
SMPConv: Self-moving Point Representations for Continuous Convolution

Sanghyeon Kim1 Eunbyung Park1,2*

1Department of Electrical and Computer Engineering, Sungkyunkwan University
2Department of Artificial Intelligence, Sungkyunkwan University

Abstract

Continuous convolution has recently gained prominence
due to its ability to handle irregularly sampled data and
model long-term dependency. Also, the promising exper-
imental results of using large convolutional kernels have
catalyzed the development of continuous convolution since
they can construct large kernels very efficiently. Lever-
aging neural networks, more specifically multilayer per-
ceptrons (MLPs), is by far the most prevalent approach
to implementing continuous convolution. However, there
are a few drawbacks, such as high computational costs,
complex hyperparameter tuning, and limited descriptive
power of filters. This paper suggests an alternative ap-
proach to building a continuous convolution without neu-
ral networks, resulting in more computationally efficient
and improved performance. We present self-moving point
representations where weight parameters freely move, and
interpolation schemes are used to implement continuous
functions. When applied to construct convolutional ker-
nels, the experimental results have shown improved per-
formance with drop-in replacement in the existing frame-
works. Due to its lightweight structure, we are first to
demonstrate the effectiveness of continuous convolution in
a large-scale setting, e.g., ImageNet, presenting the im-
provements over the prior arts. Our code is available on
https://github.com/sangnekim/SMPConv

1. Introduction

There has been a recent surge of interest in represent-
ing the convolutional kernel as a function over a continu-
ous input domain. It can easily handle irregularly sampled
data both in time [1, 59] and space [61, 65], overcoming
the drawbacks of the discrete convolution operating only on
discretized sampled data with pre-defined resolutions and
grids. With the progress in modeling and training continu-
ous kernels, it has enjoyed great success in many practical
scenarios, such as 3D point cloud classification and segmen-

*Corresponding authors

tation [36,41,52,58,64], image super resolution [57], object
tracking [10], to name a few. Furthermore, the recent trends
of using large convolutional kernels with strong empirical
results urge us to develop a more efficient way to implement
it [13,32], and the continuous convolution will be a promis-
ing candidate because of its capability to readily construct
arbitrarily large receptive fields [44, 45].

One of the dominant approaches to modeling the con-
tinuous kernel is to use a particular type of neural network
architecture, taking as inputs low-dimensional input coor-
dinates and generating the kernel values [44, 45], known as
neural fields [38, 49] or simply MLPs. Using neural fields
to represent the kernels, we can query kernel values at arbi-
trary resolutions in parallel and construct the large kernels
with a fixed parameter budget, as opposed to the conven-
tional discrete convolutions requiring more parameters to
enlarge receptive fields. Thanks to recent advances to over-
come the spectral bias on training neural fields [49], they
can also represent functions with high-frequency compo-
nents, which enables learned kernels to capture fine details
of input data.

While promising in various tasks and applications, this
approach has a few downsides. First, it incurs consider-
able computational burdens to already computation-heavy
processes of training deep neural networks. Each train-
ing iteration involves multiple forward and backward passes
of MLPs to generate kernels and update the parameters of
MLPs. This additional complexity prevents it from being
applied to large-scale problems, such as ImageNet-scale,
since it needs deeper and wider MLP architectures to con-
struct more complex kernels with more input and output
channels. Although MLPs can generate larger sizes and
numbers of kernels without adding more parameters, it has
been known that the size of MLPs mainly determines the
complexity of the functions they represent and, eventually,
the performance of the CNNs.

Furthermore, the kernels generated by an MLP depend
heavily on the architectural priors. As a universal function
approximator, a neural network with sufficient depth and
width can express any continuous functions [25]. However,
we have empirically observed strong evidence that the ar-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

10289

chitecture of neural networks has played a significant role
in many practical settings, suggesting that various archi-
tectural changes to the kernel-generating MLPs would sig-
nificantly affect the performance of CNNs. Considering
a large number of hyperparameters in training neural net-
works, adding more knobs to tune, e.g., activation func-
tions, width, depth, and many architectural variations of
MLPs., would not be a pragmatic solution for both machine
learning researchers and practitioners.

In this paper, we aim to build continuous convolution
kernels with negligible computational cost and minimal ar-
chitectural priors. We propose to use moving point repre-
sentations and implement infinite resolution by interpolat-
ing nearby moving points at arbitrary query locations. The
moving points are the actual kernel parameters, and we con-
nect the neighboring points to build continuous kernels. Re-
cent techniques in neural fields literature inspire it, where
they used grid or irregularly distributed points to represent
features or quantities in questions (density or colors) for
novel view synthesis [6, 50, 63, 66, 67]. The suggested ap-
proach only introduces minor computational costs (interpo-
lation costs) and does not consist of neural networks (only
point representations and interpolation kernels). Moreover,
the spectral bias presented in training MLPs [43] does not
exist in the suggested representation. Each point representa-
tion covers the local area of the input domain and is updated
independently of each other, contrasted with MLPs, where
updating each parameter would affect the entire input do-
main. Therefore, highly different values of nearby points
can easily express high-frequency components of the func-
tion.

