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Abstract

Since the introduction of deep learning, a wide scope of
representation properties, such as decorrelation, whitening,
disentanglement, rank, isotropy, and mutual information,
have been studied to improve the quality of representation.
However, manipulating such properties can be challeng-
ing in terms of implementational effectiveness and general
applicability. To address these limitations, we propose to
regularize von Neumann entropy (VNE) of representation.
First, we demonstrate that the mathematical formulation of
VNE is superior in effectively manipulating the eigenval-
ues of the representation autocorrelation matrix. Then, we
demonstrate that it is widely applicable in improving state-
of-the-art algorithms or popular benchmark algorithms by
investigating domain-generalization, meta-learning, self-
supervised learning, and generative models. In addition, we
formally establish theoretical connections with rank, disen-
tanglement, and isotropy of representation. Finally, we pro-
vide discussions on the dimension control of VNE and the
relationship with Shannon entropy. Code is available at:
https://github.com/jaeill/CVPR23—-VNE.

1. Introduction

Improving the quality of deep representation by pursu-
ing a variety of properties in the representation has been
adopted as a conventional practice. To learn representa-
tions with useful properties, various methods have been
proposed to manipulate the representations. For example,
decorrelation reduces overfitting, enhances generalization
in supervised learning [20,92], and helps in clustering [79].
Whitening improves convergence and generalization in su-
pervised learning [23, 44, 45, 60], improves GAN stabil-
ity [76], and helps in domain adaptation [73]. Disentan-
glement was proposed as a desirable property of representa-
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Figure 1. General applicability of VNE: performance of state-of-
the-art algorithms or popular benchmark algorithms can be further
improved by regularizing von Neumann entropy (full result tables
will be provided in Section 3). (a) Domain generalization: relative
improvements over ERM and SWAD (current state-of-the-art). (b)
Meta-learning: relative improvements over six popular benchmark
algorithms. (c) Self-supervised learning: performance compari-
son against the current state-of-the-art algorithms for COCO de-
tection. (d) GAN: relative improvements in Fréchet Inception Dis-
tance (FID) for seven popular benchmark algorithms.

tions [1,9,42]. Increasing rank of representations was pro-
posed to resolve the dimensional collapse phenomenon in
self-supervised learning [43,47]. Isotropy was proposed to
improve the downstream task performance of BERT-based
models in NLP tasks [56,78]. Preventing informational col-
lapse (also known as representation collapse) was proposed
as a successful learning objective in non-contrastive learn-
ing [7,96]. In addition, maximizing mutual information was
proposed as a successful learning objective in contrastive
learning [39, 69, 80].
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Although aforementioned properties are considered as
desirable for useful representations, typical implementa-
tional limitations, such as dependency to specific architec-
tures or difficulty in proper loss formulation, inhibited the
properties from being more popularly adopted. For ex-
ample, the methods for whitening [23, 44, 45, 60, 73, 76],
isotropy [56, 78], and rank [43] are typically dependent on
specific architectures (e.g., decorrelated batch normaliza-
tion [44] and normalizing flow [56]). Regarding disentan-
glement and mutual information, loss formulations are not
straightforward because measuring disentanglement gener-
ally relies on external models [13,27,32,41,51] or is tuned
for a specific dataset [50] and formulating mutual informa-
tion in high-dimensional spaces is notoriously difficult [82]
and only tractable lower bound can be implemented by
training additional critic functions [71]. Meanwhile, sev-
eral decorrelation methods [7,20,92,96] have implemented
model-agnostic and straightforward loss formulations that
minimize the Frobenius norm between the autocorrelation
matrix C,y (Or crosscorrelation matrix Ceross) and a scale
identity matrix c - I for an appropriate ¢ > (0. Because
of the easiness of enforcing decorrelation via a simple loss
formulation, these decorrelation methods can be considered
to be generally applicable to a wide scope of applications.
However, the current implementation of the loss as a Frobe-
nius norm can exhibit undesirable behaviors during learning
and thus fail to have a positive influence as we will explain
further in Section 2.4.

To address the implementational limitations, this study
considers the eigenvalue distribution of the autocorrelation
matrix Cpyo. Because Cyyo converges to scalar identity ma-
trix c-I for an appropriate ¢ > 0 if and only if the eigenvalue
distribution of C,, converges to a uniform distribution, it is
possible to control the eigenvalue distribution using meth-
ods that are different from Frobenius norm. To this end,
we adopt a mathematical formulation from quantum infor-
mation theory and introduce von Neumann entropy (VNE)
of deep representation, a novel method that directly con-
trols the eigenvalue distribution of C,, via an entropy func-
tion. Because entropy function is an effective measure for
the uniformity of underlying distribution and can handle ex-
treme values, optimizing the entropy function is quite stable
and does not possess implementational limitations of previ-
ous methods.

