearing

Figure 6. Sunburst chart of questions generated by a teacher model
finetuned on A-OKVQA.

tional images for A-OKVQA, and SemArt [11] as a source
of fine art images for ArtVQA. On A-OKVQA, we perform
model selection over students trained with varying amounts
of SelTDA with the training set, and on ArtVQA, we use
the validation set. On A-OKVQA (Table 1), we show that

self-taught data augmentation improves overall performance,
especially in the setting where no extra data (VQAv2) is
available. BLIP with SelTDA achieves SOTA performance
on A-OKVQA without transfer learning (row g in Table 1),
even relative to competitors using transfer learning. This
performance improvement holds even when 447k real pairs
from VQAv2 are used for transfer learning, suggesting that
self-taught data augmentation offers real improvements over
manual annotations. On fine art VQA (Table 2), we show
that self-taught data augmentation achieves state-of-the-art
and improves overall performance, with a large increase for
visually grounded questions.

4.2. Ablations & Analysis of Pseudolabels

We manually evaluate 100 randomly sampled questions
generated by the teacher model on A-OKVQA (Table 3).
The generated questions and answers are noisier than the
real questions and answers, but the levels of noise are not
substantially below the human agreement on A-OKVQA.
Questions which require visual reasoning or external knowl-
edge are harder to generate correctly compared to those that
require simpler visual identification (e.g. “what is this ob-
ject?”). Next, we show using t-SNE [47] that the teacher
model learns to copy the “style” of questions in a particular
dataset (Fig 5). Synthetic questions generated by a teacher
finetuned for a specific dataset (ArtVQA) are more similar
to the style of the questions found in the target dataset com-
pared to real questions from a different dataset (VQAv2),
while being more diverse.
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Images Questions

Labeled Unlabeled Real Synthetic Total Multiplier Accuracy % Gain Questions/Image

17,000 0 17,000 0 17,000 1x (baseline) 57.11 N/A
17,000 0 17,000 17,000 34,000 2x 57.85 +0.74 1 / 1
17,000 0 17,000 34,000 51,000 3x 60.01 +2.90 2 / 1
17,000 0 17,000 51,000 68,000 4x 59.73 +2.62 3 / 1

17,000 0 17,000 0 17k 1x (baseline) 57.11 N/A
17,000 8,500 17,000 17,000 34,000 2x 60.69 +3.57 2 / 1
17,000 17,000 17,000 34,000 51,000 3x 62.09 +4.98 2 / 1
17,000 25,500 17,000 51,000 68,000 4x 61.31 +4.20 2 / 1

Table 4. SelTDA can improve performance even without additional unlabeled images, by generating more QA pairs for already labeled
images. However, using previously unlabeled and unseen images results in further improvements. A-OKVQA is used.

# of Real + Synthetic QA Pairs Robustness Test Sets

Real Synthetic Multiplier AdVQA VQA-CE VQA-Rephrasings Avg. % Increase Robustness Total

(a) 17,000 0 ×1 31.06 51.43 65.88 0 148.37
(b) 17,000 2,000 ×1.1 37.09 52.96 67.94 +3.21 157.99
(c) 17,000 4,500 ×1.3 36.99 53.15 67.98 +3.25 158.12
(d) 17,000 8,000 ×1.5 37.34 53.33 67.57 +3.29 158.24
(e) 17,000 12,000 ×1.7 37.43 52.62 67.35 +3.01 157.4
(f) 17,000 17,000 ×2 36.95 52.05 66.95 +2.53 155.95
(g) 17,000 34,000 ×3 36.89 51.00 65.64 +1.72 153.53
(h) 17,000 51,000 ×4 36.06 50.25 64.78 +0.91 151.09

Max % increase on each dataset +6.03 +1.9 +2.1 +9.87

Table 5. SelTDA improves robustness of VQA models on AdVQA (adversarially searched questions), VQA-CE (multimodal shortcut
learning) and VQA-Rephrasings test sets. The baseline (a) is trained on VQAv2 after pretraining, then finetuned on A-OKVQA.

We show that the performance gains of SelTDA are due
to novel-question answer pairs (first half of Tab 4) that add
information not present in the ground-truth QA pairs, not
only due to the additional images. However, the student
model benefits from both the novel-question answer pairs
and unlabeled images (second half of Table 4).

Optimal Amount of Augmentation We explore how the
amount of augmentation affects performance. The highest
performance on the A-OKVQA validation and test sets is
reached when the number of synthetic is double that of the
real pairs (Table 4). When transfer learning from VQAv2,
the ratio is different, and peak performance is reached when
the number of synthetic pairs is 50% the number of real
pairs (Table 5,4). Performance and robustness improvements
(Table 5) saturate as increasing amounts of synthetic pairs are
added, which may be the result of task-irrelevant information
seeping into the dataset due to stochastic sampling.

