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Abstract

Concept-based explanation aims to provide concise and
human-understandable explanations of an image classifier.
However, existing concept-based explanation methods typ-
ically require a significant amount of manually collected
concept-annotated images. This is costly and runs the
risk of human biases being involved in the explanation.
In this paper, we propose Counterfactual explanation with
text-driven concepts (CounTEX), where the concepts are
defined only from text by leveraging a pre-trained multi-
modal joint embedding space without additional concept-
annotated datasets. A conceptual counterfactual explana-
tion is generated with text-driven concepts. To utilize the
text-driven concepts defined in the joint embedding space to
interpret target classifier outcome, we present a novel pro-
jection scheme for mapping the two spaces with a simple yet
effective implementation. We show that CounTEX generates
faithful explanations that provide a semantic understanding
of model decision rationale robust to human bias.

1. Introduction
Explainable artificial intelligence (XAI) aims to unveil

the reasoning process of a black-box deep neural network.
In the vision field, heatmap-style explanation has been ex-
tensively studied to interpret image classifiers [20, 21, 24].
However, simply highlighting the pixels that significantly
contribute to model outcome does not answer intuitive and
actionable questions such as “What aspect of the region
is important? Is it color? Or pattern?”. On the other
hand, drawing human-understandable rationale from the
highlighted pixels requires domain expert’s intervention and
can thus be impacted by the human subjectivity [11].

In contrast, concept-based explanation can provide a
more human-understandable and high-level semantic expla-
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Figure 1. (a) Conventional concept-based explanation derives a
CAV with the target model’s embedding of manually collected
concept-annotated images. (b) CounTEX derives the concept di-
rection directly from texts in CLIP latent space.

nation [3, 4, 7, 9, 11]. Concept fundamentally indicates an
abstract idea, and it is generally equated as a word such as
“stripe” or “red”. The earliest approach to interpret how
a specific concept affects the outcome of the target image
classifier is concept activation vector, or CAV [11]. A CAV
represents the direction of a concept within the target clas-
sifier embedding space and has been widely adopted to sub-
sequent concept-based explanations [15, 19, 25].

However, the CAVs acquisition requires collections of
human annotations. The CAV of a concept is typically pre-
computed via two steps as depicted in Figure 1 (a); 1) col-
lecting a number of positive and negative images that best
represent a concept (e.g., images with and without stripes),
2) training a linear classifier (commonly support vector ma-
chine) with the images. The vector normal to the deci-
sion boundary serves as a CAV. Collecting positive/negative
datasets in step 1 is not only costly but also poses the risk of
admitting human biases in two aspects; diverging CAVs for
the same concept and unintended entanglement of multiple
concepts. We will demonstrate in Section 2 that this may
threaten credibility of explanation.
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To tackle such challenges, we propose Counterfactual
explanation with text-driven concepts (CounTEX), which
derives the concept direction only from a text by leveraging
the text-image joint embedding space, CLIP [16] (Figure 1
(b)). CounTEX defines a concept direction as the direc-
tion between the two CLIP text embeddings of a neutral an-
chor prompt that does not contain any concept and a target
prompt that includes the concept keyword, which is similar
to text-guided image manipulation [8, 12].

CounTEX outputs conceptual counterfactual explanation
(CE) defined by importance scores of user-specified con-
cepts, similar to the previous conceptual CE method called
CCE [1]. Given an input image, prediction of black-box
classifier, and a target class, the importance scores an-
swer the question, “How much should each concept be
added/subtracted to the image to change the prediction into
the target class?”. Specifically, an image embedding from
the target classifier is perturbed into the weighted sum of the
concept directions representing various concepts, where the
weights are updated until the prediction becomes the target
class. The final weights serve as importance scores of cor-
responding concepts, indicating the amount of contribution
of the concepts to the prediction.