The proposed method can also be more parameter ef-
ficient than the discrete convolution to construct the large
kernels. Depending on the complexity of the kernels to
be learned, a few numbers of points may be sufficient to
cover a large receptive field (e.g., a unimodal function can
be approximated by a single point). Many works have ex-
tensively exploited non-full ranks of the learned kernels
to implement efficient convolutions or compress the mod-
els [32]. Our approach can likewise benefit from the pres-
ence of learned kernels with low-frequency components.

We conduct comprehensive experimental results to show
the effectiveness of the proposed method. First, we demon-
strate that moving point representations can approximate
continuous functions very well in 1D and 2D function fit-
ting experiments. Then, we test its ability to handle long-
term dependencies on various sequential datasets. Finally,
we also evaluate our model on 2D image data. Especially,
we perform large-scale experiments on the ImageNet clas-
sification dataset (to our knowledge, it is the first attempt to
use continuous convolution for such a large-scale problem).
Our proposed method can be used as a drop-in replacement
of convolution layers for all the above tasks without bells

and whistles. The experimental results show that it consis-
tently improves the performance of the prior arts.

2. Related works
Neural fields and continuous convolution. Neural

fields have recently emerged as an alternative neural net-
work representation [49]. It is a field parameterized by
a neural network, such as simple MLP, taking as low-
dimensional coordinates input and generating quantity in
questions. It has shown great success in various visual
computing domains, such as novel view synthesis [38], 3D
shape representation [37, 40], and data compression [17],
to name a few. Since it is a function over a continuous
input domain, it can produce outputs at arbitrary resolu-
tions. Recent studies have exploited its continuous nature to
model continuous kernels for CNNs [44, 45, 58]. [58] used
an MLP architecture to implement the continuous kernel to
handle irregularly sampled data, such as 3D point clouds.
While successful, the descriptive power of the learned ker-
nel is limited due to its bias toward learning low-frequency
components. With the recent advances in overcoming the
spectral bias [49], [45] has explored various activation func-
tions to improve the performance of CNNs. To further im-
prove, [44] proposed to learn the receptive field sizes and
showed impressive performance on multiple tasks.

We also propose a method that can likewise be classi-
fied as a neural field. However, we implement a field with-
out neural networks, using self-moving point representa-
tions and interpolation schemes. It significantly reduces the
computational costs to compute the kernels during training
compared to the conventional MLP-based methods. Fur-
thermore, it removes the burden of numerous hyperparam-
eter searches for a newly introduced neural network in the
already complicated training procedure.

Grid and point representations. Although MLP-based
neural fields have succeeded in many tasks, they require
substantial computational costs for training and inference,
and the spectral bias presented in MLPs often degrades the
performance. In order to reduce the computations and avoid
the issues of using MLPs, classical grid-based representa-
tions have been adopted in the neural fields. Plenoxels [66]
stores the coefficients of spherical harmonic in the 3D voxel
structure and implements the infinite resolution via the in-
terpolation methods, reducing the training time from days
to minutes. Instant-NGP [39] further optimized the speed
using a hash-based indexing algorithm. The combination
of grid representations and MLPs has been extensively ex-
plored to find better solutions [6, 50].

Point representations have been recently suggested in
neural fields to improve the shortcomings in grid-based
representations, thanks to their flexibility and expressibil-
ity [63, 67]. They can generate outputs over a continuous
input domain by interpolating neighboring points given a

10290

Figure 1. A various methods for large kernel construction.

query point. It can be more accurate and parameter effi-
cient than the grid-based ones since it can adaptively locate
points, considering the complexity of functions, e.g., fewer
points in low-frequency areas. Although our work is largely
inspired by these works, 1. we repurpose the point repre-
sentations to build continuous convolutional kernels, 2. we
do not use MLPs that would introduce additional modeling
complexity, 3. our method does not require complex initial-
izations (or algorithms) to relocate points, such as depth-
based initialization [63] and mask-based initialization [67].

Large kernel convolution. Since the great success of
VGG-style CNNs [24, 26, 48, 51] in ImageNet [12], we re-
peatedly apply small kernels (e.g., 3 × 3 kernel) with deep
layers to get a large receptive field and deal with long-term
dependencies. With the massive success of transformers in
the vision domain [15,16,34,55], which have a large recep-
tive field, recent studies have started to revisit the descrip-
tive power of large kernels [13, 32, 35, 53]. RepLKNet [13]
has shown we can increase the kernel size up to 31 × 31
with the help of the reparameterization trick. More recently,
SLaK [32] managed to scale the kernel size to 51× 51 and
61×61, showing improved performance with dynamic spar-
sity and low-rank factorization (Fig. 1-(b)). While promis-
ing, the number of parameters increases according to the
kernel size, which is a major bottleneck in representing
large kernels.

