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Abstract

Visual recognition tasks are often limited to dealing with
a small subset of classes simply because the labels for the
remaining classes are unavailable. We are interested in
identifying novel concepts in a dataset through represen-
tation learning based on both labeled and unlabeled ex-
amples, and extending the horizon of recognition to both
known and novel classes. To address this challenging task,
we propose a combinatorial learning approach, which natu-
rally clusters the examples in unseen classes using the com-
positional knowledge given by multiple supervised meta-
classifiers on heterogeneous label spaces. The representa-
tions given by the combinatorial embedding are made more
robust by unsupervised pairwise relation learning. The
proposed algorithm discovers novel concepts via a joint
optimization for enhancing the discrimitiveness of unseen
classes as well as learning the representations of known
classes generalizable to novel ones. Our extensive exper-
iments demonstrate remarkable performance gains by the
proposed approach on public datasets for image retrieval
and image categorization with novel class discovery.

1. Introduction
Despite the remarkable success of machine learning fu-

eled by deep neural networks, existing frameworks still
have critical limitations in an open-world setting, where
some categories are not defined a priori and the labels for
some classes are missing. Although there have been a grow-
ing number of works that identify new classes in unlabeled
data given a set of labeled examples [4, 5, 15–18], they of-
ten assume that all the unlabeled examples belong to unseen
classes and/or the number of novel classes is known in ad-
vance, which makes their problem settings unrealistic.

To address the limitations, this paper introduces an al-
gorithm applicable to a more realistic setting. We aim to
discover and learn the representations of unseen categories
without any prior information or supervision about novel
classes, where unlabeled data may contain examples in both
seen and unseen classes. This task requires the model to be

able to effectively identify unseen classes while preserving
the information of previously seen classes. Our problem
setting is more challenging than the case where the unla-
beled data only consist of unseen classes because we have
to solve an additional problem, predicting the membership
of unlabeled examples between seen and unseen classes.

We propose a representation learning approach based on
the concept of combinatorial classification [36], where the
examples in unseen categories are identified by the com-
position of multiple meta-classifiers. Figure 1 illustrates
the main idea of our combinatorial embedding framework,
which forms partitions for novel classes via a combination
of multiple classifiers for the meta-classes involving several
constituent base classes. Images in the same meta-class po-
tentially have common attributes that are helpful for knowl-
edge transfer to novel classes, and we learn the representa-
tions of the images by the proposed combinatorial embed-
ding. The learned representations via the combinatorial em-
bedding become even stronger by unsupervised pairwise re-
lation learning, which is effective to identify novel classes.

Our main contributions are summarized as follows.

• We propose a novel combinatorial learning framework,
which embeds the examples in both seen and novel
classes effectively by the composition of the knowl-
edge learned from multiple heterogeneous meta-class
classifiers.

• We introduce an unsupervised learning approach to de-
fine pairwise relations, especially semantic structure
between labeled and unlabeled examples, which fur-
ther improves the quality of the representations given
by combinatorial embedding.

• We demonstrate the outstanding performance of our
model in the presence of novel classes through exten-
sive evaluations on image retrieval and image catego-
rization with novel class discovery benchmarks.

In the rest of this paper, we first review related works in
Section 2 and discusses our main algorithm in Section 3.
Section 4 presents our experimental results and Section 5
concludes this paper.
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(a) One meta-class set (b) Two meta-class sets (c) Three meta-class sets

Figure 1. Conceptual illustration of decision boundaries (black solid lines) given by combinatorial classification with three seen classes,
where three binary meta-classifiers are added one-by-one from (a) to (c). Unlike the standard classifier that creates decision boundaries for
seen classes only, the combinatorial classification based on multiple coarse-grained classifiers creates and reserves partitions, which are
distinct from those of seen classes, potentially corresponding to novel concepts.

2. Related work
This section first introduces recent approaches for open-

set recognition, and then discusses several related methods
to combinatorial learning.

2.1. Learning in Open-Set Setting

Departing from the closed world, a number of works re-
cently consider the open-set setting, where novel classes
appear during testing [3, 9, 12, 22, 33–35, 41, 48]. Early re-
searches mainly focus on detecting out-of-distribution ex-
amples by learning binary classifiers [9, 33, 35, 41], or clas-
sifying the knowns while rejecting the unknowns [3, 22,
34, 48]. However, these approaches have significant chal-
lenges in distinguishing semantics between unseen classes;
although some methods sidestep the issue by assigning re-
jected instances to new categories [2, 39, 40], they require
human intervention to annotate the rejected examples and
consequently suffer from weak scalability.