In addition to the effectiveness of VNE on manipulat-
ing the eigenvalue distribution of C,y,, Wwe demonstrate that
regularizing VNE is widely beneficial in improving the ex-
isting studies. As summarized in Figure 1, performance im-
provement is significant and consistent. Moreover, theoret-
ical connections between VNE and the popular represen-
tation properties are formally proven and support the em-
pirical superiority. Thanks to the implementational effec-
tiveness and theoretical connections, VNE regularizer can

effectively control not only von Neumann entropy but also
other theoretically related properties, including rank and
isotropy. Our contributions can be summarized as below:

e We introduce a novel representation regularization
method, von Neumann entropy of deep representation.

e We describe VNE’s implementational effectiveness (in
Section 2).

* We demonstrate general applicability of VNE by im-
proving current state-of-the-art methods in various
tasks and achieving a new state-of-the-art performance
in self-supervised learning and domain generalization
(in Section 3).

* We provide theoretical connections by proving that
VNE is theoretically connected to rank, disentangle-
ment, and isotropy of representation (in Section 4).

2. Implementational Effectiveness of VNE

Even though the von Neumann entropy originates from
quantum information theory, we focus on its mathematical
formulation to understand why it is effective for manipu-
lating representation properties. We start by defining the
autocorrelation matrix.

2.1. Autocorrelation of Representation

For a given mini-batch of N samples, the representation
matrix can be denoted as H = [hy, hy, ..., hy]|T € RV*4,
where d is the size of the representation vector. For simplic-
ity, we assume Ly-normalized representation vectors satis-
fying ||h;||2 = 1 as in [58,62,70,75,86,87,93]. Then, the
autocorrelation matrix of the representation is defined as:

N
Couto 2 Z %hihf = HTH/N. (1)
i=1
For Cuuo’s eigenvalues {)\;}, it can be easily verified that
>2;Aj = land V; A; > 0 because [|h;[l> = 1 and
Cauto > 0. For the readers familiar with quantum informa-
tion theory, Cayo is used in place of the density matrix p of
Supplementary A (a brief introduction to quantum theory).
Cauto 1s closely related to a variety of representation prop-
erties. In the extreme case of Cy o — ¢ - Ig, Where c is
an adequate positive constant, the eigenvalue distribution of
Cauto becomes perfectly uniform. Then, the representation
h becomes decorrelated [20], whitened [44], full rank [43],
and isotropic [84]. In the case of self-supervised learning,
it means prevention of informational collapse [7, 96].
Besides its relevance to numerous representation proper-
ties, regularizing C,y, is of a great interest because it per-
mits a simple implementation. Unlike many of the existing
implementations that can be dependent on specific architec-
ture or dataset, difficult to implement as a loss, or dependent
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on successful learning of external models, Cyy, can be reg-
ularized as a simple penalty loss. Because Cyy, is closely
related to a variety of representation properties and because
it permits a broad applicability, we focus on Cyy, in this
study.

2.2. Regularization with Frobenius Norm

A popular method for regularizing the eigenvalues of
Cauto 18 to implement the loss of Frobenius norm as shown

below. N 9
Z:Frobenius = ||Caut0 —C- Id| ‘F

SIS WA

i i
Ci,; is the (4, j) element of Cayo and c is an adequate posi-
tive constant. While this approach has been widely adopted
in the previous studies including DeCov [20], cw-CR [19],
SDC [92], Barlow Twins [96], and VICReg [7], it can be
ineffective for controlling eigenvalues as we will show in
Section 2.4.

2.3. Regularization with Von Neumann Entropy

Von Neumann entropy of autocorrelation is defined as
the Shannon entropy over the eigenvalues of C,yo. The
mathematical formulation is shown below.

S(Cao) & =Y Ajlog A, 3)
J

As shown in Lemma | of Supplementary B, S(C,y,) ranges
between zero and log d. Implementing of VNE regulariza-
tion is simple. When training an arbitrary task 7, we can
subtract « - S(Cyyo) from the main loss L.

[/T+VNE = £T — Q- S(Caulo)~ “4)
Note that training 7 with £7,ynE is denoted as VNE™ if
a > 0, VNE™ if a < 0, and Vanilla if « = 0. The PyTorch
implementation of S(C,y) can be found in Figure 9 of Sup-

plementary C. Computational overhead of VNE calculation
is light, as demonstrated in Table 9 of Supplementary D.