The introduction of CLIP poses a significant challenge;
how can we exploit concept directions obtained from CLIP
latent space to generate CE for an arbitrary target image
classifier? To this end, we propose a novel scheme using
projection and inverse projection. The projection maps an
image embedding from the intermediate layer of target clas-
sifier to the CLIP latent space. The perturbation is con-
ducted in the CLIP space using the text-driven concept di-
rections. The inverse projection brings the perturbed em-
bedding back to the target classifier space so that it can be
feed-forwarded to the remaining target classifier. We found
that a projector/inverse projector consisting of a simple neu-
ral network can effectively map the two latent spaces of tar-
get classifier and CLIP and generate faithful explanations.

Another advantage of deriving concept directions from
text is that it allows to utilize a wide variety of concepts at a
marginal cost. Unlike previous studies that produce expla-
nations with only a small number of concepts, we present
faithful explanations consisting of a much larger number of
diverse concepts derived for generic classifiers and datasets

Our contributions can be summarized as follows:

1. We propose a novel explanation framework CounTEX
to derive the concept direction only from text by lever-
aging the CLIP joint embedding space.

2. We propose projection/inverse projection scheme to
utilize the concept directions defined in the CLIP latent
space to explain an arbitrary target image classifier.

3. We show qualitatively and quantitatively improved re-
sults that verify CounTEX effectively addresses the
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Figure 2. (a) Left: PCA results of misaligned CAVs for the same
concept “stripe”, Middle: Cosine similarity between two CAVs
over various concepts, Right: Rank correlation between concept
importance scores generated from different seeds. (b) Positive im-
age examples for concept “green” and “grass”

limitations of image-driven CAVs.

2. Limitations of Image-driven Concept

This section explores two major risks of image-driven
CAVs that can threaten the credibility of explanations. Con-
cepts are often abstract words, and it is nontrivial to decide
“good” examples that best represent a concept. The deci-
sion often depends on the intuition of the annotators and
can be very subjective, and there are two risks; 1) Diverg-
ing CAVs and 2) unintended entanglement.

Diverging CAVs (Figure 2 (a)) A CAV may vary upon
the positive/negative dataset composition. For each positive
and negative dataset of a concept, we randomly selected 30
images using two different random seeds from the concept
datasets used in the CCE paper [1] and obtained CAVs re-
spectively from the two compositions. If a CAV is robust to
dataset composition, then the two CAVs derived from dif-
ferent seeds should align for the same concept. However,
the result depicted in Figure 2 (a) left shows that the CAVs
for the concept “stripe” from two seeds are not aligned well,
showing a low cosine similarity of 0.73. Note that the result
is from principal component analysis. The cosine similarity
distribution shown in Figure 2 (a) middle indicates that the
misalignment is common for 170 concepts used in CCE.

Unstable explanations are the problematic consequences
of diverging CAVs. Figure 2 (a) right shows the distribu-
tion of Spearman’s rank correlation coefficients between the
concept importance scores generated by CCE using the two
CAVs sets from different seeds. The rank correlation is very
low, which suggests that diverging CAVs lead to very differ-
ent explanations for the same outcome. This threatens the
reliability of the explanation.

Unintended entanglement (Figure 2 (b)) A CAV of a
concept can suffer from an unintended entanglement with
other concepts. Figure 2 (b) shows positive images for the
concept “green” and “grass”. The images for the concept

10943



“green” are highly likely to include grass images, and most
of the images for the concept “grass” are highly likely to be
green colored. This unintended entanglement can lead to
misleading explanations such as the “grass” concept receiv-
ing a high importance score even though the image contains
green but no grass at all. We observed that this kind of mis-
behavior does occur in CCE but not in CounTEX (details
are described in Section 4.2).

To overcome the above-mentioned limitations of image-
driven CAVs, a significant number of carefully chosen
concept-annotated images are required. The limitations are
alleviated in CounTEX because it does not depend on im-
age collections. In addition, because it leverages the CLIP
latent space pre-trained on extensively crawled large-scale
datasets, the risk of unintended entanglement is reduced.

3. Method
The key idea of CounTEX is to derive concept direction

from text by leveraging the CLIP embedding space. CLIP is
trained as a joint embedding space of text and images [16],
and it enables us to define concept directions without any
positive/negative image examples.

