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Figure 1. Our method can transfer the hairstyle from any reference hair image in the top row to Tom Holland [33], in the second row.

Abstract

Our paper seeks to transfer the hairstyle of a reference
image to an input photo for virtual hair try-on. We target
a variety of challenges scenarios, such as transforming a
long hairstyle with bangs to a pixie cut, which requires re-
moving the existing hair and inferring how the forehead
would look, or transferring partially visible hair from a
hat-wearing person in a different pose. Past solutions lever-
age StyleGAN for hallucinating any missing parts and pro-
ducing a seamless face-hair composite through so-called
GAN inversion or projection. However, there remains a chal-
lenge in controlling the hallucinations to accurately transfer
hairstyle and preserve the face shape and identity of the
input. To overcome this, we propose a multi-view optimiza-
tion framework that uses two different views of reference
composites to semantically guide occluded or ambiguous
regions. Our optimization shares information between two
poses, which allows us to produce high fidelity and realistic
results from incomplete references. Our framework produces
high-quality results and outperforms prior work in a user
study that consists of significantly more challenging hair
transfer scenarios than previously studied. Project page:
https://stylegan-salon.github.io/.

1. Introduction

What makes Jennifer Aniston keep her same hairstyle for
over three decades? Perhaps she likes the classic, or perhaps
changing her hairstyle is a decision too high-stakes that she
could later regret. Unlike garments or makeup, trying on a
new hairstyle is not easy, and being able to imagine yourself
in different hairstyles could be an indispensable tool.

Recent approaches for hairstyle transfer, StyleY-
ourHair [20], Barbershop [46], LOHO [30], and Michi-
GAN [35], allow users to manipulate multiple hair attributes
of an input image, such as appearance, shape, or color by pro-
viding a reference image for each different attribute. These
methods [20, 30, 46] rely on a generative adversarial net-
work [11], specifically StyleGAN2 [19], which can synthe-
size highly realistic face images. Their key idea, which also
forms the basis of our method, is to leverage the realistic face
distribution learned by StyleGAN and search for a hairstyle-
transfer output whose latent code lies within the learned
distribution using optimization (commonly known as GAN
projection or inversion).

Our extensive study on these state-of-the-art techniques
still reveal several unsolved challenges for in-the-wild
hairstyle transfer. One of the main challenges is when the
reference hair comes from a person with a very different head
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pose or facial shape. In this case, the transfer result often
degrades significantly [30, 46]. HairFIT [8] and the recently
proposed StyleYourHair [20] both attempt to solve this using
an additional alignment step to align the pose of the target
hair to the input face. In HairFIT [8], this is done explicitly
via a flow-based warping module for hair segmentation, but
this requires training on multi-view datasets [21, 26]. Sty-
leYourHair [20] avoids this issue and also improves upon
HairFIT’s results by optimizing for an aligned pose within
StyleGAN2’s latent space using distances between the de-
tected facial keypoints. While StyleYourHair can handle a
certain degree of misalignment, it often struggles to preserve
details of the reference hair texture, especially for intricate
and non-straight hairstyles, e.g., in Figure 3.

In general, we have observed that there is a trade-off be-
tween hallucinating new details, which is crucial for handling
highly different poses, and preserving the original texture
from the reference images. These two goals are often at odds
with each others. This trade-off is also evident in the results
from StyleYourHair, as reported in [20] and as shown in ta-
ble 3, where BarberShop [46] can still produce better results,
for example, when the pose difference is small.

We tackle this dilemma by performing a multi-stage op-
timization. This serves two purposes: first, to hallucinate
new details necessary for aligning the poses, and second, to
recover face-hair details from the original input images. We
preserve these details in a form of two guide images in both
viewpoints, which will be jointly optimized to allow new
details to be filled while retaining face-hair texture in the
original pose. Our pose alignment is done both explicitly via
3D projection [6] on RGB images, and implicitly via latent
code(s) sharing during our multi-view optimization.

In summary, our contributions are as follows:

1. We propose StyleGAN Salon: a pose-invariant hairstyle
transfer pipeline that is flexible enough to handle a vari-
ety of challenging scenarios including, but not limited
to, bangs/hat removal and background inpainting.