The continuous kernel can construct large kernels with a
fixed parameter budget (Fig. 1-(c)). CKConv [45] and Flex-
Conv [44] have exploited this property and demonstrated
that their method can model long-term dependencies by
constructing large kernels on various datasets. However,
they introduce a considerable amount of computations to
the training process, and they have yet to perform large-
scale experiments, e.g., ImageNet. To the best of our knowl-
edge, our approach is the first to conduct such a large-scale
experiment using continuous convolution.

On the other hand, dilated convolutions [7, 8] can also
be used to enlarge receptive fields with a small number of

parameters, and they also do not introduce additional com-
putations during training (Fig. 1-(d)). Deformable convo-
lutions [9] look similar to ours in terms of moving points
arbitrarily (Fig. 1-(e)). However, they learn how to deform
the kernels (or predict the offset) during inference. On the
other hand, we adjust the locations of the point represen-
tations during training to find the optimal large kernels. A
concurrent work suggests learning the offsets during train-
ing [23]. In contrast to ours, it is a discrete formulation, thus
losing the benefits of continuous convolution. Furthermore,
we adjust the receptive fields of each point representation
separately, yielding more expressive representations.

Continuous convolution for point clouds. There have
been many continuous convolution approaches to handle 3D
point cloud data, which is an important example of irregu-
larly sampled data. PointNet [41] and PointNet++ [42] are
pioneer works that use average pooling and 1 × 1 convolu-
tion to aggregate features. [31, 33, 58, 60] leveraged MLPs
to implement continuous convolution. KPConv [52] is also
considered a continuous convolution and shares some simi-
larities with ours (Fig. 1-f). They also used point represen-
tation and interpolation kernels for handling point clouds.
However, their points are fixed over the training, unlike
ours. They also proposed a deformable version, which re-
quires additional neural networks to predict the offset of the
kernel points.

3. SMPConv

3.1. Self-moving point representation

This section describes the proposed self-moving point
representation to represent a continuous function. Let d be
the size of the input coordinates dimension, e.g., 1 in time-
series data and 2 in the spatial domain. SMP : Rd → RNc

is a vector-valued function, mapping from the input coor-
dinates to the output kernel vectors, where Nc is a channel
size. Given a query point x ∈ Rd, we define a continuous

10291

kernel function as follows.

SMP(x;ϕ) =
1

|N (x)|
∑

i∈N (x)

g(x, pi, ri)wi, (1)

where ϕ = {{pi}
Np

i=1, {wi}
Np

i=1, {ri}
Np

i=1} is a set of learn-
able parameters, and Np is the number of points that are
used to represent the function. pi ∈ Rd is the coordinates
of self-moving point representation wi ∈ RNc , and each
point representation also has a learnable radius, ri ∈ R+

is a positive real number, which we implement it by clip-
ping for numerical stability. We define a distance function
g : Rd × Rd × R+ → R as follows,

g(x, pi, ri) = 1− ∥x− pi∥1
ri

, (2)

where ∥ · ∥1 is a L1 distance. N (x) is a set of indices
of neighboring points of a query coordinate x, defined as
N (x) = {i | g(x, pi, ri) > 0, ∀i}. Thus, points beyond
a certain distance (depending on the radius) will not af-
fect the query point. Hence, SMP generates output vectors
by a weighted average of the nearby point representations.
Note that all three parameters {pi}, {wi}, {ri} are jointly
trained with the CNN model parameters, and the gradients
w.r.t those parameters can be easily computed using an au-
tomatic differentiation library. As the name SMP suggests,
the coordinates {pi} are updated during training, resulting
in moving points representation.

Compared to a fixed-point representation, where {pi}
are not trainable, ours can approximate complex functions
more precisely. Since each point can move freely, more
points can be gathered in high-frequency areas. On the other
hand, few points can easily represent low-frequency compo-
nents, resulting in more parameter-efficient representation.
For example, a single point may be sufficient to approxi-
mate unimodal functions.

3.2. SMPConv

We leverage the suggested representation to implement a
continuous convolution operator. In one dimensional case,
d = 1, a continuous convolution can be formulated as,

(f ∗ SMP)(x) =
Nc∑
c=1

∫
R
fc(τ)SMPc(x− τ)dτ, (3)

where f : R → RNc is a input function and the fc and SMPc

denote the c-th element of the inputs. The convolution op-
erator generates a function, computing the filter responses
by summing over entire Nc channels. One SMP representa-
tion corresponds a convolution operator, and multiple SMPs
are used to implement one convolutional layer to generate
multiple output channels. In contrast to the previous MLP-
based continuous convolution, which uses one neural net-
work for one convolutional layer, our approach has separate

Figure 2. Self-moving point representation. (a) SMP as a function
of the one-dimensional input domain, and (b) SMP as a function
of the two-dimensional input domain. ‘C #1’ means the first chan-
nel. Each channel shares the location of the points, whereas each
channel has its own weight parameters.

parameters for each convolution filter in a layer. It gives
more freedom to each filter and results in more descriptive
power of the learned filter.

As depicted in Fig. 2, the kernels of each filter share the
position parameters. That is, each filter of one layer has its
own position parameters. Although we could use different
SMP for different channels. However, it will considerably
increase the number of learnable parameters ({pi} per chan-
nel), and we believe that locating points at the same location
for a convolutional filter can be a reasonable prior, where a
convolutional filter can focus on specific areas in the input
domain.

