
Sampling is Matter: Point-guided 3D Human Mesh Reconstruction

Jeonghwan Kim1* Mi-Gyeong Gwon1* Hyunwoo Park1

Hyukmin Kwon2 Gi-Mun Um2 Wonjun Kim1†

1Konkuk University 2Electronics and Telecommunications Research Institute
{jhkim0759,kmk3942,pzls,wonjkim}@konkuk.ac.kr {hmkwon,gmum}@etri.re.kr

Abstract

This paper presents a simple yet powerful method for
3D human mesh reconstruction from a single RGB image.
Most recently, the non-local interactions of the whole mesh
vertices have been effectively estimated in the transformer
while the relationship between body parts also has begun
to be handled via the graph model. Even though those ap-
proaches have shown the remarkable progress in 3D hu-
man mesh reconstruction, it is still difficult to directly infer
the relationship between features, which are encoded from
the 2D input image, and 3D coordinates of each vertex. To
resolve this problem, we propose to design a simple fea-
ture sampling scheme. The key idea is to sample features
in the embedded space by following the guide of points,
which are estimated as projection results of 3D mesh ver-
tices (i.e., ground truth). This helps the model to concen-
trate more on vertex-relevant features in the 2D space, thus
leading to the reconstruction of the natural human pose.
Furthermore, we apply progressive attention masking to
precisely estimate local interactions between vertices even
under severe occlusions. Experimental results on bench-
mark datasets show that the proposed method efficiently im-
proves the performance of 3D human mesh reconstruction.
The code and model are publicly available at: https:
//github.com/DCVL-3D/PointHMR_release.

1. Introduction

The goal of 3D human mesh reconstruction is to esti-
mate 3D coordinates of points, which make up the human
body surface. Since the high-quality 3D human model has
been consistently required for various immersive applica-
tions, many studies have devoted considerable efforts to
accurately reconstruct the 3D human mesh. In the early
stage of this field, complex optimization techniques were
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Figure 1. (a) Traditional process of feature extraction for estimat-
ing 3D coordinates. (b) Vertex-relevant feature extraction process
based on the proposed point-guided sampling method for estimat-
ing 3D coordinates.

adopted to generate the 3D human model based on the re-
lationship between multiple scenes, which are acquired by
using stereo or multiple-view camera systems. Recently,
owing to the great success of deep learning, the problem of
3D human mesh reconstruction now can be resolved only
with a single RGB image, thus the majority has begun to
develop compact network architectures and efficient train-
ing strategies. Even though such deep learning-based ap-
proaches have shown the significant progress in 3D human
mesh reconstruction, this task is still challenging due to se-
vere occlusions by diverse human poses and depth ambigu-
ities by the monocular setting.

Deep learning-based approaches can be divided into
two main groups: model-based and model-free methods.
In the former, most methods aim to estimate shape and
pose parameters of the skinned multi-person linear (SMPL)
model [24], which is capable of yielding the whole vertices
via these two simple factors, thus most widely employed in
this field. Traditional encoder-decoder architectures, which
are mostly composed of stacked convolutional layers, are
sufficient to conduct the regression for estimating those pa-
rameters. Despite their great performance, model-based
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methods have the obvious shortcoming, i.e., reconstruction
results are limited to the pre-defined types of human body
models. On the other hand, model-free methods have at-
tempted to directly infer 3D coordinates of mesh vertices
from input features without using any specific human body
model. Compared to the model-based approach, which ob-
tains the well-defined full mesh by adjusting shape and pose
parameters, the model-free approach needs to estimate 3D
coordinates of whole vertices directly from the network.
Most methods in this category are based on the transformer
to grasp non-local interactions between mesh vertices. The
graph model (e.g., graph convolution) also has been utilized
together to allow for body part relations in a local manner.
One important advantage of the model-free approach is the
flexibility to adapt to other applications, e.g., hand pose es-
timation, without significant changes of the data format and
the training strategy. However, inferring the 3D coordinate
from a single monocular image is still challenging due to
lack of learning the correspondence between encoded fea-
tures and spatial positions.