To mitigate such limitations, transfer learning ap-
proaches have been proposed to model semantics between
unseen classes. Using the representations learned from la-
beled data, the methods in this category perform cluster-
ing with unlabeled examples based on similarity predic-
tion models [17, 18], ranking statistics [15], and modified
deep embedded clustering [16] to capture their similarity
and discrepancy. However, these approaches have two crit-
ical limitations. First, the problem settings are unrealistic
because they assume that all unlabeled examples belong to
unseen classes, and the number of novel classes is known
in advance. Second, their main goal is to learn the rep-
resentations of novel classes, which results in information
loss about seen classes. Recent works [5, 42] generalize the
problem setting, where the unlabeled instances may come
from both seen and novel classes. Cao et al. [5] revise the
standard cross-entropy loss with an adaptive margin to pre-
vent the model from being biased towards the seen classes
while Vaze et al. [42] employ two contrastive losses to
pretrain the representations and adopt k-means++ cluster-

ing [1] for evaluation. However, these approaches still re-
quire prior information about the number of novel classes
or computationally expensive modules to estimate the num-
ber of novel classes. On the contrary, we do not use any
information about the number of novel classes for training
because we discover novel categories based on the outputs
from the meta-classifiers.

On the other hand, several hashing techniques [19, 21,
47, 51] learn approximated embeddings for image retrieval
with both labeled and unlabeled data, which is generalizable
to the examples in unseen classes. They focus on reducing
quantization distortion in hash function by either entropy
minimization [19,51] or consistency regularization [21,47].

2.2. Combinatorial Learning

Combinatorial learning framework reconstructs the so-
lution space by the composition of the solutions from mul-
tiple heterogeneous tasks and there are several related ap-
proaches in this regard. Seo et al. [37] formulate the image
geolocalization problem as a classification task by combin-
ing multiple coarse-grained classifiers to reduce data defi-
ciency and poor prediction granularity. A similar concept
has been employed to learn noise-resistant classifiers [36]
or recognize out-of-distribution examples [41]. Xuan et
al. [46] concatenate multiple representations learned on
multiple class sets for metric learning.

Product quantization [11, 20], which is also related to
combinatorial learning, constructs a large number of quan-
tized regions given by a combination of subspace encodings
to improve the performance of hash functions in an unsuper-
vised manner. This approach is extended to learning quan-
tization tables using image labels [19, 25, 49]. However,
they do not provide direct supervision for quantization but
optimize the representation via the final classification loss,
making the learned model suboptimal.

While all of these approaches are not studied in the
presence of unlabeled examples during training except
GPQ [19], the proposed algorithm leverages the composi-
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tion of output representations for capturing the semantics
of unlabeled data, which belong to either known or novel
classes. Also, contrary to [19, 25, 49], the proposed com-
binatorial embedding learns the representation with explicit
supervision in the form of diverse meta-class labels and ob-
tains a better embedding model for novel classes.

3. Proposed Approach

Suppose that we are given a labeled dataset, Dl =
{(xi, yi)}Nl

i=1, where xi ∈ Rd denotes an input example and
yi ∈ Cl = {c1, . . . , cK} is its class label, as well as an un-
labeled dataset Du = {(xi)}Nu

i=1 for training. Let Cl and Cu
be the ground-truth class sets of the labeled and unlabeled
data, respectively, where Cl ∩ Cu 6= ∅ and Cl 6= Cu. We de-
note the novel class set by Cn = Cu\Cl. Our goal is to learn
an unified model that is effective to represent novel classes
as well as known ones by taking advantage of semantic re-
lations across the two kinds of classes.

To this end, we propose a supervised combinatorial em-
bedding approach and two unsupervised pairwise learn-
ing techniques. For combinatorial embedding, we first
construct multiple heterogeneous meta-class sets, each of
which is obtained from a unique partition of the base
classes. We then obtain the combinatorial embedding vec-
tor of a base class by concatenating meta-class embeddings
learned from the classifiers over the individual meta-class
sets. Along with the supervised learning objective, we also
perform unsupervised learning based on contrastive loss
and consistency regularization for understanding pairwise
relations of both seen and unseen classes.

