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Abstract

Pre-trained vision-language (V-L) models such as CLIP
have shown excellent generalization ability to downstream
tasks. However, they are sensitive to the choice of input text
prompts and require careful selection of prompt templates to
perform well. Inspired by the Natural Language Processing
(NLP) literature, recent CLIP adaptation approaches learn
prompts as the textual inputs to ne-tune CLIP for down-
stream tasks. We note that using prompting to adapt repre-
sentations in a single branch of CLIP (language or vision) is
sub-optimal since it does not allow the exibility to dynam-
ically adjust both representation spaces on a downstream
task. In this work, we propose Multi-modal Prompt Learn-
ing (MaPLe) for both vision and language branches to im-
prove alignment between the vision and language represen-
tations. Our design promotes strong coupling between the
vision-language prompts to ensure mutual synergy and dis-
courages learning independent uni-modal solutions. Fur-
ther, we learn separate prompts across different early stages
to progressively model the stage-wise feature relationships
to allow rich context learning. We evaluate the effectiveness
of our approach on three representative tasks of generaliza-
tion to novel classes, new target datasets and unseen do-
main shifts. Compared with the state-of-the-art method Co-
CoOp, MaPLe exhibits favorable performance and achieves
an absolute gain of 3.45% on novel classes and 2.72% on
overall harmonic-mean, averaged over 11 diverse image
recognition datasets. Our code and pre-trained models are
available at https://github.com/muzairkhattak/multimodal-
prompt-learning.

1. Introduction
Foundational vision-language (V-L) models such as CLIP
(Contrastive Language-Image Pretraining) [32] have shown
excellent generalization ability to downstream tasks. Such
models are trained to align language and vision modali-
ties on web-scale data e.g., 400 million text-image pairs in
CLIP. These models can reason about open-vocabulary vi-
sual concepts, thanks to the rich supervision provided by

natural language. During inference, hand-engineered text
prompts are used e.g., ‘a photo of a <category>’ as
a query for text encoder. The output text embeddings are
matched with the visual embeddings from an image encoder
to predict the output class. Designing high quality contex-
tual prompts have been proven to enhance the performance
of CLIP and other V-L models [17, 42].

Despite the effectiveness of CLIP towards generalization
to new concepts, its massive scale and scarcity of training
data (e.g., few-shot setting) makes it infeasible to ne-tune
the full model for downstream tasks. Such ne-tuning can
also forget the useful knowledge acquired in the large-scale
pretraining phase and can pose a risk of overtting to the
downstream task. To address the above challenges, exist-
ing works propose language prompt learning to avoid man-
ually adjusting the prompt templates and providing a mech-
anism to adapt the model while keeping the original weights
frozen [14, 25, 29, 48, 49]. Inspired from Natural Language
Processing (NLP), these approaches only explore prompt
learning for the text encoder in CLIP (Fig. 1:a) while adap-
tation choices together with an equally important image en-
coder of CLIP remains an unexplored topic in the literature.

Our motivation derives from the multi-modal nature of
CLIP, where a text and image encoder co-exist and both
contribute towards properly aligning the V-L modalities.
We argue that any prompting technique should adapt the
model completely and therefore, learning prompts only for
the text encoder in CLIP is not sufcient to model the adap-
tations needed for the image encoder. To this end, we set out
to achieve completeness in the prompting approach and pro-
poseMulti-modal Prompt Learning (MaPLe) to adequately
ne-tune the text and image encoder representations such
that their optimal alignment can be achieved on the down-
stream tasks (Fig. 1:b). Our extensive experiments on three
key representative settings including base-to-novel gener-
alization, cross-dataset evaluation, and domain generaliza-
tion demonstrate the strength of MaPLe. On base-to-novel
generalization, our proposed MaPLe outperforms existing
prompt learning approaches across 11 diverse image recog-
nition datasets (Fig. 1:c) and achieves absolute average gain
of 3.45% on novel classes and 2.72% on harmonic-mean
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Figure 1. Comparison of MaPLe with standard prompt learning methods. (a) Existing methods adopt uni-modal prompting techniques
to ne-tune CLIP representations as prompts are learned only in a single branch of CLIP (language or vision). (b) MaPLe introduces
branch-aware hierarchical prompts that adapt both language and vision branches simultaneously for improved generalization. (c) MaPLe
surpasses state-of-the-art methods on 11 diverse image recognition datasets for novel class generalization task.