In this paper, we propose a simple yet powerful method
for 3D human mesh reconstruction. To this end, we con-
duct feature sampling at vertex-relevant points of the input
image as shown in Fig. 1, which are estimated through the
heatmap decoder trained by projection results of 3D mesh
vertices (i.e., ground truth). These sampled features are sub-
sequently fed into the transformer encoder as the form of
the vertex token (see Fig. 2). In a similar way of [6], we
apply attention masking to the transformer encoder, how-
ever, the difference is that the local connection is defined
with the range of multiple levels through the sequence of
transformer encoders. This progressive attention masking
helps the model understand local relations between vertices
precisely even in occlusions. The main contribution of the
proposed method can be summarized as follows:

• We propose to utilize the correspondence between en-
coded features and vertex positions, which are pro-
jected into the 2D space, via our point-guided fea-
ture sampling scheme. By explicitly indicating such
vertex-relevant features to the transformer encoder, co-
ordinates of the 3D human mesh are accurately esti-
mated.

• Our progressive attention masking scheme helps the
model efficiently deal with local vertex-to-vertex rela-
tions even under complicated poses and occlusions.

2. Related Work

In this Section, we give a brief review of the previ-
ous studies for 3D human mesh construction which have
progressed in two different directions: model-based and
model-free approaches.

Model-based approaches. As mentioned, most model-
based approaches aim to estimate shape and pose param-
eters of the SMPL model [24] for restoring the entire set
of mesh vertices. In the beginning, several studies at-
tempted to align 2D joint positions as well as body part
segments, which are estimated by respective networks, with
the ground truth projected from the 3D human mesh [3,19].
However, these methods require additional steps to esti-
mate shape and pose parameters of the SMPL model. To
cope with this limitation, Kanazawa et al. [12] proposed to
regress such parameters directly from a single RGB image
without using intermediate results, i.e., 2D joints and body
part segments. Specifically, they designed a simple convo-
lutional encoder with the adversarial loss to make the recon-
structed mesh result be realistic. Inspired by the great po-
tential of this simple regression scheme, many researchers
have introduced various encoder-decoder architectures to
estimate shape and pose parameters. Kolotouros et al. [17]
proposed to combine the end-to-end regression model with
the optimization loop to strongly supervise the refinement
process. Choutas et al. [9] attempted to directly regress
body, face, and hands by exploiting the body-driven atten-
tion in the SMPL-X [29] format for generating the high-
quality 3D human mesh. Biggs et al. [2] designed a multi-
hypothesis neural network regressor based on the best-of-
M loss, which makes the plausible human pose even under
severely occluded environments. Zhang et al. [37] also fo-
cused on accurately restoring object-occluded human shape
and pose by utilizing the partial UV map and the novel
saliency map in the SMPL format. Most recently, Kocabas
et al. [16] devised the part attention module to guide the net-
work to concentrate more on relevant body parts for infer-
ring the given pose with SMPL parameters in a single input
RGB image. Sun et al. [32] estimated body center positions
instead of segmenting human regions and extracted the pa-
rameter maps for the SMPL model at the corresponding po-
sitions. They further extend their algorithm by adopting the
heat map of the bird-eye view to alleviate the depth ambigu-
ity in monocular settings [33]. On the other hand, the kine-
matic topology module has been embedded into the neural
network architecture to consider the relationship between
articulations of the human body [20]. Even though model-
based approaches have shown the remarkable progress in
3D human mesh reconstruction, their performance is lim-
ited to pre-defined types of human body models, which are
hardly extended to other applications.

Model-free approaches. Model-free approaches intend to
directly restore the entire set of mesh vertices while relaxing
the heavy reliance on the parameter space in model-based
methods. As a pioneer, Kolotouros et al. [18] proposed to
estimate human mesh coordinates through the graph convo-
lutional neural network (GraphCNN). To do this, they at-
tached encoded features to nodes in the graph, which are

12881



Figure 2. Overall architecture of the proposed method. The backbone feature is used to generate heatmap, target feature, and grid feature
with respective decoders. Our sampling scheme utilizes heatmap and target feature to make the vertex token. Note that N and M denote
the number of vertices and the distance threshold for defining the local connection in self-attention, respectively.