3.1. Supervised Combinatorial Embedding

The main idea of the supervised combinatorial embed-
ding is to learn the general representations, which embed
known and novel classes in a discriminative way, using a
composition of multiple heterogeneous coarse-grained clas-
sifiers corresponding to meta-class sets. Formally, if we are
given M coarse-grained classifiers f1, f2, . . . , fM , defined
over meta-class sets as

f1 : x ∈ Rd → y ∈ C1 = {c11, . . . , c1K1
}

...
fM : x ∈ Rd → y ∈ CM = {cM1 , . . . , cMKM

},
(1)

we obtain a fine-grained combinatorial classifier f ≡ f1 ×
f2 × · · · × fM , which is given by

f : x ∈ Rd → y ∈ C1 × · · · × CM . (2)

We first construct M distinct partitions, denoted by Cm
(m = 1, . . . ,M ). Each partition is referred to as a meta-
class set, which has Km(� K) meta-classes, i.e. Cm =

{cm1 , . . . , cmKm
}, and each meta-class is typically con-

structed by a union of multiple base classes. Let an in-
put image x ∈ Rd be mapped to a vector z ∈ Rd1 by a
feature extractor fθ(·), i.e. z = fθ(x). The feature vec-
tor z is partitioned to M distinct subvectors, z1, . . . , zM

(zm ∈ Rd2 , d1 = Md2), which are feature vectors for
learning the meta-classifiers for the corresponding meta-
class sets. We estimate the embedding of each base class
based on the meta-class embeddings in the meta-classifiers.
Specifically, we construct M embedding heads with weight
matrix Θ = {Θ1, · · · ,ΘM} (Θm ∈ Rd2×Km ), and each
head corresponds to a classifier for a meta-class set Cm
whose parameters consist of the prototypes of the meta-
classes, denoted by Θm =

[
θm1 , · · · , θmKm

]
(θmk ∈ Rd2 ).

The combinatorial embedding of a base class is
given by a concatenation of the meta-class em-
beddings, which is formally given by π(z; Θ) =[
Φ(z1,Θ1), · · · ,Φ(zM ,ΘM )

]
∈ Rd2M . Note that Φ(·, ·)

performs the soft assignment [49] of zm to individual
meta-classes to enable backpropagation as

Φ(zm,Θm) =

Km∑
i=1

exp (λ(zm · θmi ))∑Km

j=1 exp
(
λ(zm · θmj )

)θmi , (3)

where λ is a sufficiently large scaling factor to approximate
the function to a discrete argmax function. Feature vec-
tors and embedding weights are `2-normalized before the
inner product to use cosine similarity as the distance met-
ric. Note that the proposed embedding function enables us
to characterize the semantics of unlabeled samples using
their embeddings. For instance, supposing that an exam-
ple in a novel class has the same meta-class label as those
in some known classes with a meta-class set while having a
different one in another meta-class set, we can compute the
unique embedding of the novel class with respect to those
of the seen classes.

Using all the labeled examples, for which meta-class la-
bels are also available, our model learns the representations
based on the meta-class labels using the normalized soft-
max loss [50], which encourages a feature vector zm to be
close to the prototype of the ground-truth meta-class and
far away from the other meta-class prototypes. Formally,
denoting by θm+ the prototype of the ground-truth, the su-
pervised objective on a meta-class set is defined as

Lmeta = −
M∑
m=1

log

(
exp

(
zm · θm+ /τ

)∑
θi∈Θm exp

(
zm · θi/τ

)), (4)

where each feature vector and prototype are `2-normalized
and τ represents a temperature of the softmax function.
Note that the meta-class embedding naturally introduces the
inter-class relations into the model and leads better general-
ization for novel classes since the model learns the shared
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information from meta-class representations using the ex-
amples in the multiple constituent base classes.

3.2. Unsupervised Learning of Pairwise Relations

The combinatorial embedding is obtained by a large
number of partitions through the composition of many
meta-classifiers while it tends to scatter unlabeled examples
over the feature space. To learn the proper embeddings of
unlabeled samples, especially the ones in novel classes, we
consider two kinds of pairwise relations; one is the psuedo-
label consistency between two instances and the other is the
representation consistency between two augmented exam-
ples of an image. These two objectives are learned in an
unsupervised way based on the combinatorial embeddings
of images as follows.