over the state-of-the-art method Co-CoOp [48]. Further,
MaPLe demonstrates favorable generalization ability and
robustness in cross-dataset transfer and domain generaliza-
tion settings, leading to consistent improvements compared
to existing approaches. Owing to its streamlined architec-
tural design, MaPLe exhibits improved efciency during
both training and inference without much overhead, as com-
pared to Co-CoOp which lacks efciency due to its image
instance conditioned design. In summary, the main contri-
butions of this work include:

• We propose multi-modal prompt learning in CLIP to
favourably align its vision-language representations.
To the best of our knowledge, this is the rst multi-
modal prompting approach for ne-tuning CLIP.

• To link prompts learned in text and image encoders, we
propose a coupling function to explicitly condition vi-
sion prompts on their language counterparts. It acts as
a bridge between the two modalities and allows mutual
propagation of gradients to promote synergy.

• Our multi-modal prompts are learned across multi-
ple transformer blocks in both vision and language
branches to progressively learn the synergistic be-
haviour of both modalities. This deep prompting strat-
egy allows modeling the contextual relationships inde-
pendently, thus providing more exibility to align the
vision-language representations.

2. Related Work
Vision Language Models: The combined use of language
supervision with natural images is found to be of great in-

terest in the computer vision community. In contrast to
models learned with only image supervision, these vision-
language (V-L) models encode rich multimodal representa-
tions. Recently, V-L models like CLIP [32], ALIGN [15],
LiT [45], FILIP [41] and Florence [43] have demonstrated
exceptional performance on a wide spectrum of tasks in-
cluding few-shot and zero-shot visual recognition. These
models learn joint image-language representations in a self-
supervised manner using abundantly available data from
the web. For example, CLIP and ALIGN respectively
use ∼400M and ∼1B image-text pairs to train a multi-
modal network. Although these pre-trained V-L models
learn generalized representations, efciently adapting them
to downstream tasks is still a challenging problem. Many
works have demonstrated better performance on down-
stream tasks by using tailored methods to adapt V-L mod-
els for few-shot image-recognition [9, 19, 46], object detec-
tion [8,10,27,34,44,50], and segmentation [5,22,26,33]. In
this work, we propose a novel multi-modal prompt learning
technique to effectively adapt CLIP for few-shot and zero-
shot visual recognition tasks.

Prompt Learning: The instructions in the form of a sen-
tence, known as text prompt, are usually given to the lan-
guage branch of a V-L model, allowing it to better under-
stand the task. Prompts can be handcrafted for a down-
stream task or learned automatically during ne-tuning
stage. The latter is referred to as ‘Prompt Learning’ which
was rst used in NLP [21,23,24] followed by the adaptation
in V-L [48, 49, 51] and vision-only [16, 38, 39, 47] models.
Similar to [16] our design also uses deep ‘vision’ prompt-
ing. However, ours is the rst multi-modal prompting de-
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Figure 2. Overview of our proposed MaPLe (Multi-modal Prompt Learning) framework for prompt learning in V-L models. MaPLe tunes
both vision and language branches where only the context prompts are learned, while the rest of the model is frozen. MaPLe conditions the
vision prompts on language prompts via a V-L coupling function F to induce mutual synergy between the two modalities. Our framework
uses deep contextual prompting where separate context prompts are learned across multiple transformer blocks.