2.4. Frobenius Norm vs. Von Neumann Entropy

The formulation of von Neumann entropy in Eq. (3) ex-
hibits two distinct differences when compared to the formu-
lation of Frobenius norm in Eq. (2). First, while Frobenius
norm deals with all the elements of Cpye € R4¥?, VNE
relies on an eigenvalue decomposition to identify the eigen-
values of the current model under training and focuses on
the current d eigenvalues only. Second, while Frobenius
norm can manifest an undesired behavior when some of the
eigenvalues are zero and cannot be regulated toward ¢, VNE
gracefully handles such dimensions because 0 - log 0 = 0.

To demonstrate our points, we have performed a super-
vised learning with ResNet-18 and three datasets. The re-
sults are shown in Table 1 where regularization with Frobe-
nius norm causes many neurons to become dead. Instead of

Method Dead units

CIFAR-10 STL-10 CIFAR-100
Vanilla 0 0 0
VNE~ 0 0 1
VNE*+ 2 0 1
LFrobenius 447 365 325

Table 1.  Count of dead units (dead neurons) when training
ResNet-18 with the standard cross-entropy loss. The penultimate
layer’s representation with d = 512 was analyzed.
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Figure 2. (a) Eigenvalue distribution when training ResNet-
18 with the standard cross-entropy loss (dataset: ImageNet-1K,
d = 512). (b) Frobenius norm when performing self-supervised
learning with ResNet-18. I-VNE™ will be explained further in Sec-
tion 3.3.
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focusing on the eigenvalues, Frobenius norm takes a short-
cut of making many of the d = 512 dimensions unusable
and fails to recover. Note that VNE* and VNE~ do not
present such a degenerate behavior. We have repeated the
supervised experiment with ResNet-18, but this time using a
relatively sophisticated dataset of ImageNet-1K. The distri-
bution of eigenvalues are shown in Figure 2(a) where Frobe-
nius norm fails to affect the distribution. VNE+ and VNE—,
however, successfully make the distribution more uniform
and less uniform, respectively. Finally, the learning his-
tory of Frobenius norm loss for a self-supervised learning
is shown in Figure 2(b). While Barlow Twins [96] is a well-
known method, the Frobenius norm loss can be better ma-
nipulated by regularizing VNE™ instead of regularizing the
Frobenius norm itself.

3. General Applicability of VNE: Experiments

In this section, we demonstrate the general applicability
of VNE by investigating some of the existing representation
learning tasks. Although the results for meta-learning, self-
supervised learning (SSL), and GAN can be supported by
the theoretical connections between VNE and the popular
representation properties presented in Section 4, result for
domain generalization (DG) is quite surprising. We will
discuss the fundamental difference of DG in Section 5.1.

3.1. Domain Generalization: Enhancing General-
ization

Given multi-domain datasets, domain generalization at-

tempts to train models that predict well on unseen data dis-
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Figure 3. Domain Generalization: In (a), Eigenvalues of Cauo
are presented in logio scale and descending order. In (b), von
Neumann entropies are presented. ResNet-50 encoders are trained
by the ERM [36] algorithm with the PACS dataset for 5000 steps.
Each representation has a dimension of 2048.

tributions [4]. In this section, we demonstrate the effective-
ness of VNE on ERM [36], one of the most competitive al-
gorithms in DomainBed [36], and on SWAD [12], which
is the state-of-the-art algorithm. To reproduce the algo-
rithms, we train ERM and SWAD based on an open source
in [12,36]. VNE is calculated for the penultimate repre-
sentation of ResNet-50 models. Our experiments are per-
formed in leave-one-domain-out setting [36] with the most
popular datasets (PACS [57], VLCS [28], OfficeHome [83],
and Terralncognita [8]).

We have analyzed the eigenvalue distribution of C,y,
and the results are presented in Figure 3. At first glance,
VNE™ and VNE™ successfully make the eigenvalue distri-
bution more uniform and less uniform, respectively in Fig-
ure 3(a). The corresponding von Neumann entropies are
certainly increased by VNE™ and decreased by VNE™ in
Figure 3(b). When we take a deeper look at the eigenvalues
of Vanilla (we count the number of eigenvalues larger than
le-4), we observe that DG naturally utilizes a small number
of eigenvalues (3% of total). In this context, we can hypoth-
esize that DG prefers utilizing a relatively small number of
dimensions. In addition, the empirical results support the
hypothesis. In Table 2, VNE~ improves all the benchmarks
trained with ERM algorithm in four popular datasets. In Ta-
ble 3, VNE™ also improves all the benchmarks trained with
SWAD algorithm. Furthermore, the resulting performance
is the state-of-the-art because SWAD is the current state-of-
the-art algorithm.