Contrastive learning for pseudo-label consistency We
capture the semantics of unlabeled data in the context of
labeled ones and perform pairwise pseudo-label estimation
based on similarities between two real examples. Since the
class labels in Du are unknown, we provide the relational
supervision for each input feature vector pair, (zi, zj), to
learn the representations properly for both labeled and un-
labeled examples. To this end, the examples with similar
features are assumed to belong to the same class and re-
garded as a positive pair via the following procedure.

We leverage the labeled datasetDl to bootstrap represen-
tations and use classification outputs from meta-classifiers
Θ to infer relationships between examples. Specifically, the
positive examples are selected based on the similarities of
combinatorial embedding vectors between each unlabeled
example and the rest of the images in a batch, which is given
by

Pz = {z̃|z̃ ∈ Bl ∪Bu, π(z; Θ) · π(z̃; Θ) ≥ γ)}, (5)

where Bl and Bu are sets of feature vectors corresponding
to labeled and unlabeled examples in the current mini-batch.
Since unlabeled examples in known classes typically yield
good representations thanks to labeled counterparts in the
same class and the novel classes can be embedded properly
in the combinatorial feature space, we expect the pseudo-
label estimation by (5) is sufficiently reliable in practice un-
der a reasonable choice of the threshold, γ.

Once the positive pairs are identified, we employ a con-
trastive loss [24] to enforce the similarity of the positive
pairs as

Lsim(z) = − 1

|Pz|
∑
z+∈Pz

log
exp

(
z · π(z+; Θ)

)∑
z̃∈Bl∪Bu

exp
(
z · π(z̃; Θ)

) ,
(6)

where z and π(·; Θ) are also `2-normalized. This loss
term facilitates clustering novel class examples based on the

cosine similarity while maintaining the representations of
known class data given by (4). It also allows us to jointly
learn the deep feature representations in both the original
space and the combinatorial embedding space.

Consistency regularization of combinatorial embedding
Besides the label consistency between two different exam-
ples, we perform the consistency regularization with both
labeled and unlabeled data to robustify the representations
obtained by combinatorial embedding in the presence of
novel classes. Given two feature vectors z and z′ for the two
augmented views of an image x ∈ Dl ∪ Du, we minimize
the negative cosine similarity between their combinatorial
embeddings as

Lcons (z, z′) = − h(π(z; Θ))

‖h(π(z; Θ))‖2
· π(z′; Θ)

‖π(z′; Θ)‖2
, (7)

where h(·) denotes a prediction head [14], and ‖·‖2 denotes
`2-norm. Following [7], we do not backpropagate through
π(z′; Θ). This loss encourages the examples of both seen
and unseen classes to be embedded in the proper locations
within the common embedding space, which improves the
reliability of the positive pair estimation.

3.3. Loss

The total loss is a weighted sum of the three objective
functions as

L = Lmeta + αLsim + βLcons, (8)

where α and β control the relative importance of the indi-
vidual terms. The proposed framework jointly performs a
supervised classification and two unsupervised pairwise re-
lation learnings. The learned representations based on the
proposed loss function should be effective for the examples
in both known and novel classes.

3.4. Discussion

The proposed algorithm provides a unique formulation
for the representation learning of novel classes, which is
given by the combination of meta-classifiers learned with
the examples in known labels. The use of coarse-grained
classifiers is helpful to capture common attributes across
known and unknown classes and the embeddings of the ex-
amples in novel classes.

Our formulation is related to the concept of product
quantization (PQ) [11, 20] as discussed earlier. However,
PQ is originally proposed for unsupervised hashing, which
simply maximizes the variances of data in multiple sub-
spaces and enhances retrieval performance in terms of ac-
curacy and speed. Its extensions to supervised learning are
limited to handling known classes only [25] or fail to exploit
the label information effectively for learning the represen-
tations of unlabeled novel class examples [19].
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Table 1. The mean Average Precision (mAP) for different bit-lengths on CIFAR-10 and NUS-WIDE. The best mAP scores are in bold.
GPQ with an asterisk (*) presents the result from our reproduction with the implementation provided by the original authors.