sign while [16] is uni-modal.
Prompt Learning in Vision Language models: Full ne-
tuning and linear probing [9] are two typical approaches
to adapt a V-L model (i.e. CLIP) to the downstream tasks.
The complete ne-tuning results in degrading the previ-
ously learned joint V-L representation while linear probing
limits the zero-shot capability of CLIP. To this end, inspired
from prompt learning in NLP, many works have proposed
to adapt V-L models by learning the prompt tokens in an
end-to-end training. CoOp [49] ne-tunes CLIP for few-
shot transfer by optimizing continuous set of prompt vectors
at its language branch. Co-CoOp [48] highlights the infe-
rior performance of CoOp on novel classes and solves the
generalization issue by explicitly conditioning prompts on
image instances. [25] proposes to optimize multiple set of
prompts by learning the distribution of prompts. [18] adapt
CLIP by learning prompts for video understanding tasks. [1]
perform visual prompt tuning on CLIP by prompting on the
vision branch. We note that the existing methods follow in-
dependent uni-modal solutions and learn prompts either in
the language or in the vision branch of CLIP, thus adapt-
ing CLIP partially. In this paper, we explore an important
question: given the multimodal nature of CLIP, is complete
prompting (i.e., in both language and vision branches) bet-
ter suited to adapt CLIP? Our work is the rst to answer this
question by investigating the effectiveness of multi-modal
prompt learning in order to improve alignment between vi-
sion and language representations.

3. Method
Our approach concerns with ne-tuning a pre-trained multi-
modal CLIP for better generalization to downstream tasks

through context optimization via prompting. Fig. 2 shows
the overall architecture of our proposed MaPLe (Multi-
modal Prompt Learning) framework. Unlike previous ap-
proaches [48, 49] which learn context prompts only at the
language branch, MaPLe proposes a joint prompting ap-
proach where the context prompts are learned in both vi-
sion and language branches. Specically, we append learn-
able context tokens in the language branch and explicitly
condition the vision prompts on the language prompts via a
coupling function to establish interaction between them. To
learn hierarchical contextual representations, we introduce
deep prompting in both branches through separate learnable
context prompts across different transformer blocks. Dur-
ing ne-tuning, only the context prompts along with their
coupling function are learned while the rest of the model is
frozen. Below, we rst outline the pre-trained CLIP archi-
tecture and then present our proposed ne-tuning approach.

3.1. Revisiting CLIP

We build our approach on a pre-trained vision-language (V-
L) model, CLIP, which consists of a text and vision encoder.
Consistent with existing prompting methods [48, 49], we
use a vision transformer (ViT) [6] based CLIP model. CLIP
encodes an image I ∈ RH×W×3 and a corresponding text
description as explained below.

Encoding Image: Image encoder V with K transformer
layers ViKi=1, splits the image I intoM xed-size patches
which are projected into patch embeddings E0 ∈ RM×dv .
Patch embeddings Ei are input to the (i + 1)th transformer
block (Vi+1) along with a learnable class (CLS) token ci
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Figure 3. t-SNE plots of image embeddings in uni-modal prompting method Co-CoOp, andMaPLe on 3 diverse image recognition datasets.
MaPLe shows better separability in both base and novel classes.

and sequentially processed throughK transformer blocks,

[ci, Ei] = Vi([ci−1, Ei−1]) i = 1, 2, · · · ,K

To obtain the nal image representation x, the class token
cK of last transformer layer (VK) is projected to a common
V-L latent embedding space via ImageProj,

x = ImageProj(cK) x ∈ Rdvl 

Encoding Text: CLIP text encoder generates feature
representations for text description by tokenizing the
words and projecting them to word embeddings W0 =
[w1

0, w
2
0, · · · , wN

0 ] ∈ RN×dl . At each stage, Wi is input
to the (i + 1)th transformer layer of text encoding branch
(Li+1),

[Wi] = Li(Wi−1) i = 1, 2, · · · ,K

The nal text representation z is obtained by projecting the
text embeddings corresponding to the last token of the last
transformer block LK to a common V-L latent embedding
space via TextProj,

z = TextProj(wN
K) z ∈ Rdvl 

Zero-shot Classication: For zero-shot classication, text
prompts are hand-crafted with class labels y ∈ 1, 2,   C
(e.g., ‘a photo of a <category>’) having C classes. Pre-
diction ŷ corresponding to the image I having the highest
cosine similarity score (sim(·)) is calculated with a temper-
ature parameter τ ,

p(ŷx) = exp(sim(x, zŷ)τ)C
i=1 exp(sim(x, zi))



3.2. MaPLe: Multi-modal Prompt Learning

To efciently ne-tune CLIP for downstream image recog-
nition tasks, we explore the potential ofmulti-modal prompt

tuning. We reason that prior works that have predominantly
explored uni-modal approaches are less suitable as they do
not offer the exibility to dynamically adapt both language
and vision representation spaces. Thus to achieve complete-
ness in prompting, we underline the importance of multi-
modal prompting approach. In Fig. 3, we visualize and
compare the image embeddings of MaPLe with recent state-
of-the-art work, Co-CoOp. Note that the image embeddings
of CLIP, CoOp and Co-CoOpwill be identical as they do not
learn prompts in the vision branch. The visualization shows
that image embeddings of MaPLe are more separable indi-
cating that learning vision prompts in addition to language
prompts leads to better adaptation of CLIP.