3.2. Meta-Learning: Enhancing Generalization

Given meta tasks during the meta-training phase, meta-
learning attempts to train meta learners that can general-
ize well to unseen tasks with just few examples during
the meta-testing phase. In this section, we present the ef-
fectiveness of VNE on the most prevalent meta-learning
algorithms - MAML [29], ANIL [72], BOIL [68], Pro-
toNet [77], Baseline [16], and Baseline++ [16]. To re-
produce the algorithms, we train Baseline, Baseline++,

Dataset Method  Accuracy per test domain ~ Avg. Diff.
PACS A C P S

Vanilla  87.6 79.7 959 776 852
VNE* 824 792 966 709 823 -29
VNE~ 88.6 799 96.7 823 86.9 1.7

VLSC C L S \%

Vanilla 989 615 703 76.1 76.7
VNE* 96.6 655 70.1 752 76.8 0.1
VNE~ 97.5 659 704 784 78.1 14

OfficeHome A C P R

Vanilla 579 525 755 735 649
VNE* 59.6 507 73.1 744 644 -05
VNE~ 60.4 547 737 747 659 1.0

Terralncognita L100 L38 143 L46

Vanilla 504 420 568 323 454
VNE* 503 38.1 554 336 443 -1.1
VNE~ 58.1 429 581 435 50.6 5.2

Table 2. Domain Generalization: Performance evaluation of mod-
els trained with ERM algorithm and various datasets.

Dataset Method  Accuracy per test domain ~ Avg.  Diff.
PACS A C P S

Vanilla 892 833 979 825 882
VNE* 879 80.6 973 788 862 -2.1
VNE~ 90.1 838 975 818 883 0.1

VLCS C L S v

Vanilla 989 645 746 797 794
VNE* 98.7 629 749 805 792 -02
VNE~ 99.2 637 744 816 79.7 0.3

OfficeHome A C P R

Vanilla  64.6 57.7 784 80.1 70.2
VNE* 653 576 786 805 705 0.3
VNE~ 66.6 586 789 805 711 0.9

Terralncognita L100 L38 1L43 L46

Vanilla 582 451 609 394 509
VNE* 453 377 607 405 46.1 -4.8
VNE~ 599 455 59.6 419 517 0.8

Table 3. Domain Generalization: Performance evaluation of mod-
els trained with SWAD algorithm and with various datasets. State-
of-the-art performances are indicated in bold.

and ProtoNet based on an open source code base in [16]
and train MAML, ANIL, and BOIL using torchmeta [22].
VNE is calculated for the penultimate representation of
the standard 4-ConvNet models. Our experiments are per-
formed in 5-way 1-shot and in 5-way 5-shot with the mini-
ImageNet [85], a standard benchmark dataset in few-shot
learning.

Similar to domain generalization, we have analyzed the
eigenvalue distribution of C,,, and the results are presented
in Figure 4. At first glance, VNET and VNE~ successfully
make the eigenvalue distribution more uniform and less uni-
form, respectively in Figure 4(a). The corresponding von
Neumann entropies are certainly increased by VNE™ and
decreased by VNE™ in Figure 4(b). When we take a deeper
look at the eigenvalues of Vanilla, we observe that meta-
learning naturally utilizes a large number of eigenvalues
(94% of total). In this context, we can hypothesize that
meta-learning prefers utilizing a relatively large number of
dimensions. In addition, the hypothesis is supported by the

3802



—— Vanilla
-151 —— VNE-
—2.0 1 — VNE®

Logio of eigenvalues
NS
I
VNE
ok N W A U O

500 1000 1600
Eigenvalue index Method

(a) Eigenvalue distribution (ordered)  (b) von Neumann entropy

Figure 4. Meta-learning: In (a), Eigenvalues of Cyuo are presented
in logio scale and descending order. In (b), von Neumann en-
tropies are presented. 4-ConvNet models are trained by the Base-
line [16] algorithm with mini-ImageNet for 100 epochs. Each rep-
resentation has a dimension of 1600.

empirical results where all of six popular benchmark algo-
rithms in both 5-way 1-shot and 5-way 5-shot settings are
improved by VNET in Table 4. Note that VNET consis-
tently provides a gain for all the meta-learning benchmarks
that we have investigated.

