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Abstract
Recent advances in 3D object detection (3DOD) have

obtained remarkably strong results for LiDAR-based mod-
els. In contrast, surround-view 3DOD models based on
multiple camera images underperform due to the neces-
sary view transformation of features from perspective view
(PV) to a 3D world representation which is ambiguous
due to missing depth information. This paper introduces
X3KD, a comprehensive knowledge distillation framework
across different modalities, tasks, and stages for multi-
camera 3DOD. Specifically, we propose cross-task distil-
lation from an instance segmentation teacher (X-IS) in the
PV feature extraction stage providing supervision without
ambiguous error backpropagation through the view trans-
formation. After the transformation, we apply cross-modal
feature distillation (X-FD) and adversarial training (X-AT)
to improve the 3D world representation of multi-camera
features through the information contained in a LiDAR-
based 3DOD teacher. Finally, we also employ this teacher
for cross-modal output distillation (X-OD), providing dense
supervision at the prediction stage. We perform extensive
ablations of knowledge distillation at different stages of
multi-camera 3DOD. Our final X3KD model outperforms
previous state-of-the-art approaches on the nuScenes and
Waymo datasets and generalizes to RADAR-based 3DOD.
Qualitative results video at https://youtu.be/1do9DPFmr38.

1. Introduction
3D object detection (3DOD) is an essential task in vari-

ous real-world computer vision applications, especially au-
tonomous driving. Current 3DOD approaches can be cate-
gorized by their utilized input modalities, e.g., camera im-
ages [28, 40, 46] or LiDAR point clouds [25, 55, 60], which
dictates the necessary sensor suite during inference. Re-
cently, there has been significant interest in surround-view
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Figure 1. While previous approaches considered multi-camera
3DOD in a standalone fashion or with depth supervision, we pro-
pose X3KD, a knowledge distillation framework using cross-
modal and cross-task information by distilling information from
LiDAR-based 3DOD and instance segmentation teachers into dif-
ferent stages (marked by red arrows) of the multi-camera 3DOD.

multi-camera 3DOD, aiming to leverage multiple low-cost
monocular cameras, which are conveniently embedded in
current vehicle designs in contrast to expensive LiDAR
scanners. Existing solutions to 3DOD are mainly based on
extracting a unified representation from multiple cameras
[28,30,37,41] such as the bird’s-eye view (BEV) grid. How-
ever, predicting 3D bounding boxes from 2D perspective-
view (PV) images involves an ambiguous 2D to 3D transfor-
mation without depth information, which leads to lower per-
formance compared to LiDAR-based 3DOD [1, 28, 30, 55].

While LiDAR scanners may not be available in commer-
cially deployed vehicle fleets, they are typically available in
training data collection vehicles to facilitate 3D annotation.
Therefore, LiDAR data is privileged; it is often available
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Model LSS++ DS GFLOPS mAP↑ NDS↑

BEVDepth†
✗ ✗ 298 32.4 44.9
✗ ✓ 298 33.1 44.9
✓ ✗ 316 34.9 47.0
✓ ✓ 316 35.9 47.2

X3KD (Ours) ✓ ✓ 316 39.0 50.5

Table 1. Analysis of BEVDepth† (re-implementation of [28]):
We compare the architectural improvement of a larger Lift-Splat-
Shoot (LSS++) transform to using depth supervision (DS).

during training but not during inference. The recently intro-
duced BEVDepth [28] approach pioneers using accurate 3D
information from LiDAR data at training time to improve
multi-camera 3DOD, see Fig. 1 (top part). Specifically, it
proposed an improved Lift-Splat-Shoot PV-to-BEV trans-
form (LSS++) and depth supervision (DS) by projected Li-
DAR points, which we analyze in Table 1. We observe that
the LSS++ architecture yields significant improvements,
though depth supervision seems to have less effect. This
motivates us to find additional types of supervision to trans-
fer accurate 3D information from LiDAR point clouds to
multi-camera 3DOD. To this end, we propose cross-modal
knowledge distillation (KD) to not only use LiDAR data but
a high-performing LiDAR-based 3DOD model, as in Fig. 1
(middle part). To provide an overview of the effectiveness
of cross-modal KD at various multi-camera 3DOD network
stages, we present three distillation techniques: feature dis-
tillation (X-FD) and adversarial training (X-AT) to improve
the feature representation by the intermediate information
contained in the LiDAR 3DOD model as well as output dis-
tillation (X-OD) to enhance output-stage supervision.

For optimal camera-based 3DOD, extracting useful PV
features before the view transformation to BEV is equally
essential. However, gradient-based optimization through an
ambiguous view transformation can induce non-optimal su-
pervision signals. Recent work proposes pre-training the
PV feature extractor on instance segmentation to improve
the extracted features [49]. Nevertheless, neural networks
are subject to catastrophic forgetting [23] such that knowl-
edge from pre-training will continuously degrade if not re-
tained by supervision. Therefore, we propose cross-task in-
stance segmentation distillation (X-IS) from a pre-trained
instance segmentation teacher into a multi-camera 3DOD
model, see Fig. 1 (bottom part). As shown in Table 1, our
X3KD framework significantly improves upon BEVDepth
without additional complexity during inference.