This approach raises the following research questions.

1. Given concept directions textually driven in CLIP la-
tent space, how can we exploit them to interpret the
outcome of an arbitrary target classifier?

2. How can we obtain the text-driven concept directions
using CLIP?

3. What other modeling consideration is needed to gen-
erate accurate counterfactual explanation (CE)?

Section 3.1 to 3.3 will show how we address question 1.
Section 3.4 and 3.5 will demonstrate how we address ques-
tion 2 and 3, respectively. The overall flow of CounTEX is
visualized in Figure 3.

3.1. Problem definition: Counterfactual XAI

A typical CE takes three inputs, a black-box classifier
f(·), an input image x, and a target class yt. Conceptual CE
takes an additional input, i.e., a predefined concept library
C = {c1, ..., cN} with N concept keywords. The output is
w ∈ RN, a vector of concept importance scores. An im-
portance score wi of a concept ci indicates the amount by
which ci needs to be added/subtracted to change the predic-
tion to yt. Here, we define a generic perturbation function
p(·), which takes four inputs; f , x, C, and w. The output is
a perturbed prediction; yp = p(f, x, C,w).

The goal of conceptual CE is to find the optimal w∗ that
minimizes the gap between yt and perturbed prediction yp
and to provide w∗ as an explanation. Specifically,

min
w

L(p(f, x, C,w), yt)

“stripe”
“black”
“furry”

...

����
������

“A photo of object”
“A photo of {} object”

BlackBox latent spaceCLIP latent space

...

Projection
(      )

Inverse
projection

(     )

furry

Figure 3. Overall flow of CounTEX.

where L is commonly defined as cross-entropy loss.
For a misclassified image, yt can be specified as the

ground truth class. In this case, CE shows the root cause of
the incorrect prediction. On the other hand, when applied to
a correct prediction, CE can help identify features important
for making a prediction correct against an arbitrary yt.

3.2. Perturbation in CLIP latent space

In conventional conceptual CE methods, including CCE,
perturbation function p(·) is defined on embedding linearly
perturbed in the embedding space of f . Specifically,

p(f, x, C,w) = ftop
(
fbottom(x) +w · Vf

)
where fbottom(x) is the bottom layers of f , ftop(x) is the
top linear layer, and Vf is a bank of CAVs of all concepts
in C. The subscript f denotes that CAVs in Vf are de-
fined with concept image embeddings from fbottom. How-
ever, as discussed in Section 2, constructing Vf in target
classifier’s embedding space requires a significant number
of positive/negative examples for each c in C.

In CounTEX, the linear perturbation is instead con-
ducted in the CLIP space using the text-driven concept di-
rection bank VCLIP whose details will be described in Sec-
tion 3.4. This implies that we need to map the image embed-
ding from the target classifier’s latent space to the CLIP’s la-
tent space where the perturbation operates. We also need to
map the image embedding perturbed in the CLIP space back
to the target classifier’s embedding space to feed-forward it
through the remaining ftop(·). We introduce projection and
inverse projection functions, gproj and ginv, for this purpose.

In summary, our perturbation p is modeled as,

p(f, x, C,w) = ftop

(
ginv

(
gproj(fbottom(x)) +w · VCLIP

))
These steps are visualized in the Figure 3. gproj and ginv are
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Figure 4. Diagram of projection, inverse projection and cycle con-
sistency.

the functions with learnable parameters that are trained to
map the latent spaces of f and CLIP.

3.3. Learning Projection and Inverse Projection

We train gproj and ginv based on two desiderata which are
also illustrated in Figure 4. First, ideally, an image should
generate the same embedding regardless of how it is com-
puted. There are two possible paths for computing an im-
age embedding in CLIP latent space; 1) computing an em-
bedding directly from the CLIP image encoder denoted by
CLIPimage(x), 2) projecting the embedding fbottom(x) into
the CLIP space. A projector should minimize the distance
between the embeddings computed by the two paths.