mapped to 3D coordinates of the template mesh. From this
perspective, Choi et al. [7] also adopted GraphCNN to re-
construct 3D human meshes from 2D and 3D pose informa-
tion in a coarse-to-fine manner. While these GraphCNN-
based methods have a good ability to fully exploit the mesh
topology, they are somewhat lacking in considering global
interactions between joints and vertices. To cope with this
limitation, the transformer has begun to be actively adopted
for model-free approaches. Specifically, Lin et al. [21]
firstly introduced the transformer encoder, which simply
takes joint and vertex queries as input tokens, to regress
3D coordinates from a single input RGB image. In particu-
lar, they further embedded GraphCNN into the transformer
block to supplement local interactions, e.g., between-part
relationships, for 3D human mesh reconstruction. Most re-
cently, Cho et al. [6] have disentangled image features and
mesh queries by utilizing the transformer encoder-decoder
architecture to alleviate the high complexity of interactions
among input tokens.

Our method is also based on the transformer encoder
with a simple sampling scheme, which gives a great help to
focus on vertex-relevant features for inferring coordinates
of the 3D human mesh. Technical details will be explained
in the following Section.

3. Proposed Method

The proposed method consists of two main parts. Specif-
ically, vertex-relevant features are extracted based on our
point-guided feature sampling in the first part while 3D co-
ordinates are estimated through the sequence of transformer
encoders with the proposed progressive attention masking
scheme in the second part. The overall architecture of the
proposed method is illustrated in Fig. 2.

Figure 3. Several examples of predicted heatmaps on the 3DPW
dataset. For better visibility, the activated regions of the heatmap
corresponding to several selected vertices are represented in a sin-
gle image with bright colors (best view in colors).

3.1. Point-guided Feature Sampling

Since the direct transform from the color value to the 3D
coordinate is still a difficult process due to heterogeneous
modalities, we propose to use the intermediate guidance,
i.e., features sampled at positions of vertices projected from
3D to 2D spaces. Specifically, we represent such projection
results as the form of the heatmap, and sample features at
activated positions in this heatmap. The detailed process of
our point-guided feature sampling is shown in the first part
of Fig. 2. Firstly, the backbone feature Xb ∈ RC×H×W is
encoded through the backbone network (HRNet [35] in this
work), where C, H , and W denote the number of channels,
height, and width, respectively.

Xb is subsequently decoded into the heatmap, the tar-
get feature, and the grid feature by respective decoders as
shown in Fig. 2. After that, the vertex-relevant feature is
sampled at each of N vertices based on combination of the
predicted heatmap and the target feature. Several examples
of the predicted heatmap are shown in Fig. 3. Note that
we conducted element-wise multiplication of the predicted
heatmap and the target feature to make our sampling pro-
cess be differentiable. Moreover, we apply the positional
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Figure 4. The detailed structure of the proposed progressive atten-
tion masking scheme. Note that this figure illustrates the masking
process in the first transformer encoder, i.e., the case of M = 7,
shown in Fig. 2.

encoding to the target feature in the same way of [5, 6]
for preserving the spatial information in the transformer en-
coder. Our point-guided feature sampling can be formulated
as follows:

V̂i = Hi × F, i = 1, 2, 3, ..., N, (1)

where Hi and F denote the predicted heatmap correspond-
ing to the i-th vertex and the target feature, respectively. N
denotes the total number of vertices and is set to 431 as used
in previous methods. V̂i is the sampling result, which is fi-
nally flattened and fed into the transformer encoder with the
grid feature in the second part of our proposed method. It is
noteworthy that the grid feature plays an important role to
create the united body structure by aligning each point in an
appropriate location.

3.2. Transformer Encoder with Progressive Atten-
tion Masking

In this subsection, we explain the sequence of trans-
former encoders in detail. In a similar way of [21, 22], we
design the transformer encoder with the dimension reduc-
tion layer as shown in the second part of Fig. 2. Specifically,
the transformer encoder takes the vertex token V̂ ∈ RN×D,
the joint token Ĵ ∈ RK×D, and the grid token Ĝ ∈ RZ×D

as inputs. The joint token is a trainable parameter that is ran-
domly initialized and optimized during the training phase
whereas vertex and grid tokens are extracted from the first
part of the proposed method. Moreover, positional encod-
ings are employed to give the identity by concatenating the
trainable parameter to each token. The dimension of the
encoded token is reduced by linear projection after each
transformer block, which consists of two transformer en-
coders. To consider local vertex-vertex relations as well
as non-adjacent interactions, we exclude far-distant connec-
tions between vertices to compute self-attention in the trans-
former encoder. In contrast to the previous method [6], we
gradually decrease the range to define the local connection
between vertices through the sequence of transformer en-
coders as illustrated in Fig. 4. This helps the model con-
sider the local relationship between neighbor vertices in a