Method 1-shot 5-shot
Avg. Acc. (%)  Diff.  Avg. Acc. (%)  Diff.
MAML [29] Vanilla  48.86 +0.82 64.59 + 0.88

VNE™ 4684+0.76 -2.02 6257+0.76 -2.02
VNE*  50.14 +£0.77 128 6642 £0.57 1.83

ANIL [72] Vanilla  46.70 + 0.40 61.50 + 0.50
VNE™ 4540+0.52 -130 60.14+0.56  -1.36
VNE* 48.20 £ 0.45 1.50 63.42 + 045 1.92
BOIL [68] Vanilla  49.61 +0.16 66.46 + 0.37
VNE~ 4842 +0.34 -1.19 65.34 + 045 -1.12
VNE+ 50.95 £ 0.42 1.34 67.52 £ 0.46 1.06
Baseline [10] Vanilla 4541 +0.72 62.53 + 0.69

VNE™ 3043 £0.72 -1498 48.03+£090 -14.50
VNE*  47.03+0.73 1.62  65.85+0.67 332

Baseline++ [16]  Vanilla  47.95 £ 0.74 66.43 + 0.63
VNE~ 29.52+£0.76  -1843  60.98 +0.78 -5.45
VNE*  50.17 +0.77 222 67.25+0.67 0.82

ProtoNet [77] Vanilla  43.16 £ 0.55 64.24 +0.72
62.14 + 0.69 -2.10
66.72 + 0.71 248

VNET  46.81 +0.35 3.65

Table 4. Meta-learning: Performance evaluation of 5-way 1-shot
and 5-way 5-shot with mini-ImageNet.

3.3. SSL: Preventing Representation Collapse

Given an unlabelled dataset, self-supervised learning at-
tempts to learn representation that makes various down-
stream tasks easier. In this section, we demonstrate the ef-
fectiveness of VNE on self-supervised learning by propos-
ing a novel method called I-VNE™ where Invariant loss is
simply implemented by maximizing cosine similarity be-
tween positive pairs while consequent representation col-
lapse is prevented by VNE™T. The loss is expressed as:

Liyngt = —a1 ']Ei[Sim(hlla hf)] — a2 S(Caro), (5)

where sim(h}, h?) indicates the cosine similarity between
two ith row vectors, h} and h?, of representation matrices,
H, and H>, from two views, and Cy,y, is calculated for H; .
For experiments, we follow the standard training protocols
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Figure 5. SSL: In (a), Eigenvalues of Cyuo are presented in logio
scale and descending order. In (b), von Neumann entropies are
presented. ResNet-50 encoders and mlp projectors are trained by
BYOL, Barlow Twins, and I-VNE" methods with ImageNet-100
for 100 epochs. Projectors for all methods have the same output
dimension of 256.

Method Epoch  Top-1 Method Epoch  Top-1
Supervised [ 14] 95.1 Supervised [48] 86.2
NT-Xent [15] 200 91.3 Align.+Uniform. [87] 240 74.6
Decoupled NT-Xent [15] 200 91.3 CMC (K=1) [97] 200 75.8
SWD [15] 200 90.8 CMC (K=4) [V7] 200 78.8
NT-Xent [15] 800 93.9 CACR(K=1) [97] 200 79.4
Decoupled NT-Xent [15] 800 94.0 CACR(K=4) [97] 200 80.5
SWD [15] 800 94.1 LooC++[91] 500 82.2
Shuffled-DBN [43] 200 89.5 MoCo-v2+MoCHi [48] 800 84.5
I-VNE™ (ours) 200 94.3 I-VNE™ (ours) 200 84.7
I-VNE* (ours) 400 943 I-VNE? (ours) 800 86.3

(a) CIFAR-10 (b) ImageNet-100

Table 5. SSL: Linear evaluation performance for various repre-
sentation learning methods. They are all based on ResNet-50 en-
coders pre-trained with various datasets. Linear classifier on top of
the frozen pre-trained model is trained with labels. State-of-the-art
methods are included and the best results are indicated in bold.

from [35, 96] (Refer to Supplementary E for more details)
and the standard evaluation protocols from [34,35,63,96].

In fact, the loss formulation in Eq. (5) is equivalent to
a simple combination of the loss term in BYOL [35] and
VNET without predictor and stop gradient. .S(Cyyo) term in
I-VNE™ can also replace the redundancy reduction term in
Barlow Twins [96]. Therefore, we have analyzed the eigen-
value distribution of Cyyo and S(Cyuo) by comparing with
BYOL and Barlow Twins, and the results are presented in
Figure 5. Simply put, [-VNET utilizes more eigenvalues of
Cauto and has a larger value of S(C,y,) than the others. Be-
cause I-VNE™ utilizes more eigen-dimensions of Cyy than
the others, the dimensional collapse problem prevailing in
SSL [43,47] can be mitigated by I-VNET; hence better per-
formance with I-VNE™ can be expected.