To summarize, our main contributions are as follows:

• We propose X3KD, a KD framework across modali-
ties, tasks, and stages for multi-camera 3DOD.

• Specifically, we introduce cross-modal KD from a
strong LiDAR-based 3DOD teacher to the multi-
camera 3DOD student, which is applied at multiple
network stages in bird’s eye view, i.e., feature-stage

(X-FD and X-AT) and output-stage (X-OD).
• Further, we present cross-task instance segmentation

distillation (X-IS) at the PV feature extraction stage.
• X3KD outperforms previous approaches for multi-

camera 3DOD on the nuScenes and Waymo datasets.
• We transfer X3KD to RADAR-based 3DOD and train

X3KD only through KD without using ground truth.
• Our extensive ablation studies on nuScenes and

Waymo provide a comprehensive evaluation of KD at
different network stages for multi-camera 3DOD.

2. Related Work
Multi-View Camera-Based 3D Object Detection: Cur-

rent multi-view 3D object detectors can be divided into
two main streams: First, DETR3D and succeeding works
[30, 32, 33, 46, 59] project a sparse set of learnable 3D
queries/priors onto 2D image features with subsequent sam-
pling and an end-to-end 3D bounding box regression. Sec-
ond, LSS and following works [2, 18, 28, 40] employ a
view transformation consisting of a depth prediction, a point
cloud reconstruction, and a voxel pooling to project points
to BEV. 3D bounding boxes are predicted from these BEV
features. While such works focus on improving the network
architecture and view transformation, we focus on better
model optimization. In this direction, M2BEV [49] pro-
posed segmentation [3,4] pre-training of the PV feature ex-
traction. We propose cross-task instance segmentation dis-
tillation to retain this knowledge during 3DOD training.

Most current state-of-the-art works focus on incorporat-
ing temporal information either through different kinds of
feature-level aggregation [17, 28, 30, 33] or by improving
depth estimation by temporal stereo approaches [27, 47].
While the usual setting considers data from 2 time steps, re-
cently proposed SOLOFusion [38] separately models long-
range and short-range temporal dependencies in input data
from 16 time steps. Our work focuses on a different
direction, i.e., we try to optimally exploit the informa-
tion contained in LiDAR point clouds. In this direction,
BEVDepth [28] and succeeding works [27,38] supervise the
depth estimation with projected LiDAR points. We explore
this path further by using cross-modal knowledge distilla-
tion (KD) from a LiDAR-based 3DOD teacher.

Multi-Modal 3D Object Detection: Recently, there
has been a trend to fuse different sensor modalities, es-
pecially camera and LiDAR, with the idea of combining
modality-specific useful information, hence improving the
final 3DOD performance [1, 22, 29, 35, 50, 53]. Existing
3DOD methods mostly perform multi-modal fusion at one
of the three stages: First, various approaches [44, 45, 50]
propose to decorate/augment the raw LiDAR points with
image features. Second, intermediate feature fusion of the
modalities in a shared representation space, such as the
BEV space, has been explored [8, 22, 29, 35, 53]. Third,
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proposal-based fusion methods [1,7,24] keep the feature ex-
traction of different modalities independent and aggregate
multi-modal features via proposals or queries in the 3DOD
prediction head. While these approaches require both sen-
sors to be available during inference, our X3KD approach
requires only camera sensors during inference. We also ap-
ply our KD approach to less frequently explored RADAR-
and camera-RADAR fusion-based models.

Knowledge Distillation for 3D Object Detection: Em-
ploying the KD technique from [15] some recent works
have explored KD for 3DOD [9, 31, 48, 56]. Most works
focus on LiDAR-based 3DOD settings and propose meth-
ods to improve performance or efficiency [52, 56] or solve
problems that are specific to point clouds, such as KD into
sparser point clouds [48, 58]. Some initial works have
also proposed concepts for cross-modal KD in 3D semantic
segmentation [34] or simple single or stereo camera-based
3DOD models [9,13,16,31,61]. However, current research
focus has shifted to more general multi-camera settings,
where up to our knowledge, we are the first to investigate
KD across modalities, tasks, and stages comprehensively.

3. Proposed X3KD Framework
We first define our considered problem and baseline in

Sec. 3.1. Next, we give an overview on X3KD in Sec. 3.2
presenting specific advancements in Secs. 3.3 and 3.4.