Figure 5. (a) Input image. (b) Reconstruction result with previous
attention masking [6]. (c) Reconstruction result with progressive
attention masking (proposed).

progressive manner. Figure 5 shows the effect of our pro-
gressive attention masking. As can be seen, the proposed
method provides the reasonable result even in occlusions.

The outputs (i.e., vertex and joint tokens) of the last
transformer encoder are finally projected into 3D coordi-
nates via a linear layer. In the case of the vertex token,
the upsampling algorithm introduced in [31] is applied to
expand sparse vertices V ′ ∈ RN×3 into dense vertices
V ∈ RN×3 as follows:

V = UV ′, (2)

where U is the pre-defined upsampling matrix [31]. N is set
to 6,890 (same as the vertex number of the SMPL model).
The predicted 3D human mesh and 3D keypoints can be
visualized as the rightmost images shown in Fig. 2.

3.3. Loss Function

The proposed method is trained based on four types of
loss functions, i.e., vertex loss Lv , 3D joint loss Lj3d, 2D
joint loss Lj2d, and heatmap loss Lh. The first three loss
functions are used for estimating positions of vertices and
joints as introduced in previous works [6, 21, 22] while the
last one guides the network to find positions of projected
vertices. First of all, L1 loss is adopted to compute the dif-
ference between positions of the predicted vertex V and the
corresponding ground truth Ṽ as follows:

Lv =
1

N

N∑
i=1

∥Ṽ i − V i∥1, (3)

where N denotes the total number of vertices. For the 3D
joint loss, we compute the distance between the estimated
joint position J3d and the corresponding ground truth J̃3d
in the 3D space. Note that the joint position, which is re-
gressed from the predicted vertices, i.e., J̄3d, is also used
for the loss computation as follows:

Lj3d =
1

K

K∑
i=1

∥J̃ i
3d − J i

3d∥2 + ∥J̃ i
3d − J̄ i

3d∥2, (4)

where K denotes the total number of joints. Similarly, the
2D joint loss is calculated as well. To do this, J3d and J̄3d
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Methods Backbone
Human3.6M 3DPW

MPJPE(↓) PA-MPJPE(↓) MPJPE(↓) PA-MPJPE(↓) MPVPE (↓)

m
od

el
-b

as
ed

HMR [12] ResNet-50 88.0 56.8 130.0 81.3 –
SPIN [17] ResNet-50 – 41.1 96.9 59.2 116.4
ExPose [9] ResNet-50 – – 93.4 55.6 –
VIBE [15] ResNet-50 65.6 41.4 82.9 51.9 99.1
HybrIK [20] ResNet-34 54.4 34.5 80.0 48.8 94.5
ROMP [32] HRNet-W32 – – 76.7 47.3 93.4
PARE [16] HRNet-W32 – – 74.5 46.5 88.6
MAED [40] ResNet-50 56.4 38.7 79.1 45.7 92.6
PyMAF [36] ResNet-50 57.7 40.5 92.8 58.9 110.1
BEV* [33] HRNet-W32 – – 78.5 46.9 92.3
OCHMR* [13] ResNet-50 / HRNet-W32 – – 89.7 58.3 107.1
3DCrowdNet* [8] ResNet-50 – – 81.7 51.5 98.3

m
od

el
-f

re
e

GraphCMR [18] ResNet-50 – 50.1 – 70.2 –
I2LMeshNet [27] ResNet-50 55.7 41.7 93.2 57.7 110.1
Pose2Mesh [7] HRNet-W48 64.9 47.0 89.5 56.3 105.3
METRO [21] HRNet-W64 54.0 36.7 77.1 47.9 88.2
MeshGraphormer [22] HRNet-W64 51.2 34.5 74.7 45.6 87.7
FastMETRO [6] HRNet-W64 52.2 33.7 73.5 44.6 84.1
Ours HRNet-W32 48.3 32.9 73.9 44.9 85.5