To evaluate I-VNE™", we compare benchmark perfor-
mance with prior state-of-the-art methods. In Table 5(a) and
(b), I-VNE* outperforms prior state-of-the-art linear eval-
uation benchmarks in both CIFAR-10 and ImageNet-100.
Moreover, I-VNE™ even surpasses the supervised perfor-
mance in ImageNet-100. In ImageNet-1K, I-VNE* shows
competitive linear evaluation performance which is above
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Method Top-1 Top-5
1% 10% 1% 10%

Supervised [14] 254 564 484 804
SimCLR [14] 483 656 755 87.8
BYOL [35] 532 68.8 784 89.0
SWAV [11] 539 702 785 89.9
VICReg [7] 548 69.5 794 895
Barlow Twins [96] 55.0 69.7 79.2 89.3

I-VNE™ (ours) 558 69.1 81.0 89.9

Table 6. SSL: Semi-supervised learning evaluation performance
for various representation learning methods. They are all based
on ResNet-50 encoders pre-trained with ImageNet-1K. Pre-trained
models are fine-tuned with 1% and 10% labels of ImageNet-1K.
State-of-the-art methods are included and the best results are indi-
cated in bold.

Method COCO det. COCO instance seg.

AP AP5 AP7;  AP™F  APR APRIk
Scratch [18] 264 440 278 293 469 308
Supervised [ 18] 382 582 412 333 547 352
SimCLR [18] 379 577 409 333 546 353
BYOL [18] 379 578 409 332 543 350
SWAV [96] 384 586 413 338 552 359
SimSiam [18] 392 593 421 344 560 367
MoCov2 [96] 393 589 425 344 558 365
Barlow Twins [96] 392 59.0 425 343 560 365
I-VNE™ (ours) 412 613 446 357 579 380

Table 7. SSL: Transfer learning evaluation performance for

various representation learning methods. They are all based
on ResNet-50 encoders pre-trained in ImageNet-1K. Pre-trained
models are fine-tuned with COCO detection and instance segmen-
tation tasks using Mask R-CNN with C4-backbone [37, 90] and
using 1 x schedule. State-of-the-art methods are included and the
best results are indicated in bold.

the average (71.8%) as demonstrated in Table 10 of Sup-
plementary F. In addition, we can show that the pre-trained
model of ImageNet-1K shows state-of-the-art performance
in the following evaluation benchmarks. In Table 6, I-
VNET outperforms all the semi-supervised learning bench-
marks except for Top-1 accuracy with 10% data regime.
In Table 7, I-VNE™ outperforms all the transfer learning
benchmarks with COCO. The results indicate that I-VNE™
is advantageous for more sophisticated tasks such as low-
data regime (semi-supervised) and out-of-domain (transfer
learning with COCO) tasks.

3.4. GAN: Preventing Mode Collapse

In Section 3.3, VNET has successfully prevented rep-
resentation collapse. As another example for collapse pre-
vention, we consider the mode collapse in GAN. The GAN
training usually ends up with (partial) mode collapse [33],
where generative models suffer lack of diversity. To demon-
strate that this problem can be solved by VNE*, we repro-
duce various GAN methods based on an open source code
base, StudioGAN [49] and train all models with CIFAR-
10 for 100 epochs. To evaluate the models, we report the
Inception Score [74] (IS, higher is better) and the Fréchet

Inception Score T Fréchet Inception Distance |

Method Vanilla VNET  Diff. Vanilla VNE" Diff.
DCGAN 6.49 6.74 1025 4255 3544 1711
PD-GAN 7.83 801 10.18 28.02 2354 1 4.48
LOGAN 8.02 815 1013 18.88 17.17 171
WGAN-GP  7.37 742 1005 2462 2331 1131
SAGAN 8.86 8.90  10.04 9.55 8.91 1 0.64
SNGAN 8.85 8.86  10.01 9.97 9.41 10.56
BigGAN 9.82 9.83  10.01 5.34 5.18 10.16

Table 8. GAN: Performance evaluation results.

Inception Distance [40] (FID, lower is better). Although
both IS and FID are the most popular metrics for evaluating
generative models, FID is known to favor more diversified
images [10]. Table 8 demonstrate that the overall quality
of the output, especially diversity, has been improved by
VNET because FID scores have been improved. IS has also
been improved.

4. Theoretical Connections of VNE

In Section 2, we have examined the popular regulariza-
tion objective of Cyyo — ¢+ I and explained how von Neu-
mann entropy can be a desirable regularization method. In
addition, von Neumann entropy can be beneficial in a few
different ways because of its conceptual connection with
conventional representation properties such as rank, disen-
tanglement, and isotropy. In this section, we establish a the-
oretical connection with each property and provide a brief
discussion.