The desideratum should hold for the inverse projector
as well; 1) Computing an embedding directly from fbottom
and 2) projecting CLIPimage(x) into that of f via an inverse
projection should result in closely located embeddings.

We use the distance between embeddings from the two
paths as the loss terms to train gproj and ginv as below:

Lproj = ||gproj(fbottom(x))− CLIPimage(x)||2

Linv = ||fbottom(x)− ginv(CLIPimage(x))||2.

gproj and ginv are separately trained with corresponding loss.
The second desideratum is that projection and inverse

projection should not introduce any unnecessary pertur-
bation. Two loss terms defined above do not guarantee
whether an image embedding will return to the same em-
bedding after the sequential projection and inverse projec-
tion. To reduce the “round trip” error, we introduce an ad-
ditional cycle consistency loss Lcycle to fine-tune gproj and
ginv. Lcycle is defined as the distance as below:

Lcycle = ||ginv
(
gproj(fbottom(x))

)
−fbottom(x)||2.

After the training of the projector and inverse projector, they
are jointly fine-tuned with Lproj + Linv + Lcycle for a few
epochs.

Category Prompt template

Color "A photo of {} object"
Texture "A photo of {} object"
Scene "A photo of object on {}"

Material "A photo of object made of {}"
Part "A photo of object containing {}"

Object "A photo of object along with {}"

Table 1. Prompt templates of ttrg for six concept categories

We empirically found that a simple architecture as MLPs
is sufficient for both projection and inverse projection. It
is noteworthy that the training can be done with any other
dataset different from the training dataset of f(·). The train-
ing dataset does not even need any annotation as the training
is conducted in an unsupervised manner. The more com-
prehensive the dataset, the more accurate projection and in-
verse projection can be expected.

3.4. Constructing VCLIP via Concept Prompting

We construct VCLIP using only text in the CLIP la-
tent space by prompting concept keywords in C. First,
for each c, we generate a pair of prompts composed
of source text tsrc and target text ttrg. tsrc is fixed
through all concepts as a concept-neutral generic phrase,
“A photo of object”, following the zero-shot classi-
fication prompt strategy from the original CLIP paper [16].
To generate syntactically and semantically correct prompts,
the template for ttrg is determined according to the category
of c. For concept categorization, we leverage CBRODEN [4].
CBRODEN is one of the most widely used predefined concept
libraries and provides concept categories such as “texture”
and “color”. Every concept belongs to one of categories,
e.g., concept “stripe” belongs to “texture”. Templates of ttrg
for various concept categories are shown in Table 1.

The generated prompt pair is then used to derive the
concept direction. [tsrc, ttrg] is tokenized and encoded with
CLIP text encoder (CLIPtext), yielding a text embedding
pair [CLIPtext(tsrc), CLIPtext(ttrg)]. Then the direction vc of
a concept c is computed as the difference between the two
text embeddings vc = CLIPtext(ttrg) − CLIPtext(tsrc). Af-
ter the computation, it is normalized to a unit vector. By
iterating for ∀c ∈ C, we construct the final concept direc-
tion bank VCLIP = {vc ∈ Rl|c ∈ C}, where l denotes the
dimension of the CLIP text embedding.

3.5. Optimizing w

We introduce three constraints and corresponding loss
terms for optimizing w. First, the prediction on the per-
turbed embedding should change to the target class. There-
fore, LCE is included to minimize the cross entropy between
the predicted label and the target class yt. Second, an iden-
tity loss Lid enforces the minimal perturbation so that the
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perturbed embedding does not deviate too much from the
original image embedding. Lastly, sparse weights are en-
forced to ensure concise and human-understandable expla-
nations. The sparseness loss Lreg imposes L1 and L2 sparse-
ness of w following the conventional approach [1].

Each loss term is formulated as follows:

LCE = CE
(
ftop

(
ginv(gproj(fbottom(x)) +w · VCLIP)

)
, yt

)
Lid = MSE

(
gproj(fbottom(x)), gproj(fbottom(x)) +w · VCLIP

)
Lreg = ||w||1 + ||w||2
Ltotal = LCE + α · Lreg + β · Lid,

where yt denotes a one-hot representation of yt. Ltotal is the
sum of the three loss terms, and the hyperparameters α and
β are numbers smaller than 1. w is updated to minimize
Ltotal. If the prediction changes to the target class before the
loss converges, then the optimization is terminated.