4.3. Robustness

We investigate whether the self-taught data augmentation
improves robustness of VQA models. We consider three

known weaknesses. The first is adversarially searched ques-
tions, collected in the AdVQA [27] dataset through human-
in-the-loop attacks against state-of-the-art VQA models. In
Table 5, we show that models trained with self-taught data
augmentation perform significantly better (20% relative im-
provement and 6% absolute improvement) on AdVQA. The
second form of robustness we consider is resistance to mul-
timodal shortcut learning, which the VQA-CE (Counterex-
amples) [8] test set measures. The test set is constructed
so that models which have learned to answer questions us-
ing shortcuts based on correlations in the VQAv2 training
set (ex: tennis racket detected + question about sport → al-
ways answer tennis) will display reduced performance on the
VQA-CE test set. We construct our A-OKVQA models by
transfer learning from the VQAv2 training set, so VQA-CE
can be used to test multimodal shortcut learning in our mod-
els. In Table 5, we show that models trained with self-taught
data augmentation are more resistant to shortcut learning
(1.9% absolute improvement on VQA-CE) compared to the
baseline model trained without self-taught data augmenta-
tion. Finally, we consider robustness to rephrasings. VQA
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models have been shown to be inconsistent when evaluated
on rephrasings [44]. The VQA-Rephrasings test set con-
sists of 3 human-provided rephrasings of the questions in
the VQAv2 test set, intended to test the robustness of the
model to rephrasings. On VQA-Rephrasings, self-taught
data augmentation induces a 2.1% performance improve-
ment relative to the baseline model, though both the baseline
model and augmented models were initialized from from
the same weights learned on the VQAv2 training set prior to
finetuning on A-OKVQA.

4.4. Domain Generalization

We hypothesize that self-taught data augmentation may
improve domain generalization, because the student model
has been exposed to a greater diversity of questions and an-
swers. To test this, we compare the generalization of the
baseline model and models trained with self-taught data aug-
mentation on unseen test sets from three different domains.
Concretely, we treat the natural-image based A-OKVQA
task as the source task, and evaluate on VQA datasets from
three target domains: medical, fine art, and remote sensing.
For medical VQA, we use the PathVQA [14] dataset con-
taining question and answers on pathology images. For fine
art, we used the previously described AQUA [12] dataset for
visual question answering on art images. For remote sensing,
we use the RSVQA dataset [32], containing question and
answers on satellite images. We display the results in Table 6.
Across all three domains, self-taught data augmentation im-
proves domain generalization over the baseline model. The
improvement is greatest on fine art images, as the fine art
domain is closest to the natural image domain with respect
to the images, questions, and answers.

4.5. Numerical Reasoning

Numerical reasoning is required to answer questions such
as “how many sheep are looking at the camera”. Naive
transfer learning from VQAv2 to A-OKVQA results in catas-
trophic forgetting of numerical reasoning, and naive finetun-
ing on A-OKVQA results in models with poor numerical
reasoning. In Table 7, we show that SelTDA significantly
aids numerical reasoning when finetuning on a small-scale
VQA dataset such as A-OKVQA. We measure numerical
reasoning using questions labeled as requiring numerical an-
swers on VQAv2 and the VQA-Rephrasings datasets. When
transfer learning from VQAv2 (first half of Table 7), self-
taught data augmentation results in an absolute increase of
29.81% and 24.71% on numerical questions on VQAv2 and
VQA-Rephrasings. When finetuning directly on A-OKVQA
(2nd half of Table 7), self-taught data augmentation results
in an absolute increase of 3.63% and 10.57%. These re-
sults suggest that self-taught data augmentation can prevent
catastrophic forgetting of numerical reasoning when trans-
fer learning, and improve numerical reasoning significantly,

Target (0-shot)

Model ArtVQA PathVQA RSVQA

Baseline (BLIP) 31.65 25.09 37.78
BLIP + SelTDA 38.03 26.76 38.99

% gain w.r.t baseline +6.38 +1.67 +1.1

Table 6. SelTDAimproves domain generalization from natural im-
ages (A-OKVQA) to art QA, medical QA, and remote sensing QA.

# Training Pairs Numerical Reasoning

Initialization Real Synth VQAv2 VQA-Rephrasings

BLIPV QAv2 17000 0 13.49 13.06
BLIPV QAv2 17000 2000 38.73 33.74
BLIPV QAv2 17000 4500 40.4 35.91
BLIPV QAv2 17000 8000 42.9 36.5
BLIPV QAv2 17000 12000 43.3 37.77

max % gain w.r.t baseline +29.81 +24.71

BLIP 17000 0 1.42 1.29
BLIP 17000 17000 4.53 11.44
BLIP 17000 34000 5.05 11.77
BLIP 17000 51000 4.26 11.86

max % gain w.r.t baseline +3.63 +10.57

Table 7. SelTDA improves numerical reasoning when finetuning on
a small-scale dataset (A-OKVQA). BLIPV QAv2 indicates transfer
learning from VQAv2, and BLIP indicates direct finetuning.

even when the dataset used to train the teacher model has
few numerical reasoning questions. One reason for this is
that the the word “how” is a high-probability word to start a
question with, and is naturally followed by “many” (Fig 6)
resulting in numerical questions being generated.

5. Conclusion & Future Work

We present SelTDA, a framework for self-improving large
VLMs on small-scale visual question answering tasks with
unlabeled data. The limitations of SelTDA suggest several
opportunities for further work. First, the pseudo-QA pairs
can be noisy. Combining SelTDAwith methods for fact-
checking based on external knowledge [40], logically consis-
tent self-reasoning [16], or chain-of-thought prompting [56]
to rationalize answers may result in higher quality pairs for
self-training. Second, learning the teacher model may fail for
specialized domains (e.g. medical), because the vocabulary
is too specialized. Third, biases in the VLM or pretraining
data may be amplified by self-training, and addressing these
biases may reduce multimodal shortcut learning. Finally,
self-training is yet to be explored with recently developed
billion-parameter VLMs [9, 25].
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