2. Unlike previous works, our method operates entirely on
RGB images, which are more flexible than segmenta-
tion masks. This allows us to first draft the output and
then refine them via multi-stage optimization.

3. We introduce multi-view optimization for hairstyle
transfer which incorporates 3D information to align
the poses for both face and hair images. Our method
leverages both views to help preserve details from the
original images.

4. We thoroughly analyze the results in several experi-
ments, including a user study with detailed breakdown
into various challenging scenarios. Our method shows
superior results over existing works in all scenarios.

2. Related Work
Generative Adversarial Networks. Beginning with [11,

18], StyleGANs [17–19] have shown great success in 2D
image generation by learning realistic training data distribu-
tion corresponding to a fixed low-dimensional distribution,
called latent code. The learned latent code can be applied to a
downstream task such as image manipulation [13,15,32,40].
Recent work on [6,12,44] also explore 3D aware architecture
in StyleGAN, resulting in multi-view consistent images.

For hairstyle transfers, MichiGAN [35] uses a conditional
hair generation network that can control hair shape, struc-
ture, and appearance. Recently, HairFIT [8], a pose-invariant
hairstyle transfer network, aligns the reference hair to match
the input face pose using a optical flow-based hair alignment
module, but requires training on multi-view dataset [21, 26].

StyleGAN Latent Space and Projection Techniques.
To generate an image, StyleGAN2 first maps a random latent
code z ∼ N(0, I) to an intermediate latent code w ∈ R512

in a new space called W . This code w is then replicated
(18x) and used as input to each layer of the generator that
controls details at different scales through weight demodula-
tion. Collectively, these replicated latent codes are referred
to as w+ ∈ R18×512 in the extended latent spaceW+.

Pivotal Tuning Inversion (PTI) [29] further improves
the projection quality by directly tuning generator weights
around the optimized latent code w using their regularization
technique. Other techniques [1,2, 5] optimize the latent code
w+ in each layer separately to better match the input image.

PIE [37] introduces hierarchical optimization for seman-
tic attributes editing that first optimizes the latent code in
theW space, then transfers the code to theW+ space and
continues the optimization in that space. We adopt similar
hierarchical optimization that uses bothW andW+. Part of
our method is also inspired by PULSE [25], which recon-
structs a high-resolution image from a small reference image
(32x32) by searching for the closest image in the StyleGAN
latent space that resembles the low-resolution reference.

Some methods [7, 41, 45] project multiple images into
latent space simultaneously. However, all of their inputs are
complete, whereas our method requires hair information
from the reference hair image and additional information
from the input face image.

StyleGAN-Based Hairstyle Transfer. LOHO [30]
adopts loss functions from Image2StyleGAN++ [2] to com-
bine face-hair inputs into a hairstyle transfer output with their
orthogonalization optimization technique which reduces con-
flicts between multiple loss functions. Barbershop [46] first
predicts semantic regions of both inputs and uses them to
create a “target segmentation mask” of the output with rule-
(in the original paper) or GAN-based inpainting (in their
official code). Then, they optimize two separate latent codes
in W+ space, one for matching the face and the other for
hair, while conforming to the target segmentation mask. To
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preserve the original details, the latent optimization is done
in their proposed F/S space, which replaces the first seven
blocks ofW+ space with the corresponding activation maps
of StyleGAN’s convolution layers. To improve Barbershop’s
capacity to handle unaligned input poses, StyleYourHair [20]
first aligns the reference hair to match the pose of the input
face via the proposed local-style-matching loss. However,
this alignment often leads to an unrealistic hair shape or
inaccurate hair texture results. In contrast, our method simul-
taneously optimizes for two guides in face and hair views,
resulting in a better hair texture.

Instead of estimating the final output from the segmenta-
tion mask [20, 46], our multi-view optimization uses face-
hair composites in RGB space to overcome this problem, and
produces results that better preserve the input facial structure
and hairstyle across a wider, more challenging range of sce-
narios. Concurrent work, HairNet [47], arrives at a similar
goal of removing the target segmentation mask via a two-
step process that involves baldification using StyleFlow [3]
followed by another network to transfer the hairstyle.

Nevertheless, handling pose differences is crucial for suc-
cessful hairstyle transfer; our method incorporates 3D rota-
tion to preserve the geometric consistency and systematically
evaluate this aspect.