In addition to multi-modal prompting, we nd that it is
essential to learn prompts in the deeper transformer layers
to progressively model stage-wise feature representations.
To this end, we propose to introduce learnable tokens in the
rst J (where J < K) layers of both vision and language
branches. These multi-modal hierarchical prompts utilize
the knowledge embedded in CLIP model to effectively learn
task relevant contextual representations (see Fig. 4).

3.2.1 Deep Language Prompting

To learn the language context prompts, we introduce b
learnable tokens P i ∈ Rdlbi=1, in the language branch
of CLIP. The input embeddings now follow the form
[P 1, P 2, · · · , P b,W0], where W0 = [w1, w2, · · · , wN ]
corresponds to xed input tokens. New learnable tokens
are further introduced in each transformer block of the lan-
guage encoder (Li) up to a specic depth J ,

[ , Wi] = Li([Pi−1,Wi−1]) i = 1, 2, · · · , J (1)

Here [·, ·] refers to the concatenation operation. After J th

transformer layer, the subsequent layers process previous
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layer prompts and nal text representation z is computed,

[Pj , Wj ] = Lj([Pj−1,Wj−1]) j = J + 1, · · · ,K, (2)

z = TextProj(wN
K) (3)

When J = 1, the learnable tokens P are only applied at
the input of rst transformer layer, and this deep language
prompting technique degenerates to CoOp [49].

3.2.2 Deep Vision Prompting

Similar to deep language prompting, we introduce b learn-
able tokens P̃ i ∈ Rdvbi=1, in the vision branch of CLIP
alongside the input image tokens. New learnable tokens are
further introduced in deeper transformer layers of the image
encoder (V) up to depth J .

[ci, Ei, ] = Vi([ci−1, Ei−1, P̃i−1]) i = 1, 2, · · · , J,
[cj , Ej , P̃j ] = Vj([cj−1, Ej−1, P̃j−1]) j = J + 1, · · · ,K,

x = ImageProj(cK)

Our deep prompting provides the exibility to learn prompts
across different feature hierarchies within the ViT architec-
ture. We nd that sharing prompts across stages is bet-
ter compared to independent prompts as features are more
correlated due to successive transformer block processing.
Thus, the later stages do not provide independently-learned
complimentary prompts as compared to the early stages.

3.2.3 Vision Language Prompt Coupling

We reason that in prompt tuning it is essential to take a
multi-modal approach and simultaneously adapt both the vi-
sion and language branch of CLIP in order to achieve com-
pleteness in context optimization. A simple approach would
be to naively combine deep vision and language prompt-
ing, where both the language prompts P , and the vision
prompts P̃ , will be learned during the same training sched-
ule. We name this design as ‘Independent V-L Prompting’.
Although this approach satises the requirement of com-
pleteness in prompting, this design lacks synergy between
vision and language branch as both branches do not interact
while learning the task relevant context prompts.

To this end, we propose a branch-aware multi-modal
prompting which tunes vision and language branch of
CLIP together by sharing prompts across both modalities.
Language prompt tokens are introduced in the language
branch up to J th transformer block similar to deep language
prompting as illustrated in Eqs. 1-3. To ensure mutual syn-
ergy between V-L prompts, vision prompts P̃ , are obtained
by projecting language prompts P via vision-to-language
projection which we refer to as V-L coupling function F(·),
such that P̃k = Fk(Pk). The coupling function is imple-
mented as a linear layer which maps dl dimensional inputs

to dv . This acts as a bridge between the two modalities, thus
encouraging mutual propagation of gradients.