4. Experimental Results
4.1. Experimental settings

Black-box Model: We adopted three image classifiers,
CLIP+linear, ResNet18, and ResNet50. CLIP+linear is a
linear probe CLIP [16] composed of a linear layer on top of
a frozen CLIP image encoder with vision transformer (ViT-
B/32) architecture. Unlike ResNet, CLIP+linear does not
require projection as it shares the pre-trained CLIP latent
space where we define concept directions.

Datasets: We used three datasets to train the black-
box models. In addition to ImageNet [6], we adopted two
datasets, Animals with Attributes2 (AwA2) [23] and CUB-
200-2011 (CUB) [22] for the quantitative evaluation. AwA2
has 50 classes with 85 class-wise attributes, and CUB has
200 classes and 312 class-wise attributes.

Concept library: We used three pre-defined concept li-
braries. CBRODEN is a benchmark concept library proposed
from [4]. It has 1,197 general concepts ranging from color
to scene. We also utilize attribute names of AwA2 and CUB
datasets as concept libraries, CAwA2 and CCUB, especially
for quantitative analysis. It is noteworthy that our method
is not bounded to specific C. CounTEX allows to easily
add/remove any concept by simply presenting text, unlike
competitors require concept-annotated image datasets.

Projector and inverse projector: We empirically found
that the projector/inverse projector can be sufficiently im-
plemented with multi-layer perceptron (MLP). Both are
comprised of MLP with hidden dimension of (512, 512,
512). Throughout all experiments, we used the projector
and inverse projector trained with ImageNet for 50 epochs.
The investigation results are shown in Section 4.5.

Optimization details: The weight vector w is optimized
to minimize Ltotal. α and β were set to 0.1 for all exper-
iments after hyper-parameter search. We used a stochas-

tic gradient descent (SGD) optimizer with a learning rate
10−10 with the maximum iteration number set to 100. We
terminate the optimization early once the predicted class
changes to the target class.

4.2. Qualitative evaluation

Identifying features contributing to correct predic-
tion: We first generate CEs for correctly classified exam-
ples. We intentionally select the wrong class as the target
class. In this setting, a large negative score of a concept in-
dicates that the concept caused an image to be classified as
the correct class rather than the target class. In Figure 5, we
show the concepts of the top three and bottom three in terms
of importance scores along with the scores.

The results of the proposed method are well aligned with
human perceptions ranging from low-level concepts such as
color and pattern to high-level concepts including scene and
shape. The top-1 and bottom-1 concepts of Figure 5 (a) and
(c) show that color is the most discriminative feature that
helps the image to be classified to the correct class against
the target class. Meanwhile, our method can also identify
scenes, such as “ice” or “campsite” in (c), implying that
the model relies on class-coherent backgrounds. Moreover,
the explanation of CUB-trained model with CCUB shown in
(d) demonstrates that our method can capture various fine-
grained concepts from local parts such as “back color” to
global shapes such as “duck-like shape”.

Results of Figure 5 (a) and (b) are for ResNet-based im-
age classifiers. It shows that CounTEX produces quality
results even when the projection and inverse projection are
involved. Please refer to Appendix for more examples.

Debugging misclassification cases: We apply the pro-
posed method to debug a misclassification case. We 1)
identify the required features to correct the prediction using
CounTEX, 2) edit the image based on it, and 3) test whether
the prediction on the edited image actually changes to the
correct class.

We observe that CounTEX helps to correct the misclassi-
fication. Figure 6 (a) shows an image of Hippopotamus
misclassified to Rhinoceros by CLIP+linear trained on
AwA2 dataset. The CE says that the concepts that need to
be added and subtracted the most to correct the prediction
to Hippopotamus are “water” and “field” respectively.
We edited the background to water while preserving the ob-
ject using the most recent text-guided image manipulation
method [17] as shown in (b). (b) shows that the prediction
on the background-edited image changes the correct class,
Hippopotamus.