3. StyleGAN Salon
Given two input images Ih and If , the goal is to transfer

the hair from the reference hair image Ih into the face in
the image If , while preserving all remaining details in If ,
including identity, clothing, and background.

The key idea of our approach is to guide the optimization
on the learned latent space of StyleGAN2 with two “guide”
images, which represent rough composites of the final output
based on simple cut-and-paste in the viewpoint of Ih and
If . We leverage EG3D to construct these guided images in a
geometrically consistent way, described in Section 3.1.

Optimization on StyleGAN2’s latent space is commonly
performed on either the original latent spaceW or the ex-
tended latent spaceW+. Optimizing onW space generally
leads to more realistic results by staying within the original
latent space, whereas optimizing on W+ allows a closer
match to the reference [37]. In hairstyle transfer, it is im-
portant to stay faithful to the input images and preserve
important details such as hair texture, face identity, and back-
ground. However, optimizing onW+ will lead to poor results
because our guide images are rough and unrealistic compos-
ites. Thus, we propose to optimize on W space followed
by W+ space, similar to a technique in PIE [37] used for
editing semantic attributes of an image.

Our optimization incorporates both guide images from
the two viewpoints, detailed in Section 3.2. Section 3.3 and
Section 3.4 cover details of our optimization onW andW+,
respectively. Finally, we also optimize StyleGAN2 weights

while freezing the latent codes (Section 3.5) using PTI [29]
to further improve detail fidelity. Figure 2 shows an overview
of our complete pipeline.

3.1. Constructing the Guide Images

The purpose of our guide images is to provide an initial
estimate of how the hair would look on If . We achieve this
using a cut-and-paste composite of the face and background
from If and the hair from Ih. To better handle a potentially
large shift in viewpoint between If and Ih, we propose to
leverage EG3D [6] to help generate geometrically consistent
guide images. We argue that using multi-view guide images,
each in the pose of If and Ih, helps preserve details that
could otherwise be lost from using a single viewpoint alone.

A straightforward approach is to simply project Ih into
the EG3D [6] latent space, and use their proposed neural
rendering pipeline to render it in the view of If (and vice
versa). However, while the projection can produce a geo-
metrically consistent 3D shape, we found that the resulting
texture is not very accurate. To address this, we replace any
visible regions in the texture from Ih’s viewpoint with the
original pixels of Ih, while leaving the rest of the texture as
the projected texture from EG3D’s rendering.

We also additionally apply uniform scaling and trans-
lation to match the faces’ widths and centers, which are
computed based on detected facial keypoints [22]. These
keypoints, along with semantic regions from [42], are also
used to handle various corner cases, such as re-painting un-
wanted hair regions. We refer to Appendix A for more details
of this operation.

The entire process is done for both If and Ih viewpoints,
resulting in a pair of guide images Iguide = [I face

guide, I
hair
guide].We

emphasize that by leveraging our multi-view optimization
(Section 3.2), these guide images do not need to be precise or
realistic to produce convincing final results, as demonstrated
in the first row of Figure 4.

3.2. Multi-View Latent Optimization

Our guide images provide complementary information
about the target hair and face, albeit from different poses.
However, each guide image is only fully accurate in regions
with the original pixels seen in the original viewpoint and not
warped by EG3D. Thus, our optimization goal is to combine
information from both guide images to generate a final output
that accurately captures the realistic hair from Ihair

guide, as well
as other details from I face

guide. We achieve this using multiple
loss functions that attend to both viewpoints with different
spatial emphasis. Specifically, we perform multi-view latent
optimization on w/w+ (and stochastic noise maps n) that
fits both guide images:

min
{w/w+,n}

[face, hair]∑
i

Lloss(O
(i), I (i)

guide), (1)
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Figure 2. Overview of StyleGAN Salon: We first align the input face If and reference hair Ih and use them to construct guide images Iguide,
in two different viewpoints, which specifies the target appearance for each output region. (see Section 3)

where O(i) denotes the output of the StyleGAN2’s generator
that takes a latent code w(i) or w+(i) and a stochastic noise
input n(i). Lloss is a sum of all our loss functions:

Lloss =

[f, h, bg]∑
j

λ(j)
p L(j)

per (2)

+ λgLglobal + λiLini + λεLε + λsLsim, (3)

where λ(·) are balancing weights, and [f, h, bg] refer to face,
hair, and background. We next explain each loss function.