[ci, Ei, ] = Vi([ci−1, Ei−1,Fi−1(Pi−1)]) i = 1, · · · , J
[cj , Ej , P̃j ] = Vj([cj−1, Ej−1, P̃j−1]) j = J + 1, · · · ,K

x = ImageProj(cK)

Unlike independent V-L prompting, explicit conditioning of
P̃ on P helps learn prompts in a shared embedding space
between the two branches, thus improving mutual synergy.

4. Experiments
4.1. Benchmark setting

Generalization from Base-to-Novel Classes: We evaluate
the generalizability of MaPLe, and follow a zero-shot set-
ting where the datasets are split into base and novel classes.
The model is trained only on the base classes in a few-shot
setting and evaluated on base and novel categories.
Cross-dataset Evaluation: To validate the potential of our
approach in cross-dataset transfer, we evaluate our Ima-
geNet trained model directly on other datasets. Consistent
with Co-CoOp, our model is trained on all 1000 ImageNet
classes in a few-shot manner.
Domain Generalization: We evaluate the robustness of our
method on out-of-distribution datasets. Similar to cross-
dataset evaluation, we test our ImageNet trained model di-
rectly on four other ImageNet datasets that contain various
types of domain shifts.
Datasets: For generalization from base-to-novel classes
and cross-dataset evaluation, we follow [48, 49] and eval-
uate the performance of our method on 11 image classi-
cation datasets which covers a wide range of recogni-
tion tasks. This includes two generic-objects datasets, Im-
ageNet [4] and Caltech101 [7]; ve ne-grained datasets,
OxfordPets [31], StanfordCars [20], Flowers102 [30],
Food101 [2], and FGVCAircraft [28]; a scene recogni-
tion dataset SUN397 [40]; an action recognition dataset
UCF101 [36]; a texture dataset DTD [3] and a satellite-
image dataset EuroSAT [11]. For domain generalization,
we use ImageNet as source dataset and its four variants
as target datasets including ImageNetV2 [35], ImageNet-
Sketch [37], ImageNet-A [13] and ImageNet-R [12].
Implementation Details We use a few-shot training strat-
egy in all experiments at 16 shots which are randomly sam-
pled for each class. We apply prompt tuning on a pre-
trained ViT-B/16 CLIP model where dl = 512, dv = 768
and dvl = 512. For MaPLe, we set prompt depth J to 9 and
the language and vision prompt lengths to 2. All models
are trained for 5 epochs with a batch-size of 4 and a learn-
ing rate of 0.0035 via SGD optimizer on a single NVIDIA
A100 GPU. We report base and novel class accuracies and
their harmonic mean (HM) averaged over 3 runs. We initial-
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Method Base Acc. Novel Acc. HM GFLOPS

1: MaPLe shallow (J = 1) 80.10 73.52 76.67 167.1
2: Deep vision prompting 80.24 73.43 76.68 18.0
3: Deep language prompting 81.72 73.81 77.56 166.8
4: Independent V-L prompting 82.15 74.07 77.90 167.0

5: MaPLe (Ours) 82.28 75.14 78.55 167.0

Table 1. Comparison of MaPLe with different prompting de-
signs in base-to-novel generalization. Results are averaged over
11 datasets. HM refers to harmonic mean.

ize the language prompts of the rst layer P0 with the pre-
trained CLIP word embeddings of the template ‘a photo

of a <category>’, while for the subsequent layers they
are randomly initialized from a normal distribution. For
training MaPLe on all 1000 classes of ImageNet as a source
model, prompt depth J is set to 3 and the model trained for 2
epochs with learning rate of 0.0026. Hyper-parameters for
deep language prompting, deep vision prompting, and in-
dependent V-L prompting are detailed in Appendix A. The
hyper-parameters are xed across all datasets.

