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Abstract

A natural image frequently contains multiple classifi-
cation targets, accordingly providing multiple class labels
rather than a single label per image. While the single-label
classification is effectively addressed by applying a softmax
cross-entropy loss, the multi-label task is tackled mainly in
a binary cross-entropy (BCE) framework. In contrast to the
softmax loss, the BCE loss involves issues regarding imbal-
ance as multiple classes are decomposed into a bunch of
binary classifications; recent works improve the BCE loss
to cope with the issue by means of weighting. In this pa-
per, we propose a multi-label loss by bridging a gap be-
tween the softmax loss and the multi-label scenario. The
proposed loss function is formulated on the basis of relative
comparison among classes which also enables us to fur-
ther improve discriminative power of features by enhanc-
ing classification margin. The loss function is so flexible
as to be applicable to a multi-label setting in two ways for
discriminating classes as well as samples. In the exper-
iments on multi-label classification, the proposed method
exhibits competitive performance to the other multi-label
losses, and it also provides transferrable features on single-
label ImageNet training. Codes are available at https:
//github.com/tk1980/TwowayMultiLabelLoss.

1. Introduction
Deep neural networks are successfully applied to super-

vised learning [12, 26, 38] through back-propagation based
on a loss function exploiting plenty of annotated samples.
In the supervised learning, classification is one of primary
tasks to utilize as annotation a class label to which an image
sample belongs. As in ImageNet [7], most of image datasets
provide a single class label per image, and a softmax loss is
widely employed to deal with the single-label annotation,
producing promising performance on various tasks.

The single-label setting, however, is a limited scenario
from practical viewpoints. An image frequently contains
multiple classification targets [39], such as objects, requir-

ing laborious cropping to construct single-label annotations.
There are also targets, such as visual attributes [25], which
are hard to be disentangled and thereby incapable of produc-
ing single-label instances. Those realistic situations pose
so-called multi-label classification where an image sample
is equipped with multiple labels beyond a single label.

While a softmax loss works well in a single-label learn-
ing, the multi-label tasks are addressed mainly by applying
a binary cross-entropy (BCE) loss. Considering multiple
labels are drawn from C class categories, the multi-label
classification can be decomposed into C binary classifica-
tion tasks, each of which focuses on discriminating samples
in a target class category [28]; the BCE loss is well coupled
with the decomposition approach. Such a decomposition,
however, involves an imbalance issue. Even in a case of
balanced class distribution, the number of positive samples
is much smaller than that of negatives, as small portion of
whole C-class categories are assigned to each sample as an-
notation (positive) labels. The biased distribution is prob-
lematic in a naive BCE loss. To cope with the imbalance
issue in BCE, a simple weighting approach based on class
frequencies [25] is commonly applied and in recent years it
is further sophisticated by incorporating adaptive weighting
scheme such as in Focal loss [18] and its variant [2]. On
the other hand, the softmax loss naturally copes with multi-
ple classes without decomposition nor bringing the above-
mentioned imbalance issue; it actually works well in the
balanced (single-label) class distribution. The softmax loss
is intrinsically based on relative comparison among classes
(3) which is missed in the BCE-based losses, though being
less applicable to multi-label classification.

In this paper, we propose a multi-label loss to effec-
tively deal with multiple labels in a manner similar to the
softmax loss. Through analyzing the intrinsic loss func-
tion of the softmax loss, we formulate an efficient multi-
label loss function to exploit relative comparison between
positive and negative classes. The relative comparison is
related to classification margin between positive and neg-
ative classes, and we propose an approach to enlarge the
margin by simply introducing temperature on logits for fur-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7476

https://github.com/tk1980/TwowayMultiLabelLoss
https://github.com/tk1980/TwowayMultiLabelLoss


ther boosting performance. The proposed loss function is
regarded as a generalization of the softmax loss, being re-
duced into the softmax loss in case of a single-label task.
Thus, the general loss formulation enables us to measure
losses in two ways for computing multi-label classification
loss not only at each sample but also for each class to dis-
criminate samples on that class as the BCE focuses on. In
summary, our contributions are three-fold as follows.

• We formulate a new loss function to deal with multiple
labels per sample while enhancing classification margin.

• By using the loss function, we propose a two-way ap-
proach for measuring multi-label loss.

• The loss is thoroughly analyzed from various aspects in
the experiments and exhibits competitive performance,
compared to the other multi-label losses. It also provides
transferrable features on single-label ImageNet training.

1.1. Related works

Multi-label classification: In recent years, the multi-label
task is addressed in a deep learning framework by improv-
ing models from an architectural viewpoint. Relationships
among multiple labels assigned to an image are exploited
such as by recurrent neural network [30] and graph neural
networks [8] which also leverage external word-related in-
formation [4,32] to extract semantic characteristics of class
categories. Regional features are also utilized [39] while
transformer-based spatial attention mechanism is incorpo-
rated to detect label-related region [33]. In this paper, we fo-
cus on a loss function which is an orthogonal direction to the
architectural approaches; it would compensate the above-
mentioned methods which simply employ a BCE loss.
BCE loss: In the multi-label framework, a binary cross-
entropy (BCE) loss plays a key role through decompos-
ing multi-class classification into multiple class-wise binary
tasks. For establishing multi-label losses, research effort is
mainly devoted to improving the BCE especially in terms
of the imbalance issue mentioned above. Frequency-based
weighting [25] is widely applied as a naive extension of
BCE, and in recent years, sophisticated adaptive weighting
schemes are proposed [2, 18]. There are also works to im-
prove BCE so as to cope with particular situations such as
class imbalance [35] and partial labeling [1]. In contrast,
we derive the proposed method in a framework of a softmax
loss, apart from the BCE formulation. Thus, our method by-
passes the imbalance issue tackled by [2, 18] while enhanc-
ing discriminativity in terms of both classes and samples.
Metric learning: From a viewpoint of formulation, our
method is related to the loss functions applied to optimize
similarity in the literature of metric learning which is differ-
ent from the multi-label classification. By regarding a clas-
sifier vector as a proxy of the class, one could find resem-
blance between the similarity learning and the multi-label

learning both of which cope with multiple positive and neg-
ative pairs. The point is that we derive our multi-label loss
through theoretically analyzing a single-label softmax loss,
while the similarity losses [27, 31] are formulated based on
rather heuristic pair-wise comparison among positive and
negative similarities; we discuss the difference in Sec. 3.

2. Method
We first analyze a softmax cross-entropy from a view-

point of a single-label loss function and then derive a new
loss to effectively cope with multiple labels.

2.1. Softmax cross-entropy loss for single label

In single-label supervised learning, a softmax cross-
entropy provides an effective loss function. Suppose an im-
age sample I equipped with a class