3.2.1 Loss Functions

The objective of ourW andW+ optimization is to generate
an output image that fits the corresponding Iguide without
appearing unrealistic. The main challenge is that our guide
images are unrealistic and can contain various unwanted
artifacts. We design our loss functions to be tolerant of the
imprecise nature of our guide images.

Masked Perceptual Loss: This loss is based on Learned
Perceptual Image Patch Similarity (LPIPS) [43], which com-
pares two input images in a deep feature space. Similar
to [20, 30, 46], we apply a binary mask to indicate regions
of interest in the deep feature space of the two input images.
We use LLPIPS(I1, I2;M) to denote this LPIPS computation
between two images (I1, I2) with mask M . However, we ob-
serve that applying this masking operation after the feature
computation is insufficient to disregard unwanted regions.
This is due to the fact that LPIPS is a patch-based similarity
loss, and regions outside of the mask can still affect the loss
computation. Based on this principle, we propose to apply
additional pre-masking to mask out ambiguous regions in
Iguide that should not be trusted. Specifically, our Masked
Perceptual Loss is the following:

Li,roi
per = Λ(i)

roiLLPIPS(O
(i) ⊙ ¬M (i)

roni, I
(i)
guide ⊙ ¬M

(i)
roni;M

(i)
roi), (4)

where Mroi is the mask for region of interest (ROI), and Mroni
is the mask for regions of not interest (RONI). (.)⊙ ¬Mroni

is a simple element-wise multiplication, which effectively
excludes these regions from the loss by setting them to 0
in both input images. And Λ(i)

roi is a balancing weight in (i)
viewpoint, which is set higher when the region of interest
covers the original pixels of If (or Ih). For instance, the loss
that attends to face in I face

guide has a higher weight than the face
loss in Ihair

guide. We consider 3 regions of interest: Lf
per, L

h
per,

and Lbg
per for face, hair, and background regions. We refer to

Section 3.3 and 3.4 for details on these mask generation for
W andW+ optimization, respectively.

Global loss: This loss function attempts to match the
overall appearance of the output to Iguide:

Lglobal = L32
MSE(O, Iguide). (5)

L32
MSE is the mean square error computed on 32x32 down-

sampled input images. The goal of the downsampling is to
reduce the effect of matching visible seams from higher reso-
lution Iguide because those seams become imperceptible once
downsampled. This loss is inspired by a similar idea used
for image super-resolution by Menon et al. [25].

Initial Value Loss: To prevent the output from deviating
too far from the learned distribution and becoming unreal-
istic, we force the optimized latent code(s) w and w+ to be
close to its initial value w0 through L2 loss, as used in [2]:

Lini = ∥w1:18 − w0∥22. (6)

We use the estimated mean ofW latent space as initial values
for optimizing w. This is computed by averaging many latent
codes wi = f(zi) drawn randomly through z ∼ N (0, I) and
the StyleGAN’s mapping network f . Then the optimized
latent code w from the first stage becomes the initial value
for the optimization inW+ extended latent space.

Noise Regularization Loss: We also use the noise regu-
larization loss (Lε) proposed in StyleGAN2 [19] to ensure
that the noise maps will be used for capturing the stochas-
tic variations, and not for encoding the content meant to be
captured by the latent code. We refer to StyleGAN2 for the
details of this loss.
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Latent Similarity Loss: To enable information sharing
between the two guide images (I face

guide and Ihair
guide) from two

viewpoints, we force both their latent codes to be close to-
gether by using the following L2 loss, similarly to [7].

Lsim = ∥w(face) − w(hair)∥22, (7)

where w can be in W space during W optimization or re-
placed with w+ duringW+ optimization.

3.2.2 Sharing Latent Code

In StyleGAN2, latent codes in early layers have been shown
to correspond to high level concepts (e.g. human pose)
whereas the remaining layers capture low-level information
(e.g. colors) [15, 18]. This motivates the optimization inW+

extended space, as each layer can be optimized for different
aspects of the image. Similarly, we optimize latent codes to
match guide images of the same person and hairstyle but
in different poses. Rather than optimizing two latent codes
independently, we can enforce information sharing between
the two poses by constraining the latent codes of the last
few layers (wl:18) to be the same. We set l to be 4 in all our
experiments, loosely based on the head rotation experiments
shown in GANSpace [15].