4.2. Prompting CLIP via Vision-Language Prompts

Prompting Variants: We rst evaluate the performance
of different possible prompting design choices as an abla-
tion for our proposed branch-aware multi-modal prompt-
ing, MaPLe. These variants include shallow MaPLe, deep
language prompting, deep vision prompting and indepen-
dent V-L prompting. In Table 1, we present the results
averaged over the 11 image recognition datasets. Shal-
low MaPLe (row-1) provides consistant improvements over
CoOp and Co-CoOp in terms of generalization. Deep lan-
guage prompting (row-3) shows improvements over deep
vision prompting (row-2), indicating that prompts learned
at the language branch provide better adaptation of CLIP.
Although separately combining the above two approaches
(row-4) further improves the performance, it struggles to
achieve comprehensive benets from the language and vi-
sion branches. We hypothesize that this is due to the lack of
synergy between the learned vision and language prompts
as they do not interact with each other during training.
Meanwhile, MaPLe tied with deep prompting (row-4) com-
bines the benets of prompting in both branches by en-
forcing interactions through explicit conditioning of vision
prompts on the language prompts. It provides improve-
ments on novel and base class accuracies which leads to
the best HM of 78.55%. We explore other possible design
choices and present the ablations in Appendix B.

4.3. Base-to-Novel Generalization

Generalization to Unseen Classes: Table 3 presents the
performance of MaPLe in base-to-novel generalization set-
ting on 11 recognition datasets. We compare its perfor-
mance with CLIP zero-shot, and recent prompt learning
works including CoOp [49] and Co-CoOp [48]. In case of

CLIP, we use hand-crafted prompts that are specically de-
signed for each dataset.

In comparison with the state-of-the-art Co-CoOp,
MaPLe shows improved performance on both base and
novel categories on all 11 datasets with an exception of
marginal reduction on only the base class performance of
Caltech101. With mutual synergy from the branch-aware
multi-modal prompting, MaPLe better generalizes to novel
categories on all 11 datasets in comparison with Co-CoOp,
and obtains an overall gain from 71.69% to 75.14%. When
taking into account both the base and novel classes, MaPLe
shows an absolute average gain of 2.72% over Co-CoOp.

In comparison with CLIP on novel classes, Co-CoOp im-
proves only on 4/11 datasets dropping the average novel ac-
curacy from 74.22% to 71.69%. MaPLe is a strong competi-
tor which improves accuracy over CLIP on novel classes on
6/11 datasets, with an average gain from 74.22% to 75.14%.
Generalization and Performance on Base Classes: Co-
CoOp solves the poor generalization problem in CoOp by
conditioning prompts on image instances and shows signif-
icant gains in novel categories. However on base classes, it
improves over CoOp only on 3/11 datasets with an average
drop in performance from 82.69% to 80.47%. Meanwhile,
the completeness in prompting helps MaPLe improve over
CoOp on base classes in 6/11 datasets maintaining the av-
erage base accuracy to around 82.28%, in addition to its
improvement in generalization to novel classes.

We nd that the training strategies of Co-CoOp can be
used to substantially boost the generalization performance
of vanilla CoOp (6.8% gain in novel classes). We therefore
compare our method with CoOp†, which trains CoOp in Co-
CoOp setting (refer to Appendix A for more details).

Base Novel HM

CoOp 82.69 63.22 71.66
Co-CoOp 80.47 71.69 75.83

CoOp† 80.85 70.02 75.04
MaPLe 82.28 75.14 78.55

Table 2. Generalization comparison of MaPLe with CoOp†.

Compare to CoOp†, the vanilla CoOp model seems to
overt on base classes. When compared to CoOp† which
attains an average base accuracy of 80.85%, MaPLe shows
an improvement of 1.43% with the average base accuracy
of 82.28% (Table 2).

4.4. Cross-Dataset Evaluation

We test the cross-dataset generalization ability of MaPLe
by learning multi-modal prompts on all the 1000 ImageNet
classes and then transferring it directly on the remaining
10 datasets. Table 4 shows the performance comparison
between MaPLe, CoOp and Co-CoOp. On the ImageNet
source dataset, MaPLe achieves performance comparable
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(a) Average over 11 datasets

Base Novel HM

CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66
Co-CoOp 80.47 71.69 75.83

MaPLe 82.28 75.14 78.55
+1.81 +3.45 +2.72

(b) ImageNet.