Like this, CounTEX can help to find the root cause of
a model misbehavior by investigating incorrect outcomes
with generated CE. The above-mentioned example suggests
that the black-box model learned the correlation with back-
ground rather than the features directly related to the ob-
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represents positive and negative contributions, respectively. The target models and corresponding training datasets are written to the left to
the input images.

Original image

Misclassified as
“Rhinoceros”

Examples of “Hippopotamus”

Correct answer
“Hippopotamus”

→

-1 10 Prediction
“Hippopotamus”

Background-
edited image

(a)

(c)

(b)

Counterfactual

vs.

Examples of “Rhinoceros”

Figure 6. (a) CE generated to turn the prediction on misclassified
image into correct answer. (b) Prediction changes to the correct
class after top-1 concept-guided image editing. (c) Training image
examples of the two classes.

ject. As shown in Figure (c), we found that “field” con-
sistently appears as a background across most training im-
ages of Rhinoceros, while “water” frequently appears in
training images of Hippopotamus. Based on this find-
ing, we can improve the model by modifying the dataset,
e.g., adding more training data of Hippopotamus with
diverse backgrounds.

Qualitative comparison with CCE [1]: Here, we
present an example where the major CAV-based competi-
tor CCE fails to generate faithful explanation while Coun-
TEX succeeds. Especially, Figure 7 shows that CCE as-
signs a large negative importance score to concept “grass”
that does not even exist in the original image. This sup-
ports that conventional CAV suffers from unintended en-
tanglement as described in Section 2. On the contrary,

CCE Ours“Granny smith” “Strawberry”

↓

Original Input Target class Counterfactual

plate
cushion

coffee table
grass

red
flower
black

green

Figure 7. CE generated by CCE and CounTEX for the same pre-
diction. CCE assigns high score to irrelevant concept “grass” un-
like CounTEX.

our method successfully reveals that the “green” color con-
tributes the most. The CLIP latent space trained with large-
scale datasets makes explanation more robust to unintended
entanglement. Note that both results are obtained by using
the same concept library that contains “green”. Please refer
to the Appendix for more examples.

4.3. Quantitative evaluation

Quantitative evaluation protocol: Quantitative evalu-
ation of conceptual CE is challenging for two reasons: 1)
There is a lack of an established dataset that provides a
concept-level ground-truth explanation to be compared with
the output concept importance score. 2) Even if there is
a ground truth, it needs to be adapted to the characteristic
of CE that contrasts the original prediction against a target
class. For this reason, quantitative evaluations of conceptual
CEs have been conducted only in very limited settings [1,2].

For more systematic evaluation, we repurpose the class-
wise attributes of AwA2 and CUB datasets as concept-
level ground truth. They provide a binary attribute vector
ay for each class y. Each dimension indicates the pres-
ence/absence of the corresponding attribute. We build con-
cept libraries CAwA2 and CCUB with the attribute keywords.
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Figure 8. Example of generating ground truth CE for AwA2
dataset. Here, yo is zebra and yt is polar bear.

We then generate CE with CAwA2 and CCUB, so that we
can compare the output concept importance scores with the
given binary attributes.

We define ground truth CE by contrasting class-wise at-
tributes of predicted class yo and target class yt, which is
also depicted in Figure 8. An ideal CE reveals only the at-
tributes that distinguish yo from yt, i.e., the attributes that
exclusively appear in one class. Therefore, we first sub-
tract the two attribute vectors, ayo

and ayt
. Then, each di-

mension of the resulting vector will have one of {-1, 0, 1},
where 1 and -1 indicate an attribute that is present only in
yt and yo, respectively. Here, 0 indicates that an attribute is
present or absent in both yt and yo, which is out of the in-
terest of CE. Therefore, we filtered out the dimensions with
a value zero from yt− yo. The same dimensions are filtered
out from the concept importance scores as well.