3.1. Problem Formulation and Baseline Method
Problem Definition: We aim at developing a 3DOD

model with camera images x ∈ RN cam×Hcam×W cam×3 as
input, where N cam, Hcam, and W cam represent the num-
ber of images, image height, and image width, respec-
tively, and N bbox 3D bounding boxes b =

{(
b

reg
n , b

cls
n

)
n ∈{

1, . . . , N bbox
}}

as output. Each bounding box is repre-
sented by regression parameters b

reg
n ∈ R9 (three, three,

two, and one for the center, spatial extent, velocity, and yaw
angle, respectively), and a classification label b

cls
n ∈ S from

the set of |S| classes S =
{
1, . . . , |S|

}
. During training,

not only are camera images available, but we can also make
use of a 3D LiDAR point cloud l ∈ RP×5 with P points,
each one containing the 3D position, intensity, and ring in-
dex. The point cloud l is not available during inference.

Baseline Model: We build upon the recently published
state-of-the-art method BEVDepth [28], whose setup is de-
picted in the blue box of Fig. 2. First, all images are pro-
cessed by a PV feature extractor, yielding features fPV ∈
RN cam×HPV×W PV×CPV

in PV with spatial extent HPV ×W PV

and number of channels CPV. Afterwards, the features
are passed through the Lift-Splat-Shoot transform [40],
which predicts discretized depth values d̂, transforms pix-
els corresponding to fPV into a point cloud representa-
tion and obtains BEV features fBEV ∈ RHBEV×W BEV×CBEV

via voxel pooling. BEV features are further processed by
an encoder-decoder network as in [28], yielding refined
features fREF ∈ RHBEV×W BEV×CREF

. Finally, the Center-
Point prediction head [55], predicts dense object probability
scores b̂cls ∈ IHBEV×W BEV×|S| for each class as well as cor-
responding regression parameters b̂reg ∈ RHBEV×W BEV×9.
The final bounding box predictions b are generated by non-
learned decoding of these dense representations [55].

Baseline Training: The baseline is trained by opti-
mizing the 3D bounding box losses LCPoint from Center-
point [55] as well as the depth loss Ldepth from [28], yielding

LGT = Ldepth(d̂,d) + LCPoint(b̂cls, b̂reg, b), (1)

where d is the depth ground truth generated from projected
LiDAR points and b is the set of ground truth bounding
boxes. For more details, we refer to the supplementary.

3.2. X3KD Overview
Our X3KD framework (Fig. 2) improves the perfor-

mance of a multi-camera 3DOD model without introducing
additional complexity during inference. Hence, our model’s
inference setup is equal to the one of our baseline. During
training, however, we explore multiple knowledge distilla-
tion (KD) strategies across modalities, tasks, and stages.

X3KD Loss: First, we employ a pre-trained LiDAR-
based 3DOD model, as shown in Fig. 2 (top part). We pro-
pose three losses for distilling knowledge across different
stages into the camera-based 3DOD: An output-stage distil-
lation (X-OD) loss LX-OD between the outputs of the cam-
era and LiDAR models, a feature-stage distillation (X-FD)
scheme and a corresponding loss LX-FD to guide the focus
of the BEV features after the view transformation, and a
feature-stage adversarial training (X-AT) with a loss LX-AT

between the camera and LiDAR model features to encour-
age their feature similarity. Second, we use an instance seg-
mentation network, cf. Fig. 2 (bottom part). We propose
cross-task instance segmentation distillation (X-IS) by im-
posing a loss LX-IS between the output of an additional PV
instance segmentation head and teacher-generated pseudo
labels. Our total loss for X3KD is then given by:

LX3KD=
∑
i∈I

λiLi, I={GT,X-OD,X-FD,X-AT,X-IS} (2)

3.3. Cross-modal Knowledge Distillation
The current superiority of LiDAR-based 3DOD over

multi-camera 3DOD can be attributed to the ambiguous
view transformation in multi-camera models, which may
place features at the wrong position in the final representa-
tion (e.g., a BEV grid). Meanwhile, LiDAR-based models
operate on a 3D point cloud, which can easily be projected
onto any view representation. Thereby, the extracted fea-
tures preserve 3D information. Our cross-modal KD com-

13345



Figure 2. We present X3KD, a knowledge distillation (KD) framework for multi-camera 3DOD. We employ an inference setup (middle
blue box) relying only on multi-camera image input (LiDAR point cloud in the output is just shown for visualization). During training, we
apply KD across several network stages (red arrows originating from the blue box): In perspective-view (PV) feature extraction, we apply
cross-task instance segmentation distillation (X-IS) from an instance segmentation teacher (yellow box). In the bird’s eye view (BEV),
we apply cross-modal feature distillation (X-FD), adversarial training (X-AT), and output distillation (X-OD) from a LiDAR-based 3DOD
teacher (green box). X3KD significantly enhances the multi-camera 3DOD without inducing extra complexity during inference.

ponents transfer this knowledge to the multi-camera 3DOD
model across different network stages, cf. Fig. 2 (top part).