Base Novel HM

CLIP 72.43 68.14 70.22
CoOp 76.47 67.88 71.92
Co-CoOp 75.98 70.43 73.10

MaPLe 76.66 70.54 73.47
+0.68 +0.11 +0.37

(c) Caltech101

Base Novel HM

CLIP 96.84 94.00 95.40
CoOp 98.00 89.81 93.73
Co-CoOp 97.96 93.81 95.84

MaPLe 97.74 94.36 96.02
-0.22 +0.55 +0.18

(d) OxfordPets

Base Novel HM

CLIP 91.17 97.26 94.12
CoOp 93.67 95.29 94.47
Co-CoOp 95.20 97.69 96.43

MaPLe 95.43 97.76 96.58
+0.23 +0.07 +0.15

(e) StanfordCars

Base Novel HM

CLIP 63.37 74.89 68.65
CoOp 78.12 60.40 68.13
Co-CoOp 70.49 73.59 72.01

MaPLe 72.94 74.00 73.47
+2.45 +0.41 +1.46

(f) Flowers102

Base Novel HM

CLIP 72.08 77.80 74.83
CoOp 97.60 59.67 74.06
Co-CoOp 94.87 71.75 81.71

MaPLe 95.92 72.46 82.56
+1.05 +0.71 +0.85

(g) Food101

Base Novel HM

CLIP 90.10 91.22 90.66
CoOp 88.33 82.26 85.19
Co-CoOp 90.70 91.29 90.99

MaPLe 90.71 92.05 91.38
+0.01 +0.76 +0.39

(h) FGVCAircraft

Base Novel HM

CLIP 27.19 36.29 31.09
CoOp 40.44 22.30 28.75
Co-CoOp 33.41 23.71 27.74

MaPLe 37.44 35.61 36.50
+4.03 +11.90 +8.76

(i) SUN397

Base Novel HM

CLIP 69.36 75.35 72.23
CoOp 80.60 65.89 72.51
Co-CoOp 79.74 76.86 78.27

MaPLe 80.82 78.70 79.75
+1.08 +1.84 +1.48

(j) DTD

Base Novel HM

CLIP 53.24 59.90 56.37
CoOp 79.44 41.18 54.24
Co-CoOp 77.01 56.00 64.85

MaPLe 80.36 59.18 68.16
+3.35 +3.18 +3.31

(k) EuroSAT

Base Novel HM

CLIP 56.48 64.05 60.03
CoOp 92.19 54.74 68.69
Co-CoOp 87.49 60.04 71.21

MaPLe 94.07 73.23 82.35
+6.58 +13.19 +11.14

(l) UCF101

Base Novel HM

CLIP 70.53 77.50 73.85
CoOp 84.69 56.05 67.46
Co-CoOp 82.33 73.45 77.64

MaPLe 83.00 78.66 80.77
+0.67 +5.21 +3.13

Table 3. Comparison with state-of-the-art methods on base-to-novel generalization. MaPLe learns multi-modal prompts and demon-
strates strong generalization results over existing methods on 11 recognition datasets. Absolute gains over Co-CoOp are indicated in blue.
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CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
Co-CoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74

MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30

Table 4. Comparison
of MaPLe with ex-
isting approaches on
cross-dataset evaluation.
Overall, MaPLe achieves
competitive performance
providing highest average
accuracy, indicating better
generalization.

to competing approaches but demonstrates a much stronger
generalization performance by surpassing CoOp in 9/10 and
Co-CoOp in 8/10 datasets. Overall, MaPLe shows compet-
itive performance leading to the highest averaged accuracy
of 66.30%. This suggests that the use of branch-aware V-L
prompting in MaPLe facilitates better generalization.

4.5. Domain Generalization
We show that MaPLe generalizes favourably on out-of-
distribution datasets as compared to CoOp and Co-CoOp.
We evaluate the direct transferability of ImageNet trained
model to various out-of-domain datasets, and observe that
it consistently improves against all the existing approaches
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Source Target

ImageNet ImageNetV2 ImageNet-S ImageNet-A ImageNet-R

CLIP 66.73 60.83 46.15 47.77 73.96
CoOp 71.51 64.20 47.99 49.71 75.21
Co-CoOp 71.02 64.07 48.75 50.63 76.18

MaPLe 70.72 64.07 49.15 50.90 76.98

Table 5. Comparison of MaPLe with existing approaches in do-
main generalization setting. MaPLe shows consistant improve-
ments on all target datasets.

as indicated in Table 5. This indicates that utilizing multi-
modal branch-aware prompting helps MaPLe in enhancing
the generalization and robustness of V-L models like CLIP.