We evaluate the performance of CE using the area under
roc curve (AUROC). An ideal CE should be able to rank a
concept with ground truth 1 at the top and a concept with
ground truth -1 at the bottom. AUROC can measure such
ranking, especially when the concept important scores are
continuous values while the ground truth CE is binary.

Competitor settings: Our primary competitor, CCE [1],
did not conduct a quantitative evaluation on general im-
age datasets including AwA2 and CUB. Therefore, we pre-
computed CAVs for CCE with respect to CAwA2 and CCUB
by collecting corresponding positive and negative concept
images from Google image search. For both CCE and
CounTEX, we randomly selected plenty images from the
validation dataset and generated CEs for the various target
classes. The generated explanations were compared with
ground truth CE. Details are described in the Appendix.

Quantitative results: Table 2 shows the AUROC from
explanations of various black-box models and datasets. Our
method outperforms CCE in assigning higher importance
scores to class-discriminative features. Consistently higher
AUROC over various models and datasets shows that the
CEs generated with text-driven concepts are more accurate
than image-driven concepts of CCE.

4.4. Effect of Concept Prompting

CounTEX is robust to concept prompt templates, i.e.,
two prompts with the same semantics produce consistent
CEs, even if the constituent words are different. We mea-

Target model Dataset Library CCE Ours

CLIP+Linear AwA2 CAwA2 0.6436 0.8132
CUB CCUB 0.7066 0.7891

ResNet18 AwA2 CAwA2 0.6113 0.7314
CUB CCUB 0.6979 0.7750

ResNet50 AwA2 CAwA2 0.5811 0.7316
CUB CCUB 0.6811 0.7336

Table 2. AUROC comparison. The higher AUROC indicates the
more accurate interpretation.

(b) Rank correlation

D
en

si
ty

Ideal case

1.

CounTEX
CCE

(a) Template configuration

“A photo of {} object”
“A photo of object in {}”
“A photo of object made with {}”

“A photo of {} object”

“A photo of object containing {}”
“A photo of {}”

“A photo of {} object”
“A photo of object with {} background”
“A photo of object made of {}”

“A photo of {} color object”

“A photo of object having {}”
“A photo of {}”

Configuration 1 Configuration 2

Figure 9. (a) Prompting configurations. (b) Rank correlation dis-
tribution between CE generated with different prompts. For the
comparison, we also visualized the results of CCE with varying
dataset composition in gray color.

sured the Spearman’s rank correlation between the explana-
tions generated with three different template configurations
including the one in Table 1. The other two configurations
are described in Figure 9. We replaced words in templates
with different but meaning-preserving words, such as re-
placing “containing” with “having”.

The rank correlation close to 1 shown in Figure 9 in-
dicates that the explanations of CounTEX are robust to the
differences in prompt templates. Note that we used the same
experimental settings as in Section 2. This is a stark contrast
to CAVs that significantly diverge depending on the concept
dataset collection. Extracting semantics from various text
expressions depends on the language understanding perfor-
mance of the CLIP text encoder. We can expect even more
robust explanations if the text encoder further improves.

4.5. Evaluation of Projection/Inverse Projection

The mapping capability of projector/inverse projector
measured by normalized mean squared error (NMSE)
shows two approximators can effectively map the embed-
ding spaces of target classifier and CLIP. NMSE is de-
fined as NMSE(z, ẑ) = ||z−ẑ||2

||z||2 , where z and ẑ denote
original and projected/inverse projected embedding, respec-
tively. The lower NMSE indicates the more accurate projec-
tion/inverse projection capability.

Given that the distance between z and ẑ should be at
least smaller than that between two different embeddings
belonging to the same class, we use the average intra-class
distance as a baseline. It is the average distance between 10
randomly selected image embeddings from the same class.
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NMSE Projector
(fbottom → CLIP)

Inverse projector
(CLIP → fbottom)

f(x) RN18 RN50 RN18 RN50

Intra-class 0.6810 0.7126 0.7724
MLP (10) 0.3394 0.3871 0.4370 0.5928
MLP (50) 0.2834 0.2606 0.3399 0.3544
MLP (full) 0.2479 0.2150 0.3270 0.2314

Table 3. Normalized mean squared error (NMSE) of projector and
inverse projector. RN abbreviates ResNet. The numbers in paren-
theses mean the number of training images per class. The lower,
the better.