Sharing w Latent Code: Optimization in the space of
StyleGAN2 latent codeW is generally done as a single latent
code (R512), which are duplicated (18x) and fed into all the
layers. In our case, we also optimize for a single latent code
w but only duplicate them for the first l layers (w1:l). The
remaining layers (wl:18) are interpolated from the current
latent codes of each guide image with a coefficient α.

wl:18 = αw(face)
1:l + (1− α)w(hair)

1:l . (8)

We randomize this coefficient to make the latent codes stay
within the space ofW . This random interpolation forces the
latent code for each guide image to be partly similar while
still producing realistic results fromW latent space.

Sharing w+ Latent Code: Optimization in W+ ex-
tended space is straightforward, as latent code for each layer
can already be separately optimized. We simply share the
last few layers (wl:18) of both w+ latent codes during opti-
mization. We refer to the Appendix A.5 for more details on
the optimization process.

3.3.W Optimization: Hallucinate Missing Details

This stage aims to hallucinate details not currently visible
in the guide images. The output images of this stage are
Oface

1 and Ohair
1 , which are essentially the projection of the

unrealistic I face
guide and Ihair

guide into the real image distribution
learned in StyleGAN2 [19]. This is done by optimizing on
W latent space to fit each guide image with the objective
function (Equation 2).

While our guide images (I face
guide and Ihair

guide) capture the over-
all appearance of the desired outputs, they still lack details
in certain regions. These unknown regions may correspond
to unseen facial features that were occluded by the hair in If
or incomplete reference hair from Ih caused by, e.g., a hat or
image cropping. These details will need to be hallucinated
and seamlessly blended with the rest of the image.

To accomplish this, we design our pre-masking in
Masked Perceptual Loss (Lf

per, Lh
per, and Lbg

per; Equation 4) to
include all the unknown regions that need to be hallucinated.
Specifically, M f

roni represents the face region occluded by
the hair in If , e.g., the forehead behind the bangs or the ears
that should become visible in the final output. Analogously,
M h

roni represents the hair region occluded by other objects
(e.g., a hat) or not visible in Ih due to image cropping. We
set M f

roi and M h
roi to be segmentation masks for face and hair

regions (Mf and Mh), respectively. Both M bg
roi and ¬M bg

roni
is set to be the background regions in If not covered by
the transferred hair (Mbg). These masks are constructed by
composing different semantic regions (union, intersection,
etc.) from If and Ih, detailed in Appendix A.3

We note that Mroi is applied on the deep feature maps,
similar to [20, 30, 46], while ¬Mroni is applied on raw RGB
images. Using both masking techniques is crucial to our
natural and seamless blending. The additional pre-masking
allows the hair shape (or face shape) in the output to be
different from Iguide’s and freely grow outward outside Mroi
if this leads to a more natural result (see Figure 4).

3.4.W+ Optimization: Recover Face-Hair Details

The output of the previous stage, Oface
1 and Ohair

1 , may
still look different from the input person and not yet capture
the hair details from the reference. This stage aims at refin-
ing these output images to better reproduce the hair details
from Ih and the rest from If . The optimization is done in
the extended W+ space with respect to {w+, n}. In other
words, we allow w ∈ R512 that was previously replicated to
each layer to be optimized separately as w+ ∈ R18×512. We
denote Oface

2 and Ohair
2 to be the output of this stage gener-

ated by StyleGAN2 from our optimized latent codes inW+

extended latent space.
We update the target images for the optimization from

I face
guide and Ihair

guide to the more complete versions based on Oface
1

and Ohair
1 from the first stage. However, because the first

stage aims at hallucinating new details into the pre-masking
regions, it may lose the original texture details. To address
this, we replace the known regions in Oface

1 and Ohair
1 with

the correct details from the original Iguide by setting

Inew_guide ← Iguide ⊙Mc +O1 ⊙ ¬Mc, (9)

where Mc = Mf ∪Mh ∪Mbg, which corresponds to the
regions of interest in our Masked Perceptual Loss where
we want to match with Iguide. In short, we simply copy the
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hallucinated parts from Oface
1 and Ohair

1 , and combine them
with the part in Iguide that are known to be correct.