4.6. Ablation Experiments

Prompt Depth: In Fig. 4 (left), we illustrate the effect of
prompt depth J for MaPLe and ablate on the depth of lan-
guage and vision branch individually. In general, the per-
formance improves as prompt depth increases. We note
that performance sensitivity increases when randomly ini-
tialized prompts are inserted in the deeper layers of a frozen
model where the model feature space is already mature.
Similar trend is also reported by [16]. As earlier methods
utilize shallow language prompting (J = 1), we compare
our method with deep language prompting. Overall, MaPLe
achieves better performance than deep language prompting
and achieves maximum performance at a depth of 9.
Prompt Length: Fig. 4 (right) shows the effect of prompt
length for MaPLe. As the prompt length increases, the per-
formance on base classes is generally maintained, while the
novel class accuracy decreases. This indicates over-tting
which inherently hurts the generalization to novel classes.
Effectiveness of Multi-modal Prompting: Fig. 5 shows
the analysis of per class accuracy for selected datasets in
the order of increasing domain shift. It indicates that the
performance gains of MaPLe in comparison to Co-CoOp
varies across different datasets. MaPLe provides signicant
gains over Co-CoOp for datasets that have large distribution
shifts from the pretraining dataset of CLIP, and vision con-
cepts that are usually rare and less generic. Further detailed
analysis is provided in Appendix C.
Prompting complexity: Table 6 shows the computational
complexity of MaPLe in comparison with other approaches.

Figure 4. Ablation on prompt depth (left) and prompt length
(right) in MaPLe. We report average results on the held-out vali-
dation sets of all datasets.

Figure 5. Percentage
classes where MaPLe
shows improved perfor-
mance over Co-CoOp,
which increases as
dataset domain shift
from generic categories
increases (→).

Although MaPLe utilizes multi-modal prompts, its overall
FLOPS (Floating Point Operations) exceeds only by 0.1%
over CoOp and Co-CoOp. The independent V-L prompting
also provides comparable FLOP count. In terms of infer-
ence speed, Co-CoOp is signicantly slower and the FPS
(Frames Per Second) remains constant as the batch size in-
creases. In contrast, MaPLe has no such overhead and pro-
vides much better inference and training speeds. Further,
MaPLe provides better convergence as it requires only half
training epochs as compared to Co-CoOp (5 vs 10 epochs).
MaPLe adds about 2.85% training parameters on top of
CLIP. To study if the performance gain is mainly attributed
to more parameters, we experiment with MaPLe†, which
uses a unied V-L coupling function for all layer prompts.
MaPLe† with about 9x lesser parameters than MaPLe also
improves over existing methods. We also ablate by compar-
ing MaPLe with heavier CoCoOp in Appendix D.

Method Params
Params FPS (with BS)

HM
% CLIP 1 4 100

CoOp 2048 0.002 13.8 55.3 1353.0 71.66
CoCoOp 35360 0.03 64.6 114.7 15.1 75.83
Independent V-L 31488 0.02 62.5 239.4 1383.8 77.90
MaPLe 3.55 M 2.85 60.2 239.0 1365.1 78.55
MaPLe† 0.41 M 0.33 60.2 238.0 1365.0 78.11

Table 6. Comparison of computational complexity among differ-
ent prompting methods. MaPLe† is a MaPLe version which uti-
lizes a common V-L coupling function for all layers.

5. Conclusion
Adaptation of large-scale V-L models, e.g., CLIP [32] to
downstream tasks is a challenging problem due to the large
number of tunable parameters and limited size of down-
stream datasets. Prompt learning is an efcient and scalable
technique to tailor V-L models to novel downstream tasks.
To this end, the current prompt learning approaches either
consider only the vision or language side prompting. Our
work shows that it is critical to perform prompting for both
vision and language branches to appropriately adapt V-L
models to downstream tasks. Further, we propose a strategy
to ensure synergy between vision-language modalities by
explicitly conditioning the vision prompts on textual prompt
across different transformer stages. Our approach improves
the generalization towards novel categories, cross-dataset
transfer and datasets with domain shifts.
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