Supervision Method CIFAR-10 NUS-WIDE
12 bits 24 bits 48 bits 12 bits 24 bits 48 bits

Unsupervised
OPQ [11] 0.107 0.119 0.138 0.341 0.358 0.373
LOPQ [23] 0.134 0.127 0.124 0.416 0.386 0.379
ITQ [13] 0.157 0.165 0.201 0.488 0.493 0.503

Supervised
SDH [38] 0.185 0.193 0.213 0.471 0.490 0.507
CNNH [45] 0.210 0.225 0.231 0.445 0.463 0.477
NINH [29] 0.241 0.249 0.272 0.484 0.483 0.487

Supervised +
Unlabeled data

SSDH [51] 0.285 0.291 0.325 0.510 0.533 0.551
SSGAH [43] 0.309 0.323 0.339 0.539 0.553 0.579
GPQ* [19] 0.274 0.290 0.313 0.598 0.609 0.615
SSAH [21] 0.338 0.370 0.379 0.569 0.571 0.596
CombEmb (ours) 0.667 0.692 0.720 0.687 0.693 0.706

4. Experiments
This section presents the experimental results and the

characteristics of our method in the applications of image
retrieval and novel class discovery given a database com-
posed of both known and novel classes.

4.1. Image Retrieval with Novel Class Examples

Image retrieval is the task to identify images that belong
to the same class given a query, where the database con-
tains the examples in both known and novel classes. In our
scenarios, query images are sampled from novel classes.

Image retrieval using combinatorial embedding We
discuss an asymmetric search algorithm for image retrieval
based on combinatorial embedding. Let zq and zb be the
feature vectors of a query image xq and a database im-
age xb, respectively. The proposed model, which is based
on M partitions with Km meta-classes per partition, re-
quires

∑M
m=1 log2(Km) bits to store the approximate rep-

resentation of the database image xb, denoted by z̄b =[
Θ1[c1

z1b
], . . . ,ΘM [cM

zMb
]
]
, where cmzmb ∈ C

m indicates the
meta-class label of zmb . The distance between input query
image and database image for asymmetric search is com-
puted by the combination of the representations with M
partitions, which is given by

M∑
m=1

dist(zmq , z̄
m
b ). (9)

where dist(·, ·) is the cosine distance function and z̄mb is the
matching meta-class representation of the mth partition.

Datasets We conduct experiments on four popular im-
age retrieval benchmarks, CIFAR-10 [26], CIFAR-100 [26],
NUS-WIDE [8], and CUB-200 [44]. For NUS-WIDE, we

use the images associated with the 21 most frequent con-
cepts, following [30]. To simulate an open-set environ-
ment in the datasets, we split the classes into two subsets,
known (75%) and novel (25%) classes, and set the half of
the examples in known classes as labeled, which is identi-
cal to the protocol in [32]. Specifically, 7, 15, 75, and 150
known classes are included in the labeled training datasets
of CIFAR-10, NUS-WIDE, CIFAR-100, and CUB-200 re-
spectively. Note that a training dataset contains unlabeled
data, which may belong to either known or novel classes.

Baselines We compare the proposed approach, referred
to as combinatorial embedding (CombEmb), with several
image retrieval baselines based on hashing, which include
OPQ [11], LOPQ [23], and ITQ [13]. We also compare
three supervised hashing techniques including CNNH [45],
NINH [29], and SDH [38], and four supervised hashing
methods with additional unlabeled data such as SSDH [51],
SSGAH [43], GPQ [19], and SSAH [21]. We extract feature
descriptors from AlexNet [27] pretrained on ImageNet [10]
for all the methods except GPQ [19], which adopts the
modified VGG network for CIFAR-10/100 and AlexNet for
NUS-WIDE as feature extractors.

Evaluation protocol Image retrieval performance is mea-
sured by the mean Average Precision (mAP). Since all com-
pared methods are based on hashing, their capacities are ex-
pressed by bit-lengths; the capacity of CombEmb can be
computed easily using the number of meta-classifiers and
the number of meta-classes. We test three different bit-
lengths {12, 24, 48}, and final results are given by the av-
erage of 4 different class splits.

Implementation details The backbone models and the
embedding heads are fine-tuned by AdamW [31] with a
weight decay factor of 1 × 10−4. For meta-classifiers,
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Table 2. mAP scores on CIFAR-100 and CUB-200 with different
number of bits.

Dataset Method 24 bits 48 bits 72 bits

CIFAR-100 GPQ 0.108 0.120 0.112
CombEmb (ours) 0.154 0.188 0.208

CUB-200 GPQ 0.167 0.184 0.192
CombEmb (ours) 0.304 0.337 0.336

Table 3. mAP scores on CIFAR-10 and CIFAR-100 with 50% of
seen classes and another 50% of novel ones.