LiDAR-based 3DOD Model Architecture: Our
LiDAR-based 3DOD model is mainly based on Center-
Point [55]. First, the point cloud l ∈ RP×5 is processed by
the Sparse Encoder from SECOND [51], yielding 3D sparse
features f̃ 3D ∈ RHBEV×W BEV×D̃3D×C̃3D

with volumetric ex-
tent HBEV × WBEV × D̃3D and number of channels C̃3D.
Then, the features are projected onto the same BEV plane
as in the camera-based 3DOD model, yielding BEV fea-
tures f̃BEV ∈ RHBEV×W BEV×C̃BEV

with C̃BEV = D̃3D · C̃3D.
These are further processed by an encoder-decoder network,
yielding refined BEV features f̃REF ∈ RHBEV×W BEV×C̃REF

.
Finally, the features are passed through a prediction head,
yielding probability score maps b̃cls ∈ IHBEV×W BEV×|S| and
regression maps b̃reg ∈ RHBEV×W BEV×9 analogous to the
outputs b̂cls and b̂reg of the multi-camera 3DOD model.

Output-stage Distillation (X-OD): Following many ap-

proaches in KD [6, 11, 15, 54, 57], we distill knowledge at
the output stage by imposing losses between the teacher’s
outputs b̃cls and b̃reg and the student’s outputs b̂cls and b̂reg.
Specifically, we impose a Gaussian focal loss LGFocal [26]
between b̂cls and b̃cls to put more weight on rare classes and
compensate for the class imbalance. As this loss only con-
siders pseudo labels as a positive sample if they are exactly
1, we select high-confidence teacher output probabilities
b̃cls, i.e., probability values over a threshold α3D-bbox, and set
them to 1. Further, the regression output of the student b̂reg

is supervised by the corresponding output b̃reg of the teacher
by imposing a Smooth L1 loss LSmoothL1 [12]. Finally, we
propose to weigh the regression loss by the teacher’s pixel-
wise averaged output probabilities ⟨b̃cls

s ⟩ = 1
|S|

∑
s∈S b̃cls

s ∈
RHBEV×W BEV

to weigh regions which likely contain objects
higher than the background. Overall, X-OD is defined as:

LX-OD(b̂, b̃)=LGFocal(b̂cls, b̃cls)+LSmoothL1(b̂reg, b̃reg) (3)

Feature-stage Distillation (X-FD): Our X-FD compo-
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Figure 3. Mean feature activations from the camera-based stu-
dent after the view transformation (left) and the LiDAR-based
teacher (right) exhibit structural dissimilarity.

nent exploits the precise and sparse nature of features ex-
tracted from LiDAR point clouds, which precisely encode
locations of relevant objects for 3DOD. Thereby, the mean
sparse feature activation h̃, cf. Fig. 3 (right), provides a
good initial estimate for the potential location of objects.
While it would be natural to impose similarity losses be-
tween BEV features from the camera and LiDAR models,
these features are structurally quite different (cf. Fig. 3),
such that our attempts to impose such losses did lead to un-
stable training behavior. Therefore, we add a small BEV
decoder to the multi-camera model, which outputs a pre-
diction ĥ for the mean sparse feature activations from the
LiDAR teacher h̃. The X-FD loss LX-FD is then given as:

LX-FD = L1
(
ĥ, h̃

)
(4)

Feature-stage Adversarial Training (X-AT): We fur-
ther propose X-AT to encourage a more global feature sim-
ilarity between the refined features fREF and f̃REF from
both modalities in BEV space. Due to the structural dis-
similarity of features from both modalities directly after the
BEV projection (Fig. 3), we apply the adversarial train-
ing on the refined features f̃REF and f̂REF. We pass these
cross-modal features through a gradient reversal layer and a
patch-based discriminator network [20], which outputs two
modality-specific probabilities. The discriminator is opti-
mized to classify the features by modality using a binary
cross-entropy loss LX-AT between the output probabilities ŝ
and the ground truth modality labels s:

LX-AT = BCE (ŝ, s) (5)

We then encourage modality-agnostic features in the multi-
camera 3DOD model through gradient reversal.

3.4. Cross-task Knowledge Distillation
Learning a good feature representation in PV is difficult

when all supervision signals are backpropagated through
an ambiguous view transformation. As a possible solu-
tion, M2BEV [49] proposes instance segmentation (IS) pre-
training. However, deep neural networks exhibit catas-
trophic forgetting such that this initial knowledge is not nec-
essarily preserved during 3DOD training. Therefore, we
propose cross-task instance segmentation distillation (X-IS)
to preserve the knowledge contained in the PV features con-
tinuously. Specifically, we use the outputs of a pre-trained

instance segmentation network as pseudo labels to optimize
an additional PV instance segmentation head, cf. Fig. 2.