We leverage our continuous formulation to construct
large kernels, motivated by the recent success of using them
in many tasks. We can create arbitrary size large kernels by
querying multiple discretized coordinates to SMP.

3.3. Training

Training a large kernel has been challenging and compu-
tationally heavy, and naive training practice has yet to show
promising results. Recently, [13, 14] proposed a reparame-
terization trick to combine different-size kernels as a sepa-
rate branch, resulting in improved performance and more
stable training. We also applied the same trick to train
CNNs with SMPConv.

We empirically figured out that performance degradation
occurs when the coordinates {pi} are forced to fit inside the
kernel by clipping. Thus, we let the coordinates be freely
updated during training.

We also found that the initialization of the parameters
ϕ matters. For point locations, {pi}, we randomly sam-
ple from a gaussian distribution with small σ. It initially
locates the points in the center and gradually spreads out
over the training process. We empirically found that this
strategy yields more stable training, especially at the begin-
ning of the training. We also initialized with small values

10292

Method k Params. Time ↓ Throughput ↑
3 0.29M 61.2 4390.7

Deformable [9] 5 1.37M 157.3 1618.9
7 4.39M 293.1 882.3

FlexConv [44] 33 0.67M 92.9 1923.4
SMPConv 33 0.49M 40.1 4258.4

Table 1. Training time (sec/epoch) and throughput (examples/sec)
comparison with CIFAR10 on a single RTX3090 GPU. Both are
tested with a batch size of 64 and input resolution of 32 × 32. The
k is kernel size. The time is the average training time of the first
10 epochs.

for {ri}, which each weight parameter firstly has a narrow
sight. Over the course of training, {ri} also gradually in-
creases if necessary.

3.4. Efficiency

Assuming the size of a convolution filter is C ×N ×N ,
where C is the number of kernels and N is the height and
width of filter, CN2 parameters are required in dense con-
volution (Fig. 1-(a)). Therefore, the number of parameters
is proportional to kernel resolution N × N . On the other
hand, SMP needs (1+ d+C)Np parameters, where d is the
size of the input coordinates dimension, and Np is the num-
ber of weight points. We used Np ≪ N2, so SMP is more
efficient than dense convolution in terms of the number of
parameters. Furthermore, as the number of parameters does
not depend on kernel resolution, SMP can represent kernels
of any size, such as large or continuous kernels with fixed
budget parameters.

Due to the point representations and interpolation
schemes without supplementary neural networks, SMP-
Conv has an advantage of computational complexity. On
the other hand, the existing large kernel convolutions are
computationally heavy. Deformable convolution (Fig. 1-
(e)), for example, requires offset prediction networks and
convolution with interpolated inputs during both training
and inference, resulting in additional computation and pa-
rameter costs. Additionally, it relies on dense convolu-
tion, making it impractical to increase kernel size signifi-
cantly. Similarly, MLP-based methods(Fig. 1-(c)) like Flex-
Conv [44] leverage kernel generation neural network, and it
also increases computational burdens. The results presented
in Tab. 1 demonstrate that SMPConv outperforms the exist-
ing large kernel convolutions in terms of speed.

4. Experiments
4.1. Continuous function approximation

Firstly, we conducted a fitting experiment to validate that
our self-moving point representation can work as an ap-
proximator for a continuous function. To do so, we used

Figure 3. Comparison between the moving point and the fixed
point representations through the fitting. Our proposed moving
point representations can approximate given continuous functions
with higher accuracy.

two sinusoidal-based functions as the ground truth. Given
a function, SMP is optimized to represent the sampled func-
tion on a 51 × 51 grid. In this experiment, we designed
SMP with 204 points. The fitting result has been shown in
Fig. 3. It demonstrates that our proposed method reason-
ably well approximates a given continuous function with
fewer points. Additionally, we compared with the fixed
point representation and observed that optimizing the posi-
tion of points together helps to better approximate the func-
tion as the number of points is equal.

4.2. Sequential data classification

To demonstrate that SMPConv can handle long-term de-
pendencies well, we evaluated our method on various se-
quential data tasks, such as sequential image and time-series
classification. To do so, we followed FlexTCN [44] to con-
struct a SMPConv architecture for causal 1D CNN whose
kernel size is same as the input sequence length. We sub-
stituted their parameterized kernels with ours without addi-
tional modifications. To maintain a similar number of net-
work parameters, SMPConv contains 30 weight points in
each SMP. To alleviate the computation burdens caused by
the convolution with large kernels, we have considered ex-
ploiting the computations through a fast Fourier transform.
More network and experimental details are in Appx. 1.1.