Dataset Method 24 bits 48 bits

CIFAR-10 GPQ 0.231 0.245
CombEmb (ours) 0.448 0.491

CIFAR-100 GPQ 0.104 0.117
CombEmb (ours) 0.165 0.179

the number of meta-classes in each meta-class set (Km) is
fixed to 4 to simplify the experiment. The number of meta-
classifiers, M , is adjusted to match the bit-length of com-
pared methods, and the dimensionality d2 of zm is set to 12.
For meta-class set configuration, we generateM meta-class
sets by iteratively performing k-means clustering (k = Km)
over class embeddings. We obtain the class embeddings
from the classification weight vectors pretrained on labeled
data. To ensure diverse meta-class sets, we randomly sam-
ple Q(� d1)-dimensional subspaces of the class embed-
dings for each meta-class set generation. We list the imple-
mentation details of the proposed method and the compared
algorithms in the supplementary document.

Evaluation on benchmark datasets We first present
the performance of the proposed approach, CombEmb,
on CIFAR-10 and NUS-WIDE, in comparison to exist-
ing hashing-based methods. Tab. 1 shows mAPs of all
algorithms for three different bit-lengths, where the re-
sults of GPQ are from the reproduction on our data
splits. CombEmb achieves state-of-the-art performance in
all cases on both datasets by significant margins. This is
partly because, unlike previous hashing-based approaches
that suffer from limited usage of unlabeled data other than
quantization error reduction or consistency regularization,
our model learns discriminative representations of unla-
beled examples in novel classes by utilizing their inter-class
relationships with labeled data through the combination of
diverse meta-classifiers. In addition, the proposed unsuper-
vised pairwise relation learning further improves our em-
bedding network via enforcing similarities between unla-
beled examples and their pseudo-positives. The larger num-
ber of bits is effective for capturing the semantics in input
images and achieving better performances in general.

Table 4. Performance of different pairwise pseudo-labeling meth-
ods on CIFAR-10 and NUS-WIDE.

Dataset Method 12 bits 24 bits 48 bits

CIFAR-10
k-means 0.529 0.593 0.510
RankStats [15] 0.572 0.635 0.552
CombEmb (ours) 0.667 0.692 0.720

NUS-WIDE
k-means 0.652 0.638 0.640
RankStats [15] 0.641 0.649 0.656
CombEmb (ours) 0.687 0.693 0.706

Table 5. Accuracy of the proposed approach with different combi-
nations of the loss terms.

Lmeta Lsim Lcons
CIFAR-10

12 bits 24 bits 48 bits

X 0.252 0.253 0.266
X X 0.510 0.596 0.623
X X 0.687 0.676 0.619
X X X 0.667 0.692 0.720

We also apply CombEmb to more challenging datasets,
CIFAR-100 and CUB-200, which contain fewer examples
per class and potentially have troubles learning inter-class
relations between seen and unseen classes. Tab. 2 presents
that CombEmb outperforms GPQ consistently although the
overall accuracies of both algorithms are lower than those
on CIFAR-10 and NUS-WIDE. On the other hand, Tab. 3
shows that CombEmb consistently outperforms GPQ with
a fewer seen classes (50%) on CIFAR-10 and CIFAR-100.
In this experiment, Km for CIFAR-10 is set to 2 since we
have only 5 seen classes in CIFAR-10.

Analysis on pairwise label estimation To understand the
effectiveness of the positive pair estimation proposed in (5),
we compare the strategy with the following two baselines:
1) using k-means clustering on the feature vectors to assign
labels of unlabeled data (k-means), and 2) adopting rank
statistics [15] between feature vectors in the original space
to estimate pairwise labels (RankStats). For the first base-
line, we assume the ideal case in which the number of clus-
ters is known and equal to the exact number of classes ap-
pearing in training. Tab. 4 implies that our label estimation
strategy based on combinatorial embeddings outperforms
other baselines.