4.1. Rank of Representation

The rank of representation, rank(C,y,), directly mea-
sures the number of dimensions utilized by the representa-
tion. Von Neumann Entropy in Eq. (3) is closely related to
the rank, where it is maximized when Cy,y, is full rank with
uniformly distributed eigenvalues and it is minimized when
Cauto 18 rank one. In fact, a formal bound between rank and
VNE can be derived.

Theorem 1 (Rank and VNE). For a given representation
autocorrelation Coyy = HT H /N € R4 of rank k (< d),

log(rank(cauto)) > S(Cauto); (6)

where equality holds iff the eigenvalues of Cuuy, are uni-
formly distributed with V;?:l)\j = 1/k and V}'i:kﬂ)\j = 0.

Refer to Supplementary B for the proof. Theorem 1
states that log(rank (C,u) ) is lower bounded by S(Cyyo) and
that the bound is tight when non-zero eigenvalues are uni-
formly distributed. The close relationship between rank and
VNE can also be confirmed empirically. For the VNE plots
in Figure 3(b) and Figure 4(b), we have compared their rank
values and the results are presented in Figure 6.

Although the rank is a meaningful and useful measure of
Cauto» it cannot be directly used for learning because of its
discrete nature. In addition, it can be misleading because
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Figure 6. Rank of representation: Comparison between
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of the largest eigenvalues required for the 99% of total eigenvalue
energy is presented. The possible maximum value, logd, is de-
picted as the brown dotted line.

even extremely small non-zero eigenvalues contribute to-
ward the rank. VNE can be a useful proxy of the rank be-
cause it does not suffer from either of the problems.

4.2. Disentanglement of Representation

Although disentanglement has been considered as a de-
sirable property of representation [, 9], its formal defini-
tion can be dependent on the context of the research. In this
study, we adopt the definition in [ 1], where a representation
vector h is disentangled if its scalar components are inde-
pendent. To understand the relationship between von Neu-
mann entropy and disentanglement, we derive a theoretical
result under a multi-variate Gaussian assumption and pro-
vide an empirical analysis. The assumption can be formally
described as:

Assumption 1. We assume that representation h follows
zero-mean multivariate Gaussian distribution. In addition,
we assume that the components of h (denoted as h")) have
homogeneous variance of %, ie., szlh(i) ~ N(0, %)

The multi-variate Gaussian assumption is not new, and
it has been utilized in numerous studies. For instance,
[52,55,95] adopted the assumption. In addition, the as-
sumption was proven to be true for infinite width neural net-
works [55,65,66,89]. Numerous studies applied a represen-
tation normalization to have a homogeneous variance (e.g.,
via batch normalization [46]). Under the Assumption 1, our
main result can be stated as below.

Theorem 2 (Disentanglement and VNE). Under the As-
sumption 1, h is disentangled if S(Cyuso) is maximized.

Refer to Supplementary B for the proof. Theorem 2
states that the Gaussian representation h is disentangled if
von Neumann entropy S(Cauo) is fully maximized. The
theoretical result can also be confirmed with an empirical
analysis. For the domain-generalization experiment in Sec-
tion 3, we have randomly chosen two components h(*) and
h), where 7 # j, and compared their cosine similarity

10 10
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VNE* VNE*
Z ¢ Z %
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Figure 7. Disentanglement of representation: Distribution of co-

sine similarity between pairwise components in representation.
Note that all the values are positive because of the ReLU layer.

for the examples in the mini-batch. The resulting distribu-
tions are presented in Figure 7(a). It can be clearly observed
that VNET makes the linear dependence between two com-
ponents to be significantly weaker (cosine similarity closer
to zero) while VNE~ can make it stronger. The same be-
havior can be observed for a supervised learning example
in Figure 7(b). Therefore, the representation components
are decorrelated by VNE™ and correlated by VNE~. For
meta-learning, the trend is the same, but the shift in the dis-
tribution turns out to be relatively limited (see Figure 10 in
Supplementary F).

Similar to the case of rank, von Neumann entropy can be
utilized as a proxy for controlling the degree of disentangle-
ment in representation. In the case of supervised learning in
Figure 7(b), it can be observed that both highly disentan-
gled and highly entangled representations can be learned by
regularizing von Neumann entropy.

4.3. Isotropy of Representation

The autocorrelation of representation is defined as
Cato = HTH/N ¢ R where d is the representa-
tion vector’s size. In contrast, isotropy concerns HH” ¢
RN XN because it handles the uniformity in all orientations
for the N representation vectors in the d-dimensional vec-
tor space. Similar to the rank and disentanglement, we first
provide a theoretical result.