For our Masked Perceptual Loss, we use the same mask-
ing procedure as the previous stage (Section 3.3). However,
we observe that the projection from EG3D, which produces
Iguide, generally is inferior to the known details from the
original images. For example, Ihair

guide contains more details
on the hair than I face

guide due to the latter being hallucinated
from the 3D rotation by EG3D’s rendering pipeline. To de-
prioritize these inaccurate details, we blur both Iguide and
O when computing the perceptual loss for the less accurate
regions of interest. Concretely, we only blur images when
computing Lf

per for Ihair
guide optimization and when computing

Lh
per for I face

guide optimization.

3.5. Pivotal Tuning Inversion

The purpose of this stage is to further refine the output
images (Oface

2 and Ohair
2 ) by allowing the optimization of

the StyleGAN’s weights θ (while fixing the optimized latent
code woptimized). We closely follow the proposed optimization
in PTI [29] with the same objective function. However, we
update the reconstruction loss to reflect the goal of our task,
which is to match the original details from If and Ih.

Lpti =

[face, hair]∑
i

(LLPIPS(O
(i)
tune ⊙M (i)

raw, I
(i)
guide ⊙M (i)

raw;M
(i)
raw)

+ L32
MSE(O

(i)
tune, I

(i)
guide;¬M

(i)
raw)), (10)

where Otune is the generated image using the tuned weights
θ, the mask M face

raw is (Mbg ∪Mf), and M hair
raw is Mh.

4. Experiments
In this section, we compare our method to state-of-the-art

StyleYourHair [20], Barbershop [46], and LOHO [30]. Our
evaluation criteria are i) user preference via a user study
on a wide variety of scenarios, ii) hairstyle transfer quality,
iii) hair reconstruction quality, and iv) how well the input
face shape is preserved. Section 4.5 presents ablation studies
on our multi-view sharing latent optimization, optimization
stage, and loss functions.

We use the official code of LOHO [30] and
Barbershop [46] with the default configurations. For
StyleYourHair [20], we use the configuration where the hair
reference is never flipped.

4.1. Qualitative Comparison

We provide a qualitative comparison to StyleY-
ourHair [20], Barbershop [46], and LOHO [30] in Figure
3. We observe that LOHO and Barbershop often struggle
to fit the reference hair accurately when the poses are not
well aligned (rows 3-5), resulting in various artifacts, such
as remnants of the original hair or wrong placement of the

LOHO Barbershop StyleYourHair Ours

Figure 3. Comparison to current state-of-the-art methods for trans-
ferring hair from 1st column-top, to the face of 1st column-bottom.
Our method can accurately transfer hairstyle even when the input
face and hair are misaligned (3rd, 4th row). It can also hallucinate
missing details such as a forehead that was previously occluded
(1st row), or shorten the hair (2nd row). In general, LOHO and
Barbershop struggle with pose misalignment, while StyleYourHair
struggles to preserves the input’s face shape and hair details.

target hair. Barbershop performs well in preserving hair tex-
ture when the poses are similar. However, it falls short when
handling challenging cases, such as transitioning from a long
to a short hairstyle or removing bangs.

StyleYourHair can produce more realistic results in un-
aligned cases than LOHO and Barbershop. However, the hair
details often look different from the reference hairstyle (row
5). We also observe that StyleYourHair may perform poorly
when the pose difference becomes too large (row 3), as also
shown in our user study for pose in Table 1. In contrast, our
method can transfer hairstyles convincingly, regardless of the
misalignment, while still preserving the original face shape
and hair details. We refer to Appendix F for more results.

4.2. User Study

Qualitative results can be misleading and biased, so we
conducted a user study using Amazon Mechanical Turk
on hairstyle transfer results using randomly selected pairs
grouped into various difficulty levels. We compare results of
our method with the current state of the art: StyleYourHair,
Barbershop, and LOHO. Each participant was shown an in-
put face, marked as ‘Face’, and a reference hair, marked
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Test Datasets FFHQ Scenario Breakdown

A
ll

FF
H

Q
-P

FF
H

Q
-S

Easy Medium Difficult

- ✓ - - - ✓✓ ✓ ✓ ✓ - - - Pose Misalignment
- - ✓ - - - ✓ - - ✓ ✓ - Needs Face Inpainting
- - - ✓ - - - ✓ - ✓ - ✓ Needs BG Inpainting
- - - - ✓ - - - ✓ - ✓ ✓ Ih wears a hat