Pseudo Label Generation: In this work, we use
the well-established Mask R-CNN architecture [14] as a
teacher; see Fig. 2 (bottom left). We use its original ar-
chitecture, consisting of a feature extractor, a feature pyra-
mid network (FPN), a region proposal network (RPN),
and a region of interest (ROI) head, including a mask
branch. As output, we obtain N IS bounding boxes ỹ ={(

ỹbbox
n , ỹcls

n , ỹscore
n

)
, n ∈

{
1, . . . , N IS

}}
with four parame-

ters for bounding box center and spatial extent ỹbbox
n ∈ R4, a

classification result ỹcls
n ∈ S IS from the set of IS classes S IS,

and an objectness score ỹscore
n ∈ I with I = [0, 1]. Addition-

ally, we obtain corresponding object masks m̃ =
{
m̃n, n ∈{

1, . . . , N IS
}}

with single masks m̃n ∈ {0, 1}H
mask
n ×Wmask

n

and spatial resolution Hmask
n ×Wmask

n . We select all samples
with a score ỹscore

n > α2D-bbox as pseudo labels.
X-IS Loss Computation: The teacher-generated pseudo

labels are used to supervise an additional PV instance seg-
mentation head, cf Fig. 2 (bottom right), which uses the
same RPN and ROI head architectures as the teacher. The
RPN head outputs region proposals â =

(
âcls, âreg

)
with

foreground/background scores âcls ∈ IHPV×W PV×2K and
regression parameters âreg ∈ RHPV×W PV×4K relative to
each of the K anchors. Our RPN loss Lrpn is then com-
prised of an assignment strategy between pseudo GT and
PV head outputs as detailed in [42] and subsequent appli-
cation of BCE and L1 differences for optimizing âcls and
âreg, respectively. The NRPN region proposals with the
highest foreground scores are subsequently passed through
the ROI head, which outputs refined bounding boxes ŷ ={(

ŷbbox
n , ŷcls

n

)
, n ∈

{
1, . . . , NRPN

}}
with class probabili-

ties ŷcls
n ∈ I|S IS|, four bounding box regression parame-

ters ŷbbox
n ∈ R4 as well as class-specific mask probabil-

ities m̂ =
{
m̂n, n ∈

{
1, . . . , N IS

}}
with single masks

m̂n ∈ IHmask×Wmask×|S IS|. Our bounding box loss Lbbox is
comprised of an assignment strategy between ground truth
ỹ and prediction ŷ and subsequent application of L1 differ-
ence between ŷbbox

n and ỹbbox
n as well as cross-entropy (CE)

difference between ŷcls
n and one-hot encoded ỹcls

n . For com-
puting the mask loss Lmask, we apply a binary cross entropy
(BCE) difference between ground truth m̃ and prediction
m̂, selecting only the output corresponding to the ground
truth mask’s class. More details can be found in [14]. Over-
all, our X-IS loss LX-IS can be written as:

LX-IS = Lrpn (â, ỹ) + Lbbox (ŷ, ỹ) + Lmask (m̂, m̃) . (6)

4. Experiments
We first provide our experimental setup (Sec. 4.1) and

a state-of-the-art comparison (Sec. 4.2). Next, we verify
and analyze our method’s components in Secs. 4.3 and 4.4.
Last, we evaluate RADAR-based models (Sec. 4.5).
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Set Model Backbone Resolution mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ mAP↑ NDS↑

V
al

id
at

io
n

BEVDet [18]

ResNet-50 256× 704

0.725 0.279 0.589 0.860 0.245 29.8 37.9
BEVDet4D [49] 0.703 0.278 0.495 0.354 0.206 32.2 45.7
BEVDepth [28] 0.629 0.267 0.479 0.428 0.198 35.1 47.5
BEVDepth† 0.636 0.272 0.493 0.499 0.198 35.9 47.2
STS∗ [47] 0.601 0.275 0.450 0.446 0.212 37.7 48.9
BEVStereo∗ [27] 0.598 0.270 0.438 0.367 0.190 37.2 50.0
X3KDall ResNet-50 256× 704 0.615 0.269 0.471 0.345 0.203 39.0 50.5

V
al

id
at

io
n PETR [32]

ResNet-101 512× 1408

0.710 0.270 0.490 0.885 0.224 35.7 42.1
BEVDepth† 0.579 0.265 0.387 0.364 0.194 40.9 53.1
BEVDepth [28] 0.565 0.266 0.358 0.331 0.190 41.2 53.5
STS∗ [47] 0.525 0.262 0.380 0.369 0.204 43.1 54.2
X3KDall ResNet-101 512× 1408 0.552 0.257 0.338 0.328 0.199 44.8 55.3

V
al

id
at

io
n DETR3D [46]