Theorem 3 (Isotropy and VNE). For a given representation
matrix H € RN*4 suppose that N < d and S(Cuuso) is

maximized. Then,
HH” = Iy. (7)

Refer to Supplementary B for the proof. Theorem 3
states that if S(C,yo) is maximized, representation vec-
tors are uniformly distributed in all orientations and thus
isotropic [5]. To perform an empirical analysis, we fol-
low the studies of [5, 64] and adopt the partition func-
tion Z(c) = Zil exp(cTh;) defined for an arbitrary
unit column vector c¢. The partition function becomes
constant when {hy,--- , h;,--- , hy} are isotropically dis-
tributed. To be specific, the normalized partition function,
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Z(c)
max||e||=1 Z(c)’
representation is isotropic (Lemma 2.1 in [5]). We have an-
alyzed the normalized partition function for meta-learning
and supervised learning, and the obtained results are pre-
sented in Figure 8. In both cases, it can be observed that
isotropy is strengthened by VNE* and weakened by VNE ™.
For domain generalization, the trend is the same, but the
shift in the distribution turns out to be relatively limited (see
Figure 11 in Supplementary F). Based on the theoretical
and empirical results, we can infer that the von Neumann
entropy can be utilized as a proxy for controlling the repre-
sentation’s isotropy.

should become approximately 1 when the

5. Discussion
5.1. VNE and Dimension

Although a large amount of information can be contained
in a representation, it is known that the usable information is
intimately linked to the predictive models that have compu-
tational constraints [25,94]. For instance, the representation
decodability can be a critical factor when performing a lin-
ear evaluation [3]. From this perspective, decorrelation, dis-
entanglement, whitening, and isotropy can be understood as
improving decodability by encouraging a representation to
use as many dimensions as possible with a full utilization of
each dimension. Von Neumann entropy can be understood
in the same way, except that its mathematical formulation is
superior as explained in Section 2.

In this context, it looks logical that VNE™ is beneficial
in improving the performance of meta-learning, SSL, and
GAN. However, for domain generalization, VNE™ is harm-
ful and VNE™ is helpful. DG differs from the other tasks
because the model needs to be ready for the same label-set
but unseen target domains. Fine-tuning to the target domain
is not allowed, either. In this case, the model needs to be
trained to be solely dependent on the invariant features and
not on the spurious features [2,4,6,54]. Because it is impor-
tant to discard spurious features in DG, it makes sense that
VNE™ can be beneficial in reducing the number of dimen-
sions and thus reducing the amount of usable information.

However, if a very strong VNE ™ is applied, it can be harm-
ful because even invariant features can be discarded.

5.2. Von Neumann Entropy vs. Shannon Entropy

Von Neumann entropy is defined over the representa-
tion autocorrelation C,y,. For the representation h itself,
Shannon entropy can be defined and it is relevant because it
is also a metric of entropy. In fact, it can be proven that
von Neumann entropy is a lower bound of Shannon en-
tropy [67].

Owing to the connection, we have investigated if Shan-
non Entropy (SE) can replace von Neumann entropy and
achieve a better performance. Unlike VNE, however, reg-
ularizing Shannon metric is known to be difficult [30, 53]
and its implementation can be challenging. In our investi-
gation, we have focused on the fact that Shannon entropy
is equivalent to Shannon self-information (i.e., H(h) =
I(h;h) [21]) and that self-information can be evaluated us-
ing the latest variational mutual information estimators. In
particular, we have chosen InfoNCE [69,71] as the mutual
information estimator and regularized the Shannon entropy.
An exemplary result for domain generalization is presented
in Table 11 of Supplementary F. From the result, it can be
observed that Shannon entropy can also improve the perfor-
mance of ERM and SWAD. However, the overall improve-
ment is smaller where the average improvements are 1.43%
and 0.79% for VNE and SE, respectively. We have per-
formed a similar comparison for SSL and reached the same
conclusion. Although Shannon entropy is closely related to
von Neumann entropy, the difficulty in manipulating Shan-
non entropy appears to make it less useful.

6. Conclusion

In this study, we have proposed von Neumann entropy
for manipulating the eigenvalue distribution of the represen-
tation’s autocorrelation matrix C,y,. We have shown why
its mathematical formulation can be advantageous when
compared to the conventional approach of Frobenius norm.
Then, we have demonstrated von Neumann entropy’s gen-
eral applicability by empirically investigating four major
learning tasks: DG, meta-learning, SSL, and GAN. Fi-
nally, we have established von Neumann entropy’s theoreti-
cal connection with the conventional properties of rank, dis-
entanglement, and isotropy. Overall, we conclude that von
Neumann entropy is an effective and useful representation
property for improving task performance.
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