Table 1. Performance comparisons of 3D human mesh reconstruction based on Human3.6M and 3DPW datasets. The proposed method
achieves the best performance in the Human3.6M dataset while still showing the competitive performance in the 3DPW dataset (best results
are shown in bold). Note that * denotes the performance without fine-tuning on the 3DPW dataset.

are projected onto the 2D space and the corresponding re-
sults are represented as J2d and J̄2d, respectively. Based on
such projected results, the 2D joint loss is formulated as L2

loss in the same way of the 3D joint loss as follows:

Lj2d =
1

K

K∑
i=1

∥J̃ i
2d − J i

2d∥2 + ∥J̃ i
2d − J̄ i

2d∥2, (5)

where J̃2d is the ground truth of the 2D joint position. On
the other hand, our heatmap loss Lh consists of the binary
cross entropy loss and the dice loss. Specifically, we adopt
the binary cross entropy loss to determine whether the ac-
tivated position is matched to the point projected from the
vertex or not as follows:

Lbce = − 1

N

N∑
i=1

H̃i logHi + (1− H̃i) log (1−Hi), (6)

where H and H̃ denote the predicted heatmap and the cor-
responding ground truth, respectively. The ground truth is
represented as the binary map where the position of the
projected vertex is assigned 1, otherwise 0. To alleviate
the data-imbalanced problem, i.e., the projected point ex-
ists on only a single pixel in the ground truth image, the
dice loss [26] is also employed as follows:

Ldice =
1

N

N∑
i=1

1− 2× (H̃i ×Hi)

H̃i +Hi
. (7)

Since the dice loss mainly focuses on the overlapped area,
the data-imbalanced problem can be efficiently alleviated.
By using the combination of these loss functions, the pro-
posed network successfully learns to reconstruct the 3D hu-
man mesh as follows:

Ltotal = wvLv + wj3dLj3d + wj2dLj2d

+ wbceLbce + wdiceLdice,
(8)

where wv , wj3d, wj2d, wbce and wdice are the balancing
factor for each loss term, which are set to 0.01, 0.1, 0.01,
1.0, and 0.001, respectively.

4. Experimental Results

4.1. Training

All the experiments are implemented on the PyTorch
framework [28] with an Intel E5-1650@3.60GHz CPU and
two NVIDIA RTX A6000 GPUs. To train all the param-
eters of our model, the Adam optimizer [14] is adopted
where the momentum factors are set to 0.9 and 0.999, re-
spectively. The proposed network is trained for 50 epochs
with a batch size of 64 per GPU. The learning rate is firstly
set to 1 × 10−4 and reduced to 1 × 10−5 at the half of the
learning time. For each input image, the area including the
human is cropped and resized to the resolution of 224×224
pixels before training.
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Figure 6. Results of 3D human mesh reconstruction on Human3.6M [11] (top-two rows) and 3DPW [34] (bottom-two rows) datasets. (a)
Input images. (b) Results by METRO [21]. (c) Results by Mesh Graphormer [22]. (d) Results by the proposed method.

4.2. Datasets and Evaluation Metrics

Datasets. For the performance evaluation of the pro-
posed method, two representative benchmarks, i.e., Hu-
man3.6M [11] and 3DPW [34], are employed. Specifi-
cally, the proposed method is trained based on five datasets,
i.e., Human3.6M [11], MuCo-3DHP [25], UP-3D [19],
COCO [23], and MPII [1], by following previous ap-
proaches, and tested with the P2 protocol in the Hu-
man3.6M dataset. Since the ground truth of the 3D human
mesh is unavailable in the Human3.6M dataset, we use the
pseudo mesh label generated by SMPLify-X [29] as intro-
duced in [6,7,21,22,27]. For the test on the 3DPW dataset,
we fine-tune the proposed method by using the training set
of the 3DPW dataset.