ResNet-101 900× 1600
0.716 0.268 0.379 0.842 0.200 34.9 43.4

BEVFormer [30] 0.673 0.274 0.372 0.394 0.198 41.6 51.7
PolarFormer [21] 0.648 0.270 0.348 0.409 0.201 43.2 52.8
BEVDepth† ResNet-101 640× 1600 0.571 0.260 0.379 0.374 0.196 42.8 53.6
X3KDall ResNet-101 640× 1600 0.539 0.255 0.320 0.324 0.196 46.1 56.7

Te
st

BEVFormer [30] 0.631 0.257 0.405 0.435 0.143 44.5 53.5
BEVDepth† ResNet-101 640× 1600 0.533 0.254 0.443 0.404 0.129 43.1 53.9
PolarFormer [21] 0.610 0.258 0.391 0.458 0.129 45.6 54.3
X3KDall ResNet-101 640× 1600 0.506 0.253 0.414 0.366 0.131 45.6 56.1

Table 2. Performance comparison on the nuScenes dataset: We ensure comparability regarding backbone and image resolution. Baseline
results are cited except for BEVDepth† which we reproduced in our framework; ∗ indicates recent ArXiv works; best numbers in boldface.

Model LET-3D-AP↑ LET-3D-APL↑
All Vehicle Pedestrian Cyclist All

BEVDepth† 38.1 40.9 24.1 15.0 26.7
X3KDmodal 39.1 41.9 24.6 17.3 27.9
X3KDall 39.6 43.4 25.4 17.7 28.8

Table 3. Performance comparison on the Waymo dataset. We
compare X3KD to our re-implemented baseline BEVDepth† [28].

4.1. Experimental Setup
X3KD is implemented using mmdetection3d [10] and

PyTorch [39] libraries and trained on 4 NVIDIA A100
GPUs.1 Here, we describe our main setup on nuScenes
while more details are provided in the supplementary.

Datasets: Similar to most recent works [1, 27, 28, 30,
55], we evaluate on the nuScenes and Waymo benchmark
datasets. The nuScenes dataset [5] contains 28K, 6K, and
6K samples for training, validation, and test, respectively.
We use data from a LiDAR sensor and 6 cameras with
bounding box annotations for 10 classes. For the Waymo
dataset [43], we use the data from a LiDAR sensor and 5
cameras with annotations for cars, pedestrians, and cyclists.
It provides 230K annotated frames from 798, 202, and 150
sequences for training, validation, and test, respectively.

Evaluation Metrics: For nuScenes, we employ the of-
ficially defined mAP and NDS metrics. The NDS met-
ric considers mAP as well as true positive (TP) metrics
TP = {mATE,mASE,mAOE,mAVE,mAAE} for transla-
tion, scale, orientation, velocity, and attribute, respectively,
i.e., NDS = 1

10 (5 · mAP) +
∑

TP∈TP 1 − min (1,TP). For
Waymo, we employ the official metrics of the camera-only

1We use mmdetection3d v1.0, Python 3.8, PyTorch 1.11, CUDA 11.3

3D object detection track [19]: The LET-3D-AP calculates
average precision after longitudinal error correction, while
LET-3D-APL also penalizes the longitudinal error.

Network Architecture and Training: For a fair
comparison, our network architecture follows previous
works [17, 21, 27, 28, 30, 47]. We consider the ResNet-
50-based setting with a resolution of 256 × 704 and the
ResNet-101-based setting with resolutions of 512 × 1408
or 640× 1600. Further network design choices are adopted
from [17]. We train all models for 24 epochs using
the CBGS training strategy [62], a batch size of 16 and
AdamW [36] with an initial learning rate of 2 · 10−4. The
loss weights are set to λGT = 1, λX-FD = 10, λX-AT = 10,
λX-OD = 1, and λX-IS = 1 while the thresholds are set to
α3D-bbox = 0.6 and α2D-bbox = 0.2. Our LiDAR teacher is
based on the CenterPoint architecture [55] and the Trans-
Fusion training schedule [1]. The supplementary contains
further explanations, hyperparameter studies, and configu-
rations for the Waymo dataset.

4.2. State-of-the-art Comparisons
We perform a comparison of X3KD with all contribu-

tions, i.e., X3KDall, to other SOTA methods in Table 2. In
the ResNet-50-based setting, our model achieves the best
results with scores of 39.0 and 50.5 in mAP and NDS, re-
spectively. In the high-resolution ResNet-101-based set-
ting, our model achieves SOTA scores of 46.1 and 56.7. At
this resolution, we outperform all previous SOTA methods
in all considered metrics and outperform the second best
result by 2.9 points in mAP and 2.5 points in NDS. To ex-
plicitly show that our method improves on top of current
SOTA baselines, we retrain our strongest baseline among
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Model X-OD X-FD X-AT X-IS mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ mAP↑ NDS↑