Analysis of loss functions Tab. 5 demonstrates the con-
tribution of individual loss terms on CIFAR-10. Each of
the three loss terms, especially the similarity loss (Lsim) and
consistency loss (Lcons), turn out to be effective for improv-
ing accuracy consistently. Also, the similarity loss together
with the consistency loss is helpful to obtain the desirable
tendency in accuracy with respect to bit-lengths. Note that
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Table 6. Sensitivity of CombEmb in mAP to the number of meta-
classes Km, where the bit-length is controlled by adjusting the
number of meta-classifiers M given Km.

Km
CIFAR-100 CUB200

24 bits 48 bits 72 bits 24 bits 48 bits 72 bits

2 0.153 0.175 0.179 0.296 0.330 0.334
4 0.154 0.188 0.208 0.304 0.337 0.336
8 0.141 0.196 0.223 0.291 0.337 0.338

Table 7. mAP scores on CIFAR-10 with fewer labeled examples
of seen classes, where 7 classes are set as seen classes.

Ratio Method 12 bits 24 bits 48 bits

30% labeled GPQ 0.217 0.207 0.223
CombEmb (ours) 0.354 0.572 0.697

10% labeled GPQ 0.177 0.190 0.191
CombEmb (ours) 0.184 0.264 0.498

the proposed combinatorial embedding learns basic repre-
sentations suitable for both seen and unseen examples and
the unsupervised pairwise relation learning improves per-
formance dramatically on top of them.

Analysis on the number of meta-classes Tab. 6 presents
the performance of CombEmb by varying the number of the
meta-classes Km while the bit-lengths are controlled as the
same values by adjustingM , the number of meta-classifiers.
We observe that larger bit-lengths are consistently helpful
for improving the accuracy of CombEmb while Km and M
alone have limited impacts on performance.

Results with fewer labeled data We perform experi-
ments when 30% and 10% of the examples in the seen
classes are labeled and present the results in Tab. 7. These
settings are more realistic and challenging than the envi-
ronment of our main experiments. Although the overall
accuracy is degraded compared to the main results due
to the lack of supervision, the proposed algorithm outper-
forms GPQ by large margins regardless of bit-lengths. Note
that when we use large bit-lengths (48 bits), the perfor-
mance gap becomes more significant than the experiments
in Tab. 1, achieving 3.1× and 2.6× accuracy gains with
30% and 10% of labeled seen-class examples, respectively.

4.2. Categorization with Novel Class Discovery

We evaluate the performance of CombEmb on image cat-
egorization with novel class discovery. The goal of this task
is to cluster unlabeled examples that belong to either seen or
novel classes into a predefined number of groups based on
their semantic relations. This task is more natural and chal-
lenging than the standard novel class discovery that only
considers unseen classes in unlabeled data.

Datasets We evaluate the proposed approaches on three
standard datasets including CIFAR-10, CIFAR-100, and
Tiny-ImageNet. Similar to the experiments for image re-
trieval, we split the classes into 75% seen and 25% novel
classes: the first 7, 75, and 150 classes in CIFAR-10,
CIFAR-100, and Tiny-ImageNet are respectively selected
as seen classes. Following [5, 42], we assume that the half
of examples in seen classes are labeled while setting the rest
in seen classes and examples in novel classes as unlabeled.
Note that the unlabeled data may belong to either known or
novel classes.

Baselines We compare CombEmb with the state-of-the-
art approaches in novel class discovery including DTC [16],
RankStats [15], NCL [53], and DualRank [52]. We ad-
ditionally consider two more methods in a similar setting:
ORCA [5] and GCD [42]. Since the classification heads
for unlabeled data in DTC, RankStats, NCL, and DualRank
cannot handle seen classes, we increase the dimensionality
of the classifiers to the total number of classes in datasets.
This extension requires estimating the number of novel
classes [16,42] unless it is given in advance. For all datasets,
we use ResNet-18 as a backbone and pretrain all the com-
pared methods with SimCLR [6] while DTC, RankStats,
and NCL additionally fine-tune their models with the la-
beled data. We describe the implementation details of all
algorithms in the supplementary document. For evaluation,
we first identify the cluster membership of each example
in the test set via k-means clustering, and then compute
clustering accuracy (ACC), Normalized Mutual Informa-
tion (NMI), and Adjusted Rand Index (ARI) using the clus-
ter indices. Note that, to report ACC, we solve the optimal
assignment problem using the Hungarian algorithm [28].