Evaluation metrics. For the quantitative evaluation,
we use three metrics, i.e., mean per joint position error
(MPJPE) [11], Procrustes-aligned mean per joint position
error (PA-MPJPE) [38], and mean per vertex position er-
ror (MPVPE) [30], which have been widely adopted for
the performance comparison in this field. Specifically,
MPJPE measures the average value of the Euclidean dis-
tance between each estimated 3D joint and the correspond-
ing ground truth. PA-MPJPE indicates MPJPE in which the
estimated human body is aligned in terms of rotation and
scaling using the Procrustes analysis. On the other hand,
MPVPE is a metric for computing the Euclidean distance

between coordinates of the predicted vertex and the corre-
sponding ground truth.

4.3. Performance Evaluation

Quantitative evaluation. To demonstrate the efficiency
and robustness of the proposed method, we compare
ours with representative methods for 3D human mesh re-
construction, i.e., HMR [12], SPIN [17], ExPose [9],
VIBE [15], HybrIK [20], ROMP [32], PARE [16],
MAED [40], PyMAF [36], BEV [33], OCHMR [13],
3DCrowdNet [8], GraphCMR [18], I2LMeshNet [27],
Pose2Mesh [7], METRO [21], Mesh Graphormer [22], and
FastMETRO [6]. The result of the performance compar-
ison is shown in Table 1. As can be seen, the proposed
method achieves 48.3 MPJPE and 32.9 PA-MPJPE on the
Human3.6M dataset, which outperforms the state-of-the-
art methods with the meaningful performance gain. Even
though the performance of the proposed method is slightly
dropped compared to the best one (i.e., FastMETRO) in
the 3DPW dataset, our method still shows the competitive
performance with state-of-the-art methods. Specifically,
model-free methods have shown the reliable performance
without using the well-defined human model in recent days.
This is because their reconstruction results are not limited to
the small set of pre-defined human models, thus show more
appropriate human meshes for a given image compared to
model-based methods. In particular, transformer-based ar-
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Figure 7. More results of 3D human mesh reconstruction for our samples, which are acquired by the smartphone. Odd columns: input
images. Even columns: our results. Note that the proposed method provides reliable results of 3D human mesh reconstruction for various
pictures of our daily life even with severe occlusions.

chitectures, e.g., Mesh Graphormer and FastMETRO, sig-
nificantly improves the performance of 3D human mesh
reconstruction. Nevertheless, recent model-based meth-
ods still show the competitive performance and work ro-
bust to occlusion cases, e.g., BEV, OCHMR, and 3DCrowd-
Net. It is noteworthy that the proposed method notably im-
proves the performance by our point-guided feature sam-
pling scheme without specially designing the decoder ar-
chitecture like [6]. Moreover, the proposed method pro-
vides the reliable performance with the relatively small-
sized backbone (e.g., HRNet-W32).

Qualitative evaluation. Several results of 3D human
mesh reconstructions for Human3.6M and 3DPW datasets
are shown in Fig. 6. Note that our results are recon-
structed based on the upsampling matrix as used in [6]
while other two methods, i.e., METRO [21] and Mesh
Graphormer [22], utilized two linear layers to upsample
coarse vertex points. We can see that the proposed method
successfully estimates 3D human poses under various sit-
uations including real-world scenarios in outdoor scenes
as well as the controlled environment. Specifically, previ-
ous methods have somewhat difficulties to estimate unusual
poses, e.g., overlapping arms and bending, whereas the pro-
posed method provides the well-fit 3D model for a given im-
age. Moreover, the proposed method has a good ability to
reconstruct 3D human meshes in occlusions due to the pro-
gressive attention masking scheme as shown in examples of
the last row of Fig. 6. In particular, previous methods fail
to infer the global orientation of the human body due to the
fence in front of the target person, which leads to the signif-
icant performance drop for 3D human mesh reconstruction.
In contrast, the proposed method shows the reliable perfor-
mance with various occlusions (see third and fourth rows in
Fig. 6). More examples for 3D human mesh reconstruction
by the proposed method are shown in Fig. 7. Note that in-

Point-guided Progressive
MPJPE PA-MPJPEfeature sampling attention masking

✗ ✗ 63.2 39.9
✗ ✓ 61.2 40.8
✓ ✗ 50.9 33.3
✓ ✓ 48.3 32.9

Table 2. Performance analysis of the proposed method according
to changes in the network architecture based on the Human3.6M
dataset (best results are shown in bold).