BEVDepth† ✗ ✗ ✗ ✗ 0.636 0.272 0.493 0.499 0.198 35.9 47.2
X-OD ✓ ✗ ✗ ✗ 0.642 0.278 0.456 0.338 0.188 35.7 48.7
X-FD ✗ ✓ ✗ ✗ 0.644 0.276 0.479 0.361 0.200 36.1 48.5
X-AT ✗ ✗ ✓ ✗ 0.648 0.277 0.492 0.354 0.192 35.5 48.1
X3KDmodal ✓ ✓ ✓ ✗ 0.632 0.271 0.456 0.342 0.203 36.8 49.4
X-IS ✗ ✗ ✗ ✓ 0.635 0.273 0.462 0.350 0.204 38.7 50.1
X3KDall ✓ ✓ ✓ ✓ 0.615 0.269 0.471 0.345 0.203 39.0 50.5

LiDAR Teacher NA NA NA NA 0.301 0.257 0.298 0.256 0.195 59.0 66.4

Table 4. Ablation study of X3KD on the nuScenes validation set: We incrementally add our proposed cross-modal feature distillation
(X-FD), adversarial training (X-AT) and output distillation (X-OD) as well as our cross-task instance segmentation distillation (X-IS). All
X3KD variants in the top part are solely based on multi-camera images during inference. Best numbers in boldface, second best underlined.

Model Dist. Weight w/o GT mAOE↓ mAVE↓ mAP↑ NDS↑

BEVDepth† ✗ ✗ ✗ 0.493 0.499 35.9 47.2
✓ ✗ ✗ 0.477 0.342 35.6 48.5

X-OD ✓ ✓ ✗ 0.456 0.338 35.7 48.7

✓ ✗ ✓ 1.090 0.972 36.1 35.3
X-ODw/o GT ✓ ✓ ✓ 0.724 0.570 36.5 43.7

Table 5. Ablation study on cross-modal output distillation (X-
OD) on the nuScenes validation set. We show the effect of
weighing the regression loss in (3) by the teacher output proba-
bilities ⟨b̃cls

s ⟩ (Weight) during distillation (Dist.). We also show
that our method can be trained without annotations (w/o GT).

published works, i.e., BEVDepth [28], in our code frame-
work, dubbed BEVDepth†. At all resolutions, we are able to
closely reproduce the reported results and improve by about
3 points in both mAP and NDS upon them. On the test set,
we outperform the second best approach PolarFormer [21]
by 1.8 points in terms of the main NDS metric and achieve
best results in 5 out of 7 metrics. We also show results for
BEVDepth† and X3KD variants on the Waymo dataset in
Table 3. As on nuScenes, our X3KDall model clearly out-
performs the baseline in all metrics.

4.3. Method Ablation Studies
Effectiveness of the Proposed Components: We incre-

mentally add our contributions in Table 4 and evaluate them
in terms of NDS and mAP. First, we individually add X-
OD, X-FD, and X-AT. For all three components, there is
an improvement in the NDS metric, while the mAP metric
remains similar or slightly worse. Adding all three com-
ponents (X3KDmodal) gives a clear improvement over the
baseline as well as applying each component individually.
Particularly, we observe that the additional cross-modal su-
pervision improves bounding box velocity estimation from
multi-camera input as can be seen by the apparent improve-
ment in the mAVE metric. Using X-IS, surprisingly gives
an even more substantial improvement. This might indicate
that supervision in BEV cannot completely compensate for
the lack of rich features in PV. Finally, adding all compo-
nents together to our proposed X3KDall model clearly out-
performs all other variants in terms of the main NDS and
mAP metrics and is best in 4 out of 7 metrics in Table 4.

Model Student Teacher Pre. Dist. mAP↑ NDS↑
Backbone Backbone

BEVDepth† ResNet-50 NA ✗ ✗ 35.9 47.2

ResNet-50 ResNet-50 ✗ ✓ 36.4 48.8
ResNet-50 NA ✓ ✗ 37.7 49.5

X-IS ResNet-50 ResNet-50 ✓ ✓ 38.7 50.1
X-IS ResNet-50 ConvNeXt-T ✓ ✓ 38.5 49.9

ConvNeXt-T NA ✗ ✗ 38.3 50.8
ConvNeXt-T ResNet-50 ✗ ✓ 38.9 51.4

Table 6. Ablation study on cross-task instance segmentation
distillation (X-IS) on the nuScenes validation set. We evaluate
the effect of using pre-trained weights (Pre.) and knowledge dis-
tillation (Dist.) as well as different teacher/student backbones.

Cross-Modal Output Distillation (X-OD): We provide
insights into our X-OD design in Table 5. In the top
part, we observe that models trained with output distilla-
tion improve over the baseline in terms of NDS and that
the confidence-based weighting is particularly effective for
orientation (mAOE) and velocity (mAVE) prediction. Fur-
ther, we train the multi-camera 3DOD without using anno-
tations (Table 5, bottom part) solely from KD. In this set-
ting, the weighting yields even more significant improve-
ments in particular in terms of the NDS metric. Also, the
X-ODw/o GT model surprisingly outperforms the model vari-
ants trained with annotations in terms of the mAP metric.
This promising result indicates that future work might be
able to use large-scale pre-training with KD on unlabelled
data for further performance improvements.