LOHO 8.8 9.6 8.4 12.0 5.3 4.0 13.3 8.0 5.3 5.3 4.0 10.7 5.3 13.3 14.7
Barbershop 16.4 13.8 17.8 17.3 21.3 13.3 21.3 18.7 17.3 17.3 20.0 12.0 18.7 14.7 21.3
StyleYourHair 18.5 12.4 21.6 25.3 21.3 10.7 22.7 33.3 10.7 24.0 28.0 14.7 32.0 14.7 21.3
Ours 56.2 64.2 52.2 45.3 52.0 72.0 42.7 40.0 66.7 53.3 48.0 62.7 44.0 57.3 42.7

Table 1. User study results on hairstyle transfer (percentage of user preferring each method). Our method outperforms state-of-the-art
hairstyle transfer methods on FFHQ datasets in all challenging scenarios. A total of 450 pairs are used in this study, 150 pairs in FFHQ-P
and 300 in FFHQ-S. For each pair, we asked 3 unique participants to select the best result for hairstyle transfer.

as ‘Hair’, and asked to pick only one output that best ac-
complishes the task of transferring the hairstyle from image
‘Hair’ to the person in image ‘Face’. The output row consists
of four images from each method in random order. Each
task was evaluated by 3 different participants. All images
were in 256x256 resolution.

4.2.1 Datasets

For the user study, we construct two challenging benchmarks:
FFHQ-P and FFHQ-S, from the test set of Flickr-Faces-HQ
dataset (FFHQ) [18].

FFHQ-P contains 150 random input face-hair pairs from
FFHQ, covering yaw differences in ranges of [0−15), [15−
30), . . . , [75− 90), with 25 pairs in each range.

FFHQ-S contains 300 pairs, categorized into 12 differ-
ent configs with varying levels of difficulty (Table 1). Each
config contains 25 random input pairs and is a combination
of four possible scenarios (see details in Appendix B):

• Pose Misalignment: When the yaw difference is be-
tween [15-30) or [30-45), a single checkmark or double
checkmarks are used, respectively in Table 1.

• Needs Face Inpainting: This includes scenarios that
require hallucinating parts of the original face, e.g.,
inpainting the forehead to remove bangs. This is chal-
lenging because the identity can easily change from the
hallucination. We detect such scenarios based on the
face/hair regions in If and Ih (Appendix B).

• Needs BG Inpainting: This includes scenarios where the
hair shape becomes smaller and requires background in-
painting. We detect such scenarios automatically based
on the hair regions in If and Ih (Appendix B).

• Ih Contains Hat: This represents scenarios where the
hair reference is not fully visible in Ih. We detect such
scenarios based on the hat region in Ih.

Pose Difference Range (FFHQ-P)
[0,15) [15,30) [30,45) [45,60) [60,75) [75,90)

LOHO 10.7 5.3 10.7 12.0 8.0 10.7
Barbershop 24.0 13.3 12.0 8.0 10.7 14.7
StyleYourHair 17.3 16.0 12.0 6.7 14.7 8.0
Ours 48.0 65.3 65.3 73.3 66.7 66.7

Table 2. User study on pose-invariant hairstyle transfer. Our method
outperforms others on all pose difference ranges.

Hair Reconstruction Metrics Face Shape
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ RMSE ↓

LOHO 25.76 0.86 0.07 10.40 15.84
Barbershop 29.18 0.89 0.05 10.46 17.25
StyleYourHair 26.89 0.87 0.09 10.93 14.37
Ours 27.84 0.88 0.07 10.85 10.89

Table 3. Hair reconstruction results in the self-transfer experiment
(Section 4.3), and RMSEs between facial landmarks detected on
the input and output images.(Section 4.4).

4.2.2 Results

Using all test pairs, the participants preferred our results
56.2% of the time, whereas StyleYourHair’s, Barbershop’s,
and LOHO’s results were selected for 18.5%, 16.4% and
8.8%, respectively. Our method perform the best in both
FFHQ-P (64.2%) and FFHQ-S (52.2%), and in all configu-
rations in Table 1-2.