Sequential image. We tested our SMPConv on the 1D
version of images from the datasets, sequential MNIST
(sMNIST), permuted MNIST(pMNIST) [29], and sequen-
tial CIFAR10 (sCIFAR10) [4]. These datasets have long
input sequence lengths, for example, 784 for sMNIST and
pMNIST, and 1024 for sCIFAR10. Note that it is hard to
model these datasets without proper kernel representations.
As shown in Tab. 2, the proposed model has achieved state-

10293

Model Params. sMNIST pMNIST sCIFAR10
DilRNN [4] 44k 98.0 96.1 -
LSTM [2] 70k 87.2 85.7 -
GRU [2] 70k 96.2 87.3 -
TCN [2] 70k 99.0 97.2 -

r-LSTM [56] 500k 98.4 95.2 72.2
IndRNN [30] 83k 99.0 96.0 -
TrellisNet [3] 8M 99.20 98.13 73.42

URLSTM [20] - 99.28 96.96 71.00
HiPPO [18] 0.5M - 98.30 -
coRNN [47] 134k 99.4 97.3 -
CKCNN [45] 98k 99.31 98.00 62.25

LSSL [21] - 99.53 98.76 84.65
S4 [19] - 99.63 98.70 91.13

FlexTCN [44] 375k 99.62 98.63 80.82
Ours 373k 99.75 99.10 84.86

Table 2. Sequential image classification results.

Model Params. CT SC SC-raw
GRU-ODE [11] 89k 96.2 44.8 ∼ 10.0
GRU-∆t [27] 89k 97.8 20.0 ∼ 10.0
GRU-D [5] 89k 95.9 23.9 ∼ 10.0

ODE-RNN [46] 89k 97.1 93.2 ∼ 10.0
NCDE [27] 89k 98.8 88.5 ∼ 10.0

CKCNN [45] 100k 99.53 95.27 71.66
LSSL [21] - - 93.58 -

S4 [19] - - 93.96 98.32
FlexTCN [44] 373k 99.53 97.67 91.73

Ours 371k 99.53 97.45 94.95

Table 3. Time-series classification results.

of-the-art results on both sMNIST and pMNIST. For sCI-
FAR10 dataset, our model has outperformed all the compar-
ative models except S4 [19]. Compared with the FlexTCN,
which has a similar network base, our model improved the
accuracy by 4%. These results show that our proposed
model is suitable and effective for sequential images.

Time-series. We evaluated our model on time-series se-
quence datasets, character trajectories (CT) [1], and speech
commands (SC) [59]. The results have been displayed in
Tab. 3. In the relatively shorter MFCC features data, SM-
PConv achieved test accuracy similar to FlexTCN. To vali-
date that our proposed model can model extremely long se-
quences, we conducted experiments on the SC-raw dataset,
which has a sequence length of 16000. Similar to the se-
quence image classification result, our model outperformed
FlexTCN with a large margin of +3%.

Compared to other models, our SMPConv has achieved
considerably better performance for both sequential image
and time-series classification. It ensures that our kernel rep-
resentation is capable of handling long-term dependencies
even in the case of a limited number of parameters.

Model Params. Accuracy
ResNet-44 [24] 660k 92.9

CKCNN-16 [44] 630k 72.1
FlexNet-16 [44] 670k 92.2

Ours 490k 93.0

Table 4. 2D image classification on CIFAR10.

4.3. Image classification

Image classification with the continuous kernel. We
validated our SMPConv on a 2D image dataset, CI-
FAR10 [28], which is dominated by discrete convolutions,
to show that the continuous kernel can capture spatial in-
formation as well. Similar to the experiments on se-
quential data, we followed the network design choice of
FlexNet [44], where the kernel size is 33 × 33. More de-
tails are in Appx. 1.1.

As shown in Tab. 4, our continuous kernel representation
model slightly outperforms ResNet, a discrete 3× 3 convo-
lution model, with a less number of parameters. It implies
that our model is competitive and promising. Our model
also showed better performance than MLP-based counter-
parts, CKCNN-16 and FlexNet-16, even when the parame-
ters of ours were around 30% lesser. In addition, we have al-
ready identified the efficiency of our model in Tab. 1. These
results suggest that our method is more suitable for kernel
generation than MLP-based implicit formulations.

Large scale image classification. Finally, we tested our
SMPConv on a large-scale ImageNet dataset [12], which
contains more than one million training images and 50,000
validation images. For such a large dataset, the convolu-
tion kernels should be carefully trained to model complex
data relationships accurately. Through such an experiment,
therefore, we can validate that our SMP can represent a de-
scriptive convolution kernel.

Firstly, we constructed large-scale variants of SMPConv
architecture based on RepLKNet [13]. We replaced its
discrete depth-wise separable convolution kernel with our
SMP. In general, the larger the data and network, the larger
the number of filters. To prevent excessive point position
parameters depending on the number of filters, we shared
the position of points over filters in large-scale settings. We
empirically found that this position sharing has little effect
on classification performance.