Cross-task Instance Segmentation Distillation (X-IS):
Ablations on our X-IS design are shown in Table 6. We ob-
serve that initialization of the backbone with weights from a
pre-trained instance segmentation as well as cross-task dis-
tillation, improves the baseline’s result. Combining both
aspects to X-IS yields the best result in both mAP and NDS.
Using a different teacher model based on ConvNeXt-T
yields similarly good results and shows that the feature ex-
traction architectures of the instance segmentation teacher
and the multi-camera 3DOD student do not need to match.
Also, knowledge can be distilled from a simple ResNet-50-
based model into a more sophisticated architecture such as
ConvNeXt-T (bottom part of Table 6). Overall, cross-task
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Figure 4. Qualitative results on nuScenes: We show the multi-camera input (top) and bounding box visualizations (bottom). We compare
ResNet-101-based X3KDall to BEVDepth† and the ground truth (GT) for a resolution of 640× 1600. Best viewed on screen and in color.

Model RADAR Cam. Validation Test
Input Input mAP↑ NDS↑ mAP↑ NDS↑

RADAR only ✓ ✗ 12.9 13.0 - -
X3KDmodal ✓ ✗ 17.7 23.5 - -

Fusion only ✓ ✓ 38.9 51.0 40.2 52.3
X3KDmodal ✓ ✓ 42.3 53.8 44.1 55.3

Table 7. Generalization of our method to RADAR: We distill
knowledge from a LiDAR-based 3DOD into a RADAR-based and
a RADAR-camera fusion-based 3DOD model. For RADAR-based
models, we report the mAP just for the car class as these models
underperform on other classes due to the point cloud sparsity.

distillation can improve performance without requiring an
additional pre-training step.

4.4. Method Analysis
Performance-Complexity Trade-off: We analyze our

method’s efficiency compared to state-of-the-art meth-
ods [17, 28, 30] in Fig. 5. We compare to reimplementa-
tions of BEVDepth [28] and BEVDet4D [17] as well as
reported results of BEVFormer [30]. All reported mod-
els are ResNet-50-based or ResNet-101-based to ensure
that a better trade-off cannot be attributed to a more effi-
cient backbone. We observe that X3KD (red curve) out-
performs BEVDepth (blue curve) at equal complexity due
to the improved supervision from KD. Also, compared to
BEVDet4D and BEVFormer a better trade-off can be ob-
served, likely because of the absence of LiDAR supervi-
sion in BEVDet4D and the complex Transformer model
in BEVFormer. Accordingly, our results show that X3KD
achieves a better complexity-performance trade-off than
current state-of-the-art methods.

Qualitative Results: We further show qualitative results
of X3KD and BEVDepth in Fig. 4. As highlighted by the
white boxes, X3KD detects and places objects more accu-
rately in the scene. In particular, the recognition of objects
and the prediction of their orientation shows improved char-
acteristics in the X3KD output, which is coherent with a bet-
ter quantitative performance of X3KD in Table 4. Further
qualitative results are given in the supplementary.

Figure 5. Complexity Analysis of X3KD in comparison to
BEVDepth [28], BEVDet4D [17], and BEVFormer [30].

4.5. Generalization to RADAR
We also generalize X3KD to RADAR-based and camera-

RADAR fusion-based models. For RADAR-based mod-
els, we cannot apply cross-task KD from the instance seg-
mentation teacher. Hence, we only use the cross-modal
KD contributions, i.e., X3KDmodal. Our results on the
nuScenes validation set show that X3KDmodal significantly
enhances the performance in both settings. Notably, the
transfer from camera to RADAR was straightforward as we
achieved the reported improvements without requiring tun-
ing of hyperparameters. Further, we evaluate our fusion-
based X3KDmodal model on the nuScenes test set, where we
outperform all other Camera-RADAR, fusion-based mod-
els, hence setting the state-of-the-art result.

5. Conclusions
We proposed X3KD, a KD framework for multi-camera

3DOD. By distilling across tasks from an instance seg-
mentation teacher and across modalities from a LiDAR-
based 3DOD teacher into different stages of a multi-camera
3DOD student, we show that the model performance can be
enhanced without inducing additional complexity during in-
ference. We evaluated X3KD on the nuScenes and Waymo
datasets, outperforming previous approaches by 2.9% mAP
and 2.5% NDS. The transferability to other sensors, such as
RADAR, and the possibility to train 3DOD models with-
out annotations further demonstrate X3KD’s effectiveness.
Combining these two findings could be used in future appli-
cations to train 3DOD models for arbitrary sensors, requir-
ing only a LiDAR-based 3DOD model.
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