4.3. Quality of Hair Reconstruction

Following MichiGAN and LOHO, we perform a self-
transfer experiment where we set both the input face and
input reference hair to be the same and evaluate the recon-
struction accuracy using various metrics: PSNR, SSIM, IP-
IPS, FID [14]. For every method, the hair region of the output
will be blended back to the input image to ensure that the
difference in score only comes from the hair.
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Input FaceInput Hair Single View Without 1st Stage No Latent Sharing No Pre-Masking Full Pipeline (Ours)Iguide

B

C

A A
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D

D

D D

D D

Figure 4. Ablation study of optimization stages and pre-masking. These ablated versions of our pipeline may produce results that (A) look
realistic, but fail to match the Ih’s hairstyle; (B, C, D) have unlikely hair shapes or structures; (E) have sharp boundaries; and (F) contain an
incomplete background.

The scores of our method, LOHO, Barbershop, and Sty-
leYourHair are reported in Table 3. Unsurprisingly, when
there is no misalignment between input face and hair, Barber-
shop generally achieves excellent hair reconstruction quality.
Like ours, StyleYourHair is specifically designed to be pose-
invariant, but their hair reconstruction quality seems to suffer
greatly, as shown in our comparison (row 5 of Figure 3). Our
method achieves better performance at hair reconstruction
than StyleYourHair, but also suffers from similar drawbacks.

4.4. How Well Is Face Shape Preserved?

We also propose a novel evaluation metric for hairstyle
transfer that focuses on the ability to preserve facial shape
of the original person. We accomplish this by comparing
detected keypoints of the input face If and those on the
output using a simple Root-Mean-Square Error (RMSE).
These keypoints were detected using an off-the-shelf library
Dlib [22], and we only used keypoints on the facial contour
(ID 0-16) for this evaluation.

For this evaluation, we randomize additional 1,550 FFHQ
test pairs into our FFHQ-P and FFHQ-S datasets (2,000 im-
ages in total). Table 3 shows that our method outperforms
others with an RMSE of 10.89, which is 24.2% lower than
StyleYourHair’s (the second best), 36.9% lower than Barber-
shop’s and 31.3% lower than LOHO’s.

4.5. Ablation Studies

Here we assess the importance of each component in
our pipeline. The results are shown in Figure 4. We test 4
ablation configurations: i) by using only I face

guide from a single
view, ii) without using the hallucination stage (Section 3.3),
iii) without using the latent sharing structure (Section 3.2.2),
and iv) without using pre-masking in Lper (Section 3.2.1).

Optimizing with a single view guide I face
guide (Config i)

yields inaccurate hairstyles (Figure 4-A). Without optimiza-
tion in W (Config ii), the method produces unrealistic hair
results with various artifacts, e.g., sharp edges, unnatural
hair shapes (Figure 4-B) or structures (Figure 4-C). This is

A

FE

B

C

D

Figure 5. Failure cases; (A) the semantic regions are incorrect; (B)
the facial keypoint is incorrect; (C) the EG3D projection is incor-
rect; (D) the reference hair color is too similar to the background
color; (E) lighting looks unnatural; (F) eccentric hairstyle.

because the second stage, which has higher image fitting ca-
pability, tries to fit the initial rough estimation Iguide. Without
the latent sharing structure, the hair detail cannot be shared
from the reference hair view (Lsim alone is not strong enough
to force consistency) (Figure 4-A), resulting in inaccurate
hair colors or structures (Figure 4-C).

Without pre-masking inLper, the boundary of the face and
hair regions is forced to be the same as in Iguide, leading to
visible and sharp seams between the face and hair or between
different facial features. Here the optimizer fails to refine the
face-hair boundary to make the results look natural (Figure 4-
D), and the original details, such as the background from If
cannot be seamlessly blended (Figure 4-E).

5. Conclusion and Limitations

We have presented a flexible and effective hairstyle trans-
fer system that can handle a variety of challenging in-the-
wild scenarios and produce perceptually convincing hairstyle
transfer results. Our user study shows that human evaluators
prefer our results over previous methods across all tested
scenarios. Nevertheless, our method can still fail in certain
scenarios, for example, when the face and hair are too eccen-
tric (Figure 5). We refer to Appendix G for more details.
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