We proposed two variants of our model, SMPConv-T
and SMPConv-B. Thanks to our efficient large kernel, we
adjusted the number of channels and blocks so that our vari-
ants have a similar number of parameters to the previous
models. The number of blocks and channels for each stage
is [2, 2, 8, 2] and [96, 192, 384, 768] for SMPConv-T and
[2, 2, 20, 2] and [128, 256, 512, 1024] for SMPConv-B,
respectively. In RepLKNet-31B, the number of blocks and

10294

Model Params. FLOPs Top-1 Accuracy
ResNet-50 [24] 26M 4.1G 76.5

ResNext-50-32x4d [62] 25M 4.3G 77.6
ResMLP-S24 [54] 30M 6.0G 79.4

DeiT-S [55] 22M 4.6G 79.8
Swin-T [34] 28M 4.5G 81.3
TNT-S [22] 24M 5.2G 81.3

ConvNeXt-T [35] 29M 4.5G 82.1
SLaK-T [32] 30M 5.0G 82.5

SMPConv-T(ours) 27M 5.7G 82.5
DeiT-Base/16 [55] 87M 17.6G 81.8

Swin-B [34] 88M 15.4G 83.5
ConvNeXt-B [35] 89M 15.4G 83.8

SLaK-B [32] 95M 17.1G 84.0
RepLKNet-31B [13] 79M 15.3G 83.5
SMPConv-B(ours) 80M 16.6G 83.8

Table 5. 2D image classification on ImageNet-1K.

Models radius coordinate Accuracy
A - - 90.92
B ✓ - 91.35
C - ✓ 92.47

SMPConv ✓ ✓ 93.00

Table 6. Ablation study on CIFAR10. A checkmark means that
the component is a learnable. In case of SMPConv, for instance,
both radius and coordinate are learnable parameters.

σ 0.05 0.2 0.3 0.5
Accuracy 93.00 92.24 91.84 91.51

Table 7. Classification results on CIFAR10 with different standard
deviation σ of point location sampling distribution.

r 0.12 0.18 0.24 0.3
Accuracy 93.00 92.36 92.06 91.76

Table 8. Classification results on CIFAR10 with different initial
radius r.

channels for each stage is [2, 2, 18, 2] and [128, 256, 512,
1024]. More experimental details are provided in Appx.
1.2.

As reported in Tab. 5, our models obtained competitive
performance with fewer parameters than existing models.
These results show that our kernel representation is promis-
ing for large-scale domains as well. Overall, our kernel rep-
resentation is highly effective and descriptive.

4.4. Ablation

We performed various ablation studies with additional
experiments on CIFAR10 image classification. First, we in-
vestigated the validity of learnable radius and coordinate. In

Np 4 8 16 32 64
Params. 250k 330k 490k 809k 1447k

Accuracy 92.56 92.28 93.00 92.84 92.21

Table 9. Classification results on CIFAR10 with different number
of moving points Np.

Tab. 6, it showed that performance degradation occurs when
either one or both components are set to non-learnable pa-
rameters. Remarkably, Model C, which set coordinate to
trainable parameters, outperformed Model A by a consider-
able margin. Furthermore, Model B also had a slight per-
formance gain. It suggests that even randomly distributed
fixed weight points can increase their interpolation ability
with trainable radius. These results indicate that training
both coordinate and radius is valid.

Next, we identified the effect of the initial position of the
points by varying the σ, a standard deviation of point lo-
cation sampling distribution. In Tab. 7, we observed that a
small σ value, indicating initial positions of the points are
gathered in the center of the kernel, leads to higher accu-
racy. This is because it is difficult to train large kernels from
the beginning of training. Thus, large kernels can be effec-
tively trained by starting with small kernels and expanding
the receptive fields through moving points.

We also found that larger initial radius degrades the
model performance as shown in Tab. 8. The large radius re-
sults in a large initial kernel size, which makes initial train-
ing difficult. Furthermore, it is also challenging to train a
large area of the kernel dependent on a single weight point
which is not optimized in the early stages of training. Both
Tab. 7 and Tab. 8 empirically show that our initialization
methods for SMP are effective.

As depicted in Tab. 9, we figured out that simply in-
creasing the number of weight points Np does not helpful
for performance. It implies that a small number of points
are enough to represent a proper convolution filter. Since
the performance is influenced by the number of points, our
method is also required tuning like common neural net-
works. However, the performance difference between CK-
CNN and FlexNet in Tab. 4 shows that MLP-based meth-
ods are severely influenced by architectural settings. That
is, they have extensive search space, such as depth, width,
and activation function, so they typically require more tun-
ing than our method. Moreover, the impact of the number
of points is not particularly significant in that even the worst
(Np = 64) slightly outperforms the FlexNet (acc=92.20).

4.5. Visualization

Finally, we analyze our SMP by visualizing filters trained
on CIFAR10. In the first column of Fig. 4, we can observe
the trained weight points’ position. In our method, point lo-

10295

Figure 4. Visualization of kernels. Each row shows the location of points and first 6 kernels of a filter. For ease of visualization, the kernels
are first subjected to the absolute value operation and then normalized to a range of [0,1].