Methods MPJPE PA-MPJPE
Without attention masking 50.9 33.3
Single attention masking 49.1 33.5

Progressive attention masking (ours) 48.3 32.9

Table 3. Performance analysis of the proposed method according
to the attention masking scheme based on the Human3.6M dataset
(best results are shown in bold). Note that M = 1 is used for
single attention masking.

put images are acquired by the smartphone. As can be seen,
the proposed method performs well for various pictures of
our daily life even with severe occlusions. Therefore, it is
thought that the proposed method paves the way for 3D hu-
man mesh reconstruction under various environments.

4.4. Ablation Studies

In this subsection, we first demonstrate the comparative
experimental results by changing the components of the
proposed method based on the Human3.6M dataset. Ta-
ble 2 shows the contribution of such components. As can
be seen, the performance of 3D human mesh reconstruc-
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Figure 8. Several reconstruction results (3D joints (left) and 3D hand meshes (right)) by the proposed method for the FreiHAND [39]
dataset. Note that the proposed method works robust to self-occlusions frequently occurring by complicated hand poses.

tion is significantly improved with our point-guided fea-
ture sampling scheme (MPJPE: 63.2 → 50.9, PA-MPJPE:
39.9 → 33.3). From this analysis, we can see that feature
sampling at vertex-relevant positions even in the 2D space is
effective for improving the performance of 3D human mesh
reconstruction. In what follows, we also check the effect
of our progressive attention masking and the correspond-
ing result is shown in Table 3. Note that our point-guided
feature sampling is applied for this experiment. By com-
paring ours with baseline (i.e., without masking) and single
masking attention scheme [6], we can see that the progres-
sive restriction strategy in defining the local connection is
also helpful for improving the performance of 3D human
mesh reconstruction. This tells us that the combination of
our contributions makes the model be robust to complicated
real-world environments.

4.5. Generalization Ability

In contrast to the model-based approach, the proposed
method can be easily applied to other applications. To
show the generalization ability of the proposed method, we
conduct 3D hand mesh reconstruction based on the Frei-
HAND [39] dataset by changing the number of input to-
kens for the sequence of transformer encoders. Note that
the number of vertices to be projected is set to 195 and those
are upsampled to 778 via the same upsampling matrix used
for 3D human mesh reconstruction. Several reconstruction
results by the proposed method are shown in Fig. 8. We can
see that the proposed method provides the reliable recon-
struction results (i.e., 3D joints and 3D hand meshes) for
various hand poses. In particular, self-occlusions by com-
plicated relations between adjacent fingers are successfully
handled in the proposed method. The result of the quantita-
tive evaluation is also shown in Table 4. As can be seen, the
proposed method shows the competitive performance on the
FreiHAND dataset.

Methods PA-MPVPE PA-MPJPE F@5mm F@15mm
Hasson et al. [10] 13.2 – 0.436 0.908

Boukhayma et al. [4] 13.0 – 0.435 0.898
FreiHAND [39] 10.7 – 0.529 0.935

I2LMeshNet [27] 7.6 7.4 0.681 0.973
Pose2Mesh [7] 7.8 7.7 0.674 0.969
METRO [21] 6.7 6.8 0.717 0.981

FastMETRO [6] – 6.5 – 0.982
Ours 6.6 6.1 0.720 0.984

Table 4. Performance comparisons of 3D hand mesh reconstruc-
tion based on the FreiHAND dataset (best results are shown in
bold).

5. Conclusion

In this paper, we present a simple yet powerful method
for 3D human mesh reconstruction from a single RGB im-
age. The key idea of the proposed method is to allevi-
ate heterogeneous modalities between input (i.e., color) and
output (i.e., coordinate) by considering the correspondence
of encoded features and 2D points projected from 3D ver-
tices. Our point-guided feature sampling scheme is to sam-
ple vertex-relevant features based on the combination of the
heatmap and encoded features. In addition, the proposed
progressive attention masking scheme makes the model to
be robust to occlusions by considering local connections
of different levels through the sequence of transformer en-
coders. Experimental results on benchmark datasets show
that the proposed method performs reliably for various real-
world environments.
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