The output of a projector lies in the CLIP latent space, so the
intra-class NMSE measured in the CLIP latent space serves
as a baseline. Likewise, the baseline NMSE for inverse pro-
jector is computed in the target classifier’s latent space. In
addition, to check if we can enhance the computational effi-
ciency by reducing the number of training data, we trained
projector and inverse projector with fewer images. The re-
duced training datasets are composed of randomly sampled
10 and 50 images from each class.

Table 3 shows the evaluation results. The numbers
within parentheses show the number of images per class
used for the training. Full indicates using the entire Ima-
geNet training set. All evaluations are conducted with Ima-
geNet validation set disjoint from the training dataset.

There are a few notes worth mentioning: Note 1: NMSE
of projector and inverse projector are all lower than the
baselines. This supports that the projector and inverse pro-
jector can effectively map the embeddings in the two latent
spaces. Note 2: Projector/inverse projector trained with a
small number of images, i.e., 50 images per class, shows
comparable performance as using the full dataset. Consid-
ering that the images do not need annotations, the overhead
for training projector/inverse projector can be regarded as
marginal.

5. Related Works
5.1. Concept-based explanation

After CAV was proposed, various literature aimed
to reduce the dependency of CAV on concept-annotated
dataset [19, 25]. Automatic concept-based explanation
(ACE) [9] has been proposed to automate the concept anno-
tation by clustering semantically similar patches from held-
out images. It shares some of our motivations to reduce
manual concept annotation, but it still derives concept di-
rections from images. Therefore it is vulnerable to the same
limitations as CAVs. It also needs another human interven-
tion to extract a concept keyword from clustered patches.

There are ante-hoc concept-based explanation methods

that do not explicitly require concept-annotated images [3,
5, 13, 18]. These methods first train an image classifier and
then extracts concept keywords that the model learned by
manually investigating collections of images that activate
certain unit/layer the most. These approaches run another
risk of human bias, missing out the concepts that are highly
contributing but hard to perceive.

5.2. Conceptual CE

Since the CE has gained attention, there have been at-
tempts to generate human-understandable CEs [1,2,10,14].
One of the earliest approaches CoCoX [2] outputs a mini-
mal set of relevant concepts needed to correct the misclas-
sification. The most recently proposed method CCE [1]
provides a continuous vector of concept importance scores
where each dimension represents the amount of a concept
that needs to be added.

However, they all adopt image-driven concept direc-
tions, so inherit the limitations of CAV. Although CounTEX
adopts the weight optimization scheme for the counter-
factual generation process similar to the above-mentioned
methods, it does not suffer from the limitations of image-
driven concept directions because the directions are driven
only from text using CLIP.

6. Conclusion
In this paper, we posed the limitations of previous image-

driven concept directions and proposed CounTEX, a novel
conceptual CE framework based on text-driven concept di-
rection. We leveraged CLIP joint embedding space to derive
concept directions via prompting. We introduced projec-
tion/inverse projection to utilize concept directions defined
in CLIP latent space to explain the target classifier. Also,
qualitative and quantitative evaluation results prove Coun-
TEX is able to produce faithful explanation on benchmark
image classifiers compared to competitor.

There is still a room for improvement in CounTEX. Es-
pecially, a more expressive pre-defined concept library in-
cluding various fine-grained concepts beyond a single word
or short phrase will help to elaborate the explanations. Since
the library can easily be augmented for CounTEX by simply
presenting textual concept, it would be valuable for future
work. CounTEX can also benefit from the improvement
in the modeling capacity of a joint embedding space where
the concept directions are driven. Especially, if the language
understanding of the text encoder improves, the explanation
will become more faithful and comprehensive.
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