Figure 5. Normalized sum of the absolute value of trained filters.
(a), (b), and (c) are top, middle, and bottom layers, respectively.

cations pi are mainly sampled near the center of the kernel
for stable training. It shows that the points spread out for
optimal kernel representation over the training process, as
we argued, and thus the receptive fields are not limited to
a small part. Also, we can figure out that there are square
patterns caused by Eq. (2) in the kernels, where each square
has its own area. This suggests that although the radius pa-
rameters are initialized with small values, the values are in-
dividually increased and optimized for each corresponding
weight point during training.

Observing visualized convolution kernel in Fig. 4, ker-
nels from the same filter share the receptive fields. It al-
lows a single filter to focus on the shared area. Further-
more, as illustrated in Fig. 5, SMPConv has large adaptive
receptive fields which are not conventional square or rectan-
gular shapes. This is because it consists of optimized filters
with their own small and large receptive fields. Thus, our
method can handle not only global information but also lo-
cal details.

5. Conclusion and discussion
In this paper, we present a method to build a continuous

convolution. We propose using point representations, where
each point has the weight parameters, coordinates, and ra-

dius to learn. By connecting the points, we can implement a
continuous function, which can be utilized to construct con-
volutional kernels. We have provided extensive experimen-
tal results, showing that drop-in replacement in the existing
training pipeline without bells and whistles improved the
performance by a safe margin. We also show that a contin-
uous convolution can be effectively utilized in a large-scale
experiment. We expect more research and development in
this direction.

Although promising, there are many rooms to be im-
proved. Due to the limited computational budget, we could
not conduct sufficient experiments in the large-scale experi-
ment. The experimental results provided in this manuscript
resulted from a few runs. As trial and error are essential in
the machine learning development process, we plan to find
optimal configurations and training techniques to enhance
the performance of the proposed method.

We also observed that the learned kernels often show
sparse patterns depending on the tasks. It is well aligned
with the success of dilated convolution or its variants, and
our methods automatically learn proper sparsity during the
training process on specific tasks. Adding prior knowledge
through training and regularization techniques would fur-
ther improve performance, especially for tasks requiring
longer-term dependency modeling.

Acknowledgments
We thank Usman Ali for valuable discussions. This

research was supported by the Ministry of Science
and ICT (MSIT) of Korea, under the National Re-
search Foundation (NRF) grant (2022R1F1A1064184,
2022R1A4A3033571), Institute of Information and
Communication Technology Planning Evaluation
(IITP) grants for the AI Graduate School program
(IITP-2019-0-00421), and the BK21 FOUR Project.

10296

References
[1] Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael

Flynn, James Large, Aaron Bostrom, Paul Southam, and Ea-
monn Keogh. The uea multivariate time series classification
archive, 2018. arXiv preprint arXiv:1811.00075, 2018. 1, 6

[2] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical
evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271,
2018. 6

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Trel-
lis networks for sequence modeling. arXiv preprint
arXiv:1810.06682, 2018. 6

[4] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao
Guo, Wei Tan, Xiaodong Cui, Michael Witbrock, Mark A
Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent
neural networks. In NeurIPS, 2017. 5, 6

[5] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho,
David Sontag, and Yan Liu. Recurrent neural networks for
multivariate time series with missing values. Scientific re-
ports, 8(1):6085, 2018. 6

[6] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. arXiv preprint
arXiv:2203.09517, 2022. 2

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. TPAMI, 40(4):834–848, 2017.
3

[8] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 3

[9] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In ICCV, pages 764–773, 2017. 3, 5

[10] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,
and Michael Felsberg. Beyond correlation filters: Learn-
ing continuous convolution operators for visual tracking. In
ECCV, pages 472–488. Springer, 2016. 1

[11] Edward De Brouwer, Jaak Simm, Adam Arany, and
Yves Moreau. Gru-ode-bayes: Continuous modeling of
sporadically-observed time series. In NeurIPS, 2019. 6

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. Ieee, 2009. 3, 6

[13] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang
Ding. Scaling up your kernels to 31x31: Revisiting large
kernel design in cnns. In CVPR, pages 11963–11975, 2022.
1, 3, 4, 6, 7

[14] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style
convnets great again. In CVPR, pages 13733–13742, 2021.
4

[15] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming
Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining Guo.
Cswin transformer: A general vision transformer backbone

with cross-shaped windows. In CVPR, pages 12124–12134,
2022. 3

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3

[17] Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye
Teh, and Arnaud Doucet. Coin: Compression with implicit
neural representations. arXiv preprint arXiv:2103.03123,
2021. 2

[18] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. Hippo: Recurrent memory with optimal polynomial
projections. In NeurIPS, pages 1474–1487, 2020. 6

[19] Albert Gu, Karan Goel, and Christopher Ré. Efficiently
modeling long sequences with structured state spaces. arXiv
preprint arXiv:2111.00396, 2021. 6

[20] Albert Gu, Caglar Gulcehre, Thomas Paine, Matt Hoffman,
and Razvan Pascanu. Improving the gating mechanism of re-
current neural networks. In ICML, pages 3800–3809. PMLR,
2020. 6

[21] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri
Dao, Atri Rudra, and Christopher Ré. Combining recurrent,
convolutional, and continuous-time models with linear state
space layers. In NeurIPS, pages 572–585, 2021. 6

[22] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. In NeurIPS,
pages 15908–15919, 2021. 7

[23] Ismail Khalfaoui Hassani, Thomas Pellegrini, and Timothée
Masquelier. Dilated convolution with learnable spacings.
arXiv preprint arXiv:2112.03740, 2021. 3

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 3, 6, 7

[25] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approxima-
tors. Neural networks, 2(5):359–366, 1989. 1

[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 3

[27] Patrick Kidger, James Morrill, James Foster, and Terry
Lyons. Neural controlled differential equations for irregular
time series. In NeurIPS, pages 6696–6707, 2020. 6

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6

[29] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple
way to initialize recurrent networks of rectified linear units.
arXiv preprint arXiv:1504.00941, 2015. 5

[30] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao.
Independently recurrent neural network (indrnn): Building a
longer and deeper rnn. In CVPR, pages 5457–5466, 2018. 6

[31] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In NeurIPS, 2018. 3

10297

[32] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao
Xiao, Boqian Wu, Mykola Pechenizkiy, Decebal Mocanu,
and Zhangyang Wang. More convnets in the 2020s: Scal-
ing up kernels beyond 51x51 using sparsity. arXiv preprint
arXiv:2207.03620, 2022. 1, 2, 3, 7

[33] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In CVPR, pages 8895–8904, 2019. 3

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 10012–10022, 2021. 3, 7

[35] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, pages 11976–11986, 2022. 3, 7

[36] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-
lated convolutional networks for 3d point cloud understand-
ing. In ICCV, 2019. 1

[37] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
pages 4460–4470, June 2019. 2

[38] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2

[39] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. arXiv preprint arXiv:2201.05989,
2022. 2

[40] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, pages 165–174, June 2019. 2

[41] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, 2017. 1, 3

[42] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 3

[43] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks.
In ICML, pages 5301–5310. PMLR, 2019. 2

[44] David W Romero, Robert-Jan Bruintjes, Jakub M Tomczak,
Erik J Bekkers, Mark Hoogendoorn, and Jan C van Gemert.
Flexconv: Continuous kernel convolutions with differen-
tiable kernel sizes. arXiv preprint arXiv:2110.08059, 2021.
1, 2, 3, 5, 6

[45] David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M
Tomczak, and Mark Hoogendoorn. Ckconv: Continu-
ous kernel convolution for sequential data. arXiv preprint
arXiv:2102.02611, 2021. 1, 2, 3, 6

[46] Yulia Rubanova, Ricky TQ Chen, and David K Duve-
naud. Latent ordinary differential equations for irregularly-
sampled time series. In NeurIPS, 2019. 6

[47] T Konstantin Rusch and Siddhartha Mishra. Coupled os-
cillatory recurrent neural network (cornn): An accurate and
(gradient) stable architecture for learning long time depen-
dencies. arXiv preprint arXiv:2010.00951, 2020. 6

[48] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 3

[49] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. In NeurIPS, pages
7462–7473, 2020. 1, 2

[50] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, pages 5459–5469, 2022. 2

[51] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, pages
6105–6114. PMLR, 2019. 3

[52] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In ICCV, pages 6411–6420, 2019. 1, 3

[53] Nergis Tomen and Jan C van Gemert. Spectral leakage and
rethinking the kernel size in cnns. In ICCV, pages 5138–
5147, 2021. 3

[54] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu
Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izac-
ard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al.
Resmlp: Feedforward networks for image classification with
data-efficient training. TPAMI, 2022. 7

[55] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, pages 10347–10357. PMLR, 2021. 3, 7

[56] Trieu Trinh, Andrew Dai, Thang Luong, and Quoc Le.
Learning longer-term dependencies in rnns with auxiliary
losses. In ICML, pages 4965–4974. PMLR, 2018. 6

[57] Cristina Vasconcelos, Kevin Swersky, Mark Matthews,
Milad Hashemi, Cengiz Oztireli, and Andrea Tagliasac-
chi. Cuf: Continuous upsampling filters. arXiv preprint
arXiv:2210.06965, 2022. 1

[58] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric continuous
convolutional neural networks. In CVPR, pages 2589–2597,
2018. 1, 2, 3

[59] Pete Warden. Speech commands: A dataset for
limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018. 1, 6

[60] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In CVPR, pages
9621–9630, 2019. 3

[61] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
CVPR, pages 1912–1920, 2015. 1

[62] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, pages 1492–1500, 2017. 7

10298

[63] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,
Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-
based neural radiance fields. In CVPR, pages 5438–5448,
2022. 2, 3

[64] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In ECCV, pages 87–102, 2018. 1

[65] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework
for region annotation in 3d shape collections. ACM ToG,
35(6):1–12, 2016. 1

[66] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenox-
els: Radiance fields without neural networks. arXiv preprint
arXiv:2112.05131, 2021. 2

[67] Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz,
and Felix Heide. Differentiable point-based radiance
fields for efficient view synthesis. arXiv preprint
arXiv:2205.14330, 2022. 2, 3

10299