Results Tab. 8 presents the clustering performance of the
learned representations by all the compared methods on all
the three datasets. CombEmb outperforms the baselines for
both seen classes and novel classes in most cases. The re-
sults show that CombEmb learns effective representations
for clustering in the presence of unseen classes in train-
ing datasets, which leads to state-of-the-art performance.
Figure 2 visualizes the embeddings learned by RankStats,
NCL, ORCA, GCD, and CombEmb on CIFAR-10. Our
method embeds known and novel classes in a more discrim-
inative way through supervised combinatorial classification
followed by unsupervised learning, while other methods
suffer from learning the discriminative representations, es-
pecially between the novel classes and their closest seen
classes.

5. Conclusion
This paper presents a novel representation learning ap-

proach, where only a subset of training examples are la-
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Table 8. Comparison with novel class discovery methods on CIFAR-10, CIFAR-100, and Tiny-ImageNet in terms of ACC, NMI, and ARI.
Dagger (†) denotes that the dimensionality of the classifier in the original method is extended to the total number of classes in the dataset.

Dataset Method ACC NMI ARI
Seen Unseen Total Seen Unseen Total Seen Unseen Total

CIFAR-10

DTC† [16] 77.44 72.00 75.81 62.91 65.82 63.25 61.98 65.33 56.89
RankStats† [15] 82.22 88.23 84.01 72.03 75.17 73.65 66.68 79.54 67.08
NCL† [53] 78.47 85.23 80.50 69.09 74.97 66.18 68.06 78.35 56.56
DualRank† [52] 83.89 86.91 84.79 72.97 74.37 74.98 67.61 78.63 68.02

ORCA [5] 87.70 92.83 89.24 74.34 81.81 78.21 76.46 88.13 78.12
GCD [42] 88.82 88.23 88.63 76.28 75.53 77.99 77.52 81.19 76.75
CombEmb (ours) 89.02 92.96 89.98 77.97 80.43 79.83 80.26 85.63 79.19

CIFAR-100

DTC† [16] 42.67 27.44 38.86 54.71 44.77 50.04 20.27 23.84 15.24
RankStats† [15] 47.33 34.79 42.49 62.80 50.56 58.29 30.93 21.05 22.63
NCL† [53] 53.13 35.80 48.80 63.23 54.24 58.56 38.93 27.68 30.06
DualRank† [52] 46.08 36.47 42.54 61.59 52.20 57.57 29.83 24.09 23.00

ORCA [5] 64.85 44.83 56.77 66.18 58.89 62.64 46.22 38.68 38.06
GCD [42] 66.04 38.53 55.59 69.61 57.67 64.56 49.99 30.38 38.85
CombEmb (ours) 69.19 51.41 62.11 70.77 63.81 67.71 52.22 43.37 43.37

Tiny-ImageNet

DTC† [16] 16.76 14.47 16.19 34.41 32.70 32.19 7.23 7.72 5.72
RankStats† [15] 31.49 19.75 26.87 54.76 47.52 51.14 16.16 9.86 11.87
NCL† [53] 35.27 18.90 31.18 55.08 47.16 51.10 17.89 10.01 12.85
DualRank† [52] 29.76 18.93 26.70 53.86 48.03 50.53 14.88 9.69 11.08

ORCA [5] 47.46 22.55 38.58 60.26 49.08 55.23 27.62 13.37 19.72
GCD [42] 45.77 20.59 38.03 61.58 49.74 56.54 27.21 11.45 19.32
CombEmb (ours) 53.76 27.41 43.73 63.91 54.07 59.01 33.43 17.70 23.40

(a) RankStats (b) NCL (c) ORCA (d) GCD (e) CombEmb (ours)

Figure 2. t-SNE visualization for the data embedding of CIFAR-10, learned by Rankstats, NCL, ORCA, GCD, and CombEmb. The
visualization is based on 7 seen classes and 3 novel classes. Colors represent their ground-truth labels.

beled while unlabeled examples may contain both known
and novel classes. To address this problem, we proposed
a combinatorial learning framework, which identifies and
localizes the examples in unseen classes using the compo-
sition of the outputs from multiple coarse-grained classi-
fiers on heterogeneous meta-class spaces. Our approach fur-
ther improves the semantic structures and the robustness of
the representations via unsupervised relation learning. The
extensive experiments on the standard benchmarks for im-
age retrieval and image categorization with novel class dis-
covery demonstrate the effectiveness of the proposed algo-

rithm, and the various ablative studies show the robustness
of our approach.
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