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Abstract

A primary goal of class-incremental learning is to strike
a balance between stability and plasticity, where models
should be both stable enough to retain knowledge learned
from previously seen classes, and plastic enough to learn
concepts from new classes. While previous works demon-
strate strong performance on class-incremental bench-
marks, it is not clear whether their success comes from
the models being stable, plastic, or a mixture of both.
This paper aims to shed light on how effectively recent
class-incremental learning algorithms address the stability-
plasticity trade-off. We establish analytical tools that mea-
sure the stability and plasticity of feature representations,
and employ such tools to investigate models trained with
various algorithms on large-scale class-incremental bench-
marks. Surprisingly, we find that the majority of class-
incremental learning algorithms heavily favor stability over
plasticity, to the extent that the feature extractor of a model
trained on the initial set of classes is no less effective than
that of the final incremental model. Our observations not
only inspire two simple algorithms that highlight the im-
portance of feature representation analysis, but also sug-
gest that class-incremental learning approaches, in general,
should strive for better feature representation learning.

1. Introduction
Despite the unprecedented success of deep learning [19,

23,27,30], most deep neural networks have static use cases.
However, real-world problems often require adaptivity to
incoming data [17], changes in training environments, and
domain shifts [2, 7, 15]. Thus, researchers have been ac-
tively working on model adaptation techniques, and have
proposed various continual learning approaches so far.

A naı̈ve approach for continual learning is to simply fine-
tune a model. However, such a solution is rather ineffec-
tive due to a phenomenon known as catastrophic forget-
ting [13], which arises as a result of high plasticity of neural
networks, i.e. parameters important for the old tasks are up-
dated to better fit the new data. On the flip side, enforcing

model stability introduces its own set of limitations, mainly
the lack of adaptivity to new data. Thus, we encounter the
stability-plasticity dilemma: how can we balance stability
and plasticity such that the model is able to learn new con-
cepts while retaining old ones? Finding an optimal balance
between these two opposing forces is a core challenge of
continual learning research, and has been the main focus of
many previous works [6, 12, 16, 20, 21, 26, 31].

We conduct an in-depth study of recent works in contin-
ual learning, specifically concentrating on class-incremental
learning (CIL)—a subfield of continual learning—where
new sets of classes arrive in an online fashion. We are moti-
vated by the lack of systematic analyses in the field of CIL,
which hampers our understanding of how effectively the ex-
isting algorithms balance stability and plasticity. Moreover,
works that do perform analyses usually focus on the classi-
fier, e.g., classifier bias [1, 10], rather than the intermediate
feature representations. However, investigating the stability
and plasticity in the feature level is just as important, if not
more, because utilizing the model’s full capacity to learn
robust representations is critical to maximizing the poten-
tial of CIL algorithms.

To measure plasticity, we retrain the classification layer
of CIL models at various incremental stages and study how
effectively their feature extractors have learnt new con-
cepts. We then investigate stability by measuring feature
similarity with Centered Kernel Alignment (CKA) [3, 14]
and by visualizing the feature distribution shift using t-
SNE [29]. Suprisingly, and possibly concerningly, our anal-
yses show that the majority of CIL models accumulate little
new knowledge in their feature representations across incre-
mental stages. In fact, most of the analyzed CIL algorithms
seem to alleviate catastrophic forgetting by heavily over-
looking model plasticity in favor of high stability. Finally,
we introduce two simple algorithms based on our observa-
tions. The first is an extension of Dynamically Expandable
Representations (DER) [31], which demonstrates how our
analyses may be used to improve the efficiency and efficacy
of CIL algorithms. The second is an exploitative method,
which can be interpreted as an extreme case of DER [31]
in terms of architectural design; this method shares a sim-
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ilar motivation with GDumb [22] in the sense that it raises
significant concerns regarding the current state of CIL re-
search. We summarize our contributions below:

• We design and conduct analytical experiments to bet-
ter understand the balance between stability and plas-
ticity in the feature representations of modern continu-
ally learned models.

• We discover that the feature representations of most
CIL models are only subject to trivial updates as the
model is trained on incremental data. This is a direct
result of overweighing the importance of stability over
plasticity, and thus, implies a failure of their balance.

• We present two simple but effective CIL algorithms in-
spired by the results of our analyses. One is an exploit
that highlights a major flaw in the current state of CIL
research while the other is a variation of an existing
method designed for improving performance.

2. Preliminaries

To set the stage for our paper, we first describe the task
setting, notations, and related works.

2.1. Task setting and notations

In continual learning, a neural network model is trained
on data that arrives incrementally. Formally, after first train-
ing a model with an initial dataset D0, additional datasets
{Di}Ni=1 arrive in N sequential steps to further update the
model. We collectively denote all incremental datasets as
{Di}Ni=0 for an N -step setting. In class-incremental learn-
ing (CIL), Di consists of examples in a set of classes, Ci,
and collectively, {Ci}Ni=0, where all classes are unique such
that | ∪N

i=0 Ci| =
∑N

i=0 |Ci|. For convenience, we refer to
the entire dataset as D, and all classes as C. Furthermore,
we note that D may refer to either the training dataset or the
validation dataset, depending on the context.

We denote the model trained on D0 as M0, and, by ex-
tension, define the set of all models trained incrementally
on {Di}Ni=1 as {Mi}Ni=0. Note that Mi (i > 0) is first
initialized with the parameters of Mi−1, and trained on
Di, and optionally with a small exemplar set sampled from
{Di}i−1

i=0. We assume the model architectures are based on
a convolutional neural network, which, at any given stage i,
is composed of a feature extractor Fi, and classifier Gi as

Mi = Gi ◦ Fi. (1)

The classifier typically refers to a single linear layer, which
may be replaced by a cosine classifier in some algorithms1.

1The details of the cosine classifier are described in Section 4 of the
Appendix.

Experimental setting To better analyze feature repre-
sentations in CIL settings, we conduct all experiments on
a large-scale dataset, ImageNet-1K [28], with a ResNet-
18 [9] architecture, which is a widely-adopted architecture
for ImageNet-1K experiments. There exist three common
settings for class-incremental learning on ImageNet-1K:

1. B500-5step: |C0| = 500, N = 5, and |Ci>0| = 100.

2. B500-10step: |C0| = 500, N = 10, and |Ci>0| = 50.

3. B0-10step: |C0| = 100, N = 9, and |Ci>0| = 100.

The first and second settings are both “pre-trained” settings,
where the model is initially trained on 500 classes, then in-
crementally updated with fewer classes in later stages. This
setting is quite challenging in terms of stability since the
model must retain the pre-trained knowledge when learn-
ing from new data. Moreover, it presents an even greater
challenge for plasticity since the model can already extract
reasonable feature representations, and thus, must actively
learn new representations. We elaborate on this in Sec-
tion 6. Due to space constraints, we present analyses with
the B500-5step setting in our main paper, and the latter two
in the Appendix. For all settings, 20 exemplars of each pre-
viously seen class is stored in the memory for subsequent
stages.

2.2. Overview of compared methods

We briefly summarize the main idea of the existing CIL
algorithms analyzed in this work.

Naive The naive method adopts simple fine-tuning, where
Mi+1 is initialized by a fully-trained Mi. Only the cross-
entropy loss is used to train the network, and exemplars are
sampled randomly from each previously observed class.

iCARL [26] Incremental Classifier and Representation
Learning (iCARL) employs a simple distillation loss along-
side the cross-entropy loss. iCARL also proposes herding
for exemplar selection, and discovers that nearest-mean-of-
exemplars classification can be beneficial for CIL.

LUCIR [10] Learning a Unified Classifier Incrementally
via Rebalancing (LUCIR) proposes to use the cosine classi-
fier for feature rebalancing purposes, and alleviates the ad-
verse effects of classifier imbalance by using the cosine be-
tween features of the student and teacher models.

SSIL [1] Separated Softmax for Incremental Learning
(SSIL) identifies that score bias may be caused by data im-
balance, and trains the model with a separated softmax out-
put layer alongside task-wise knowledge distillation.

AANet [16] Adaptive Aggregation Networks (AANet)
employs a two branch residual block, where one corre-
sponds to a stable (fixed) block, while the other corresponds
to a plastic block. Existing algorithms can be applied to the
AANet architecture. We focus on AANet + LUCIR, and for
simplicity, we denote AANet + LUCIR as AANet.
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Figure 1. Accuracy on the ImageNet-1K validation set after fine-tuning the classification layer of each incremental model (B500-5step
setting) with the full ImageNet-1K training data. The black line indicates an Oracle model trained on {500, 600, ..., 1000} classes, and
serves as a point of reference for the performance on non-incremental settings.

POD [6] Pooled Outputs Distillation (POD) employs var-
ious types of pooling dimensions for knowledge distillation
to enforce constraints on feature representations between
old and new models.

AFC [12] Adaptive Feature Consolidation (AFC) first es-
timates the importance of each channel in the feature map
based on the expected increase in loss, and then adaptively
restricts the updates to the important channels while leaving
non-important channels relatively unconstrained.

DER [31] Dynamical Expandable Representations (DER)
adds a new feature extractor at each incremental stage, and
leaves feature extractors trained on older data fixed while
the new feature extractor is updated. For any stage i, the
outputs of all i+1 feature extractors are concatenated before
passing through the classification layer.

3. Re-evaluating Feature Representations
The lack of model stability and/or plasticity often leads

to weak performance, where a suboptimal feature extractor
is unable to extract meaningful information. Likewise, a
suboptimal classifier (e.g., due to classifier bias) further ex-
acerbates this issue. While previous works have extensively
studied classifier bias [1, 10, 33], the effects of unbalanced
stability and plasticity in the feature extractor has been rel-
atively less explored, and will be the focus of this section.

3.1. Finetuning the classifier on full data

We begin by examining how the performance of feature
extractors transforms over incremental steps. To eliminate

any negative effects of an incrementally trained classifier,
we freeze the feature extractors {F0, ...,FN} and train a
new classifier for each of the feature extractors on the full
ImageNet-1K training data, D. In essence, we assume that
the classifier is optimal (well-fitted to any given feature ex-
tractor), and evaluate the strength of a feature extractor by
using the accuracy on the ImageNet-1K validation set as a
proxy measure. Although retraining the classifier on D is a
breach of CIL protocol, we emphasize that the goal of this
experiment is purely to analyze CIL models from the per-
spective of feature representations.

From here on out, M′
j ≡ G′ ◦ Fj denotes the combina-

tion of the feature extractor from stage j and the retrained
classifier, G′. In other words, Fj is trained incrementally
on {Di}ji=0, while G′ replaces the original classifier Gj and
is retrained on the entire dataset D with a frozen Fj . Note
that, while Gj outputs logits for

∑j
i=0 |Ci| classes, G′ out-

puts |C|-dimensional logits. We then define an accuracy
metric, Acc(M′

j ,Di), as the accuracy of model M′
j on the

validation dataset at the ith stage, Di. Without loss of gen-
erality, Acc(M′

j ,D) denotes the accuracy of model M′
j on

the full ImageNet-1K validation dataset, D.

3.2. ImageNet-1K accuracies

Figure 1 illustrates the full validation accuracy on
ImageNet-1K, Acc(M′

j ,D), for all the compared algo-
rithms. Each subplot visualizes the accuracy progression
for the specified CIL algorithm as well as the Oracle model,
M∗

j , whose feature extractor is trained on ∪j
i=0Di all at

once, before the classifier is retrained on D. In essence, the
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Figure 2. B500-5step subset accuracies. For the sake of visibility, we leave out SSIL and POD from these plots. We highlight the region
for model M′

j in plot Ci, where i = j.

feature extractor of M∗
j represents how an ideal incremental

model would perform if important features from previous
tasks are not forgotten and new concepts are well learned.

Figure 1 generally exhibit three distinct trends. First, we
observe the plots for the Naive and iCARL models, and no-
tice that the accuracy significantly declines after the initial
stage, i.e., Acc(M′

0,D) > Acc(M′
j ,D), ∀j > 0. These

results imply that both models are subject to severe catas-
trophic forgetting, and their ability to extract useful features
deteriorates significantly from the first incremental stage.
Next, we investigate the subplots for LUCIR, POD, SSIL,
AANet, and AFC. Surprisingly, for these five distinct CIL
algorithms, the accuracy remains almost unchanged across
all incremental stages, despite a few minor variations. Un-
like the Oracle model, which shows an almost linear in-
crease in accuracy at each incremental step, these five CIL
algorithms maintain the same accuracy, i.e., Acc(M′

0,D)
≈ Acc(M′

j ,D), ∀j > 0. Thus, for these 5 algorithms, the
feature extractor of M′

5 is not particularly stronger than the
feature extractor of M′

j , ∀j < 5. Lastly, DER exhibits in-
creasing accuracy with each incremental stage, indicating
that the feature extractor does indeed learn new features.

3.3. ImageNet-1K subset accuracies

Diving deeper, we investigate how the accuracy of each
subset, Di, changes at each incremental stage. Figure 2 il-
lustrates the change in Acc(M′

j ,Di), ∀j for each i. For
the sake of better visibility, we omit POD and SSIL in this
figure and present the full plots in the Appendix.

First, we focus on the gray curve, representing the Naive
model. We expected the Naive model to suffer from catas-

trophic forgetting, and overfit to the most recently seen set
of classes. Indeed, the results corroborate our intuition; in
the first plot on D0, Acc(M′

j ,D0), ∀j > 0, performs signif-
icantly worse than Acc(M′

0,D0). Furthermore, we notice
that Acc(M′

j ,Di) peaks when j = i. Then, Acc(M′
j ,Di)

drops off again when j > i. These observations all lead
to the same conclusion that the naive model suffers from
catastrophic forgetting due to its high plasticity. A similar
pattern is observed from the models trained by iCARL.

Next, we shift our focus to the black curve corresponding
to the Oracle model. We notice that for D0, Acc(M′

j ,D0)
does not drop, but rather increases as more classes are
added, which suggests that knowledge from Ci, ∀i > 0,
can in fact be beneficial for performance on C0. Moreover,
Acc(M′

j ,Di) significantly increases when j = i. Alto-
gether, the trends exhibited by the Oracle model represent
what an ideal CIL model would demonstrate.

Finally, we look at the cyan, orange, and green curves,
respectively representing AFC, AANet, and LUCIR. For
AFC, Acc(M′

j ,Di) is mostly unchanged ∀i, j, suggesting
that their features are mostly static across all incremental
stages. While this implies that no forgetting occurs, it ap-
pears to come at the cost of learning little to no new con-
cepts. Meanwhile, both AANet and LUCIR are mostly sta-
ble, but also slightly more plastic than AFC and POD; they
quickly forget newly learned concepts since Acc(M′

j ,Di)
peaks when j = i but drops back down when j > i.

4. Are Incrementally Learned Features Static?
Our analysis in Section 3 suggests that a majority of the

compared CIL algorithms appear to have high feature sta-
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Figure 3. Same-layer CKA values between F0 and F5 for incremental models trained with each CIL algorithm on the ImageNet B500
5-step setting. The x-axis spans the layer index of ResNet-18, while the y-axis represents CKA. CKA is evaluated using the D0 validation
set. Each plot is accompanied by the CKA for the naive model, which acts as a point of reference.

bility at the cost of low plasticity. This raises a question:
do feature representations remain static across incremental
models? In hopes to shed light on this issue, we measure
the similarity of intermediate activations and visualize the
feature distribution shifts between incremental models.

4.1. Centered Kernel Alignment (CKA)

To analyze intermediate representations of a neural net-
work, we employ Centered Kernel Alignment (CKA) [3,
14], which enables us to quantify the similarity between
pairs of neural network representations. CKA has been used
to study the effects of increasing depth and width in a net-
work [18], and to understand how the representations of
Vision Transformers [5] differ from those of convolutional
neural networks [25].

Let us consider two arbitrary layers of a neural network
with z1 and z2 output features. Given the same set of b
inputs, we denote the activation matrices as X ∈ Rb×z1 and
Y ∈ Rb×z2 . The b × b Gram matrices K = XXT and
L = YYT are first centered to obtain K′ and L′, which
are then used to compute the Hilbert-Schmidt Independence
Criterion (HSIC) [8] as

HSIC(K,L) =
vec(K′) · vec(L′)

(b− 1)2
, (2)

where vec(·) denotes the vectorization operation. Finally,
CKA normalizes HSIC as follows:

CKA(X,Y) = (3)

HSIC(XX⊤,YY⊤)√
HSIC(XX⊤,XX⊤)HSIC(YY⊤,YY⊤)

.

As shown above, CKA is a normalized measure of how sim-
ilar the b × b Gram matrices K and L are. Given that the
Gram matrices themselves reflect the feature relationships
among pairs of samples, CKA can be interpreted as a simi-
larity of relationships among the features in X and Y.

In terms of comparing feature representations, we high-
light three properties that make CKA stand out. First, CKA
is invariant to permutations in the columns of X and Y, i.e.,
CKA(X,Y) = CKA(XP,Y), where P ∈ {0, 1}z1×z1 is
an arbitrary permutation matrix. Second, it is invariant to
isotropic scaling of X and Y. Finally, it can be used to
compare activations of layers with different output feature
dimensions, e.g., different layers of the same network, or
even layers across different architectures. Such advantages
make CKA suitable for analyzing the feature representa-
tions of class-incremental models.

4.2. Measuring the similarity of representations

Given a pair of incremental feature extractors F0 and FN

trained by a selected class-incremental algorithm (N = 5
for the B500-5step setting and N = 10 for the B500-
10step setting), we extract a set of features {Xl}Ll=0 from
F0, where Xl denotes feature output of layer l. After ex-
tracting a corresponding set of features {Yl}Ll=0 from FN ,
we compute CKA1 between Xl and Yl, ∀l ∈ {0, . . . , L},
using the ImageNet-1K D0 validation subset. We extract
activations from all convolution, batch normalization [11],
and residual block layers of ResNet-18, which results in two
sets of features, each with a cardinality of 50 (L = 49). A

1More precisely, we use the mini-batch version of CKA, which has
been shown to converge to the same value of full-batch CKA, described in
Eq. (3) [18]. We provide details for mini-batch CKA in the Appendix.
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high CKA between Xl and Yl, i.e., CKA(Xl,Yl) ≈ 1, in-
dicates that the two feature representations are highly simi-
lar, and thus, remained static across incremental stages. By
extension, high CKA may also serve as a strong indicator
for low forgetting due to high similarity of Xl and Yl.

Figure 3 presents the same-layer CKA between F0 and
F5 trained on various CIL algorithms. Each subplot visu-
alizes the layer-wise CKA for two algorithms: 1) the Naive
method, which represents a fully-plastic baseline, and 2) the
specified CIL algorithm. We first inspect the naive model,
which displays relatively high CKA in early layers, but sig-
nificantly deteriorates in latter layers. This observation is
consistent with the notion that early layers learn low-level
and widespread features, while higher layers tend to learn
more class-specific information [32]. Then, a cursory ex-
amination of all other algorithms suggest that all compared
CIL algorithms do indeed enforce feature representations to
be similar across incremental models, albeit with varying
levels of success. For example, both POD and AANet re-
tain high feature similarities across most layers, although
there are some significant drops in a few select layers (more
details on CKA of AANet provided in the Appendix). Fur-
thermore, we observe that AFC maintains high CKA across
all layers, implying that the model trained with AFC has
high stability, and thus, undergoes little to no forgetting in
each incremental step.

Finally, we present two plots for DER. In the B500-5step
setting, DER consists of 6 separate feature extractors, the
first of which is identical to F0. Thus, we plot CKA sepa-
rately for the fixed feature extractor, DER (0), and all other
feature extractors, DER (1∼5). As expected, we observe
maximum CKA for DER (0), and much lower CKA for
DER (1 ∼ 5).

4.3. t-SNE Visualizations

To further corroborate our observations from Section 4.2,
we visualize the feature shift t-SNE [29]. We randomly
sample 5 classes from C5 and 20 images from each selected
class. Then, we compute the feature representations of each
image using both F0 and F5, and visualize all 200 features
in a single t-SNE plot.

Figure 4 illustrates the t-SNE plots of the Naive and Or-
acle feature extractors, as well as those of four CIL algo-
rithms that exhibit high stability. In the Naive and Oracle
plots, we observe that the same-class features have shifted
significantly, since the F0 and F5 features are clustered in
different regions. This is expected since both models ex-
hibit high plasticity. In the AFC, AANet, POD, and LU-
CIR plots, however, the feature shift is trivial. Interestingly,
most of the F0 and F5 features corresponding to the same
inputs are overlapped, even though F5 has been trained on
{Di}5i=1, while F0 has not. Once again, this suggests that
these algorithms excel at maintaining important knowledge

from previous tasks, but fail to acquire new knowledge from
incremental data.

5. Improving Class-Incremental Learning

We now outline two methods to improve CIL models,
inspired by the analyses presented in Sections 3 and 4.

5.1. Partial-DER

Figures 1 and 2 show that DER not only retains knowl-
edge from old classes, but is also adept at learning concepts
from new classes. Such properties of DER are desirable for
CIL algorithms. DER achieves this by freezing and main-
taining {Fj}i−1

j=0 at the ith incremental stage, and adding a
new fully plastic feature extractor (with the same number of
parameters as F0) for the current set of classes. This allows
the feature extractor to fully learn concepts of new classes
all the while maintaining knowledge of old classes. How-
ever, a major issue of DER is scalability, since for an N -
step CIL model, a single forward pass through FN requires
N + 1 times computation compared to F0.

Based on our CKA analysis in Figure 3, we propose a
modification of DER, called partial-DER (pDER), which
not only makes DER much more efficient but also improves
the overall performance as well. In Section 4.2, we ob-
served that even the Naive model maintains high feature
similarity in the lower layers of the network, i.e., the feature
representations of lower layers do not change much across
F0 and F5 even when the model is fully plastic. This sug-
gests that lower layers are inherently stable. Thus, instead
of maintaining N full feature extractors for an N -step set-
ting, pDER fixes the lower subset of layers in F0, and only
applies DER on the upper subset of layers. More specifi-
cally, we consider all layers up to ResNet’s Layer 4 as the
lower subset, and apply DER only for Layer 4. We find that
this simple modification reduces the GMACs of a forward
pass through a DER model by up to 65%2, while improv-
ing Acc(M′

5,D) and Acc(M5,D) by 1.5%p and 0.9%p,
respectively.

5.2. Exploiting static feature extractors

The second method, which we name “Exploit”, is based
on the observation that the feature extractors in most CIL
models remain static over the course of incremental stages.
In such case, we can significantly improve the training effi-
ciency, achieve strong performance, and eliminate the need
for previous-class exemplars by simply freezing the base
feature extractor, F0. This exploit can be interpreted as an
extreme case of pDER, where branching occurs in the clas-
sification layer.

2F5 of DER requires 10.9 GMACs for one forward pass while F5 of
pDER does 3.9 GMACs. More details are provided in the Appendix.
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Figure 4. t-SNE visualization of features from F0 and F5 using 5 classes of C5 and 20 samples from each class. All 200 embeddings are
visualized in a single plot. Each color represents a distinct class, and features of F0 and F5 are depicted with a circle and star, respectively.

We first train M0 on D0, and fix the feature extractor,
F0, for all subsequent incremental steps. The weight ma-
trix of the cosine classifier G0 is denoted as W0 ∈ RF×|C0|,
where F is the output feature dimension of the feature ex-
tractor. For each incremental step i, we train a new weight
matrix for the classifier, Wi ∈ RF×|Ci|, where the cross-
entropy loss is only computed for Ci, i.e., the softmax oper-
ation only considers the logits for |Ci| classes. Since F0 is
fixed for all stages, we do not need to update Wj ,∀j < i.
After training on DN , we concatenate the set of weight ma-
trices {Wi}Ni=0 to produce a single weight matrix, W ∈
RF×|C|. Finally, we compose G, parametrized by weight
W, with F0 to obtain the final model: MN = G ◦ F0.

Compared to CIL algorithms that usually train M for
90 to 120 epochs on each Di, our exploit only requires
around 10 epochs of training to converge for each incre-
mental stage. Furthermore, we only need to compute gradi-
ents for G, which reduces the computational burden of train-
ing. These two factors make training extremely fast com-
pared to traditional algorithms that tune the entire model for
many epochs. Despite requiring only a fraction of the com-
putation, our exploit achieves final ImageNet-1K accuracy
of 60.5% and an average incremental accuracy of 67.2%,
which are competitive against the other methods.

6. Discussions
Based on the plots in Figure 1, we define a metric as

∆M′
i := Acc(M′

i,D)− Acc(M′
0,D), (4)

which measures the relative performance of improvement of
Fi over F0, i.e., how much the feature extractor improves as
training classes are added. A high positive ∆M′

i indicates
that the feature extractor is able to learn new concepts incre-
mentally. On the other hand, ∆M′

i ≃ 0 indicates that the

feature extractor is stable, but not plastic enough to acquire
new knowledge. Finally, a large negative ∆M′

i represents
severe catastrophic forgetting in the feature extractor. Ul-
timately, CIL models should strive to maximize ∆M′

i in
order to facilitate better feature representation learning.

Are we learning continually? Table 1 quantitatively
summarizes all the compared CIL algorithms in terms of
Acc(M′

0,D), Acc(M′
5,D), and ∆M′

5. Looking at LU-
CIR, SSIL, POD, AANet, and AFC in Table 1, we no-
tice that there is almost no difference between Acc(M′

0,D)
and Acc(M′

5,D), which all lie in the range of 62% ∼
63%. Furthermore, there exists a significant gap be-
tween Acc(M′

5,D) of the aforementioned algorithms and
Acc(M′

5,D)= 70.8% of the Oracle model. This implies
that, while these methods do mitigate catastrophic forget-
ting to varying degrees, they suffer from a lack of plasticity,
i.e., are unable to learn continually. Moreover, these results
also imply that if feature representations do not accumu-
late new knowledge through incremental data, the highest
achievable performance is still 7∼8%p shy of the Oracle
model even with an optimal classifier. Thus, the plasticity
of feature representations is an absolutely crucial aspect of
modern incremental learning algorithms.

Effect of task similarity Task similarity has been shown
to affect the amount of catastrophic forgetting that neural
networks experience [4]. Despite this, we find that our anal-
yses lead to the same conclusions even when the level of
task similarity changes across stages. These experimental
results can be found in Section 5 of the Appendix.

Pretrained setting At this point it is reasonable to ques-
tion whether the lack of plasticity may be attributed to the
experimental setting, i.e. B500-5step, where models are
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Table 1. Summary of all compared CIL algorithms. *Methods introduced in Section 5

Method Naive iCARL LUCIR SSIL POD AANet AFC DER Exploit* pDER* Oracle

Acc(M′
0,D) 60.4 61.8 62.1 62.5 62.9 62.5 62.9 60.0 62.9 60.0 60.4

Acc(M′
5,D) 52.2 53.9 62.8 63.5 62.6 62.8 62.9 66.9 62.9 68.4 70.8

∆M′
5 -8.2 -7.9 0.7 1.0 -0.3 0.3 0.0 6.9 0.0 8.4 10.4

Table 2. Average incremental accuracy and Final ImageNet accuracy of all compared CIL algorithms. †SSIL uses a different class ordering
than all other methods; thus, inter-method comparisons with SSIL may not be appropriate. *Methods introduced in Section 5

Method Naive iCARL LUCIR SSIL† POD AANet AFC DER Exploit* pDER* Oracle

Avg. Inc. Acc. 41.4 31.5 55.6 65.8 66.3 57.1 66.4 69.1 67.2 69.7 72.8
Acc(M5,D) 31.5 17.2 41.0 59.8 58.6 43.3 59.0 63.8 60.5 64.7 70.8

pretrained with 500 classes before being updated incremen-
tally. While this may be true to some extent3, we argue
that continual learners should strive towards obtaining bet-
ter feature representations even if the pretrained represen-
tations are somewhat sufficient. If not, what good is a con-
tinual model compared to a static one as described in Sec-
tion 5.2? In fact, we have shown that the pretrained feature
extractor is still lackluster compared to the Oracle while
DER has shown that, albeit lacking scalability, it is possi-
ble to continually learn stronger representations even with
a pretrained feature extractor. Thus, our choice to conduct
analysis on this pretrained setting cannot justify the lack of
plasticity exhibited by most CIL algorithms.

Limitations of traditional metrics In Table 2 we present
the widely adopted metrics in CIL: 1) average incre-
mental accuracy of all compared CIL algorithms on the
B500-5step setting and 2) the final accuracy on ImageNet,
Acc(M5,D). In particular, we note that our Exploit in
Table 2 outperforms all but one CIL algorithm (DER)
on both metrics, despite keeping the feature extractor F0

fixed. However, according to Table 1, all the aforemen-
tioned CIL algorithms demonstrate similar Acc(M′

0,D)
and Acc(M′

5,D) scores. This suggests that while the fea-
ture representations of all compared methods except Naive,
iCARL, and DER have similar levels of discriminativeness,
it is not well expressed in terms of average incremental ac-
curacy nor Acc(M5,D). Clearly, high average incremental
accuracy and final accuracy are not really indicative of how
much the model has learned continually; yet, these metrics
have become the de-facto standard in CIL research. This
should be alarming for both researchers and practitioners;
ambiguous metrics deliver a false illusion of progress, and
may lead researchers to develop algorithms that seem to
outperform other state-of-the-art algorithms, but are com-
pletely misaligned with the motivation behind continual
learning, e.g. our Exploit. Thus, we hope that the analy-
ses in our work will facilitate better evaluation of CIL al-

3Analysis of select algorithms on B0-10step included in the Apendix.

gorithms and inspire researchers to focus more on stronger
feature representation learning of incremental models.

Connection with theory Of the works we study, the only
algorithm that exhibits both high plasticity and stability
is based on parameter isolation, which makes us wonder
whether it is even possible to achieve a strong balance of
stability and plasticity without adding new model parame-
ters. However, Raghavan et al. [24] prove that there can ex-
ist a stable equilibrium point between forgetting and gener-
alization. In fact, it is possible that the low-plasticity meth-
ods do indeed reach a stable equilibrium, except that this
equilibrium is less optimal in terms of performance. There-
fore, a key question for future works is: how can we reach
a more optimal equilibrium point at each incremental stage
without adding more parameters?

7. Conclusion

We took a deep dive into how effectively modern CIL
algorithms address the stability-plasticity dilemma. We in-
troduced evaluation protocols that help us better understand
the stability and plasticity of feature representations. Our
evaluations of recent works showed that many CIL methods
are too fixated on the notion of alleviating catastrophic for-
getting, to the extent that the feature extractor rarely learns
any new concepts after the initial stage of training, namely
on D0. Based on this observation, we introduced two simple
algorithms that improve upon an existing algorithm and ex-
ploit the shortcomings of the standard evaluation metrics for
CIL research. All in all, we hope that our findings will pro-
pel CIL research to focus more on stronger continual learn-
ing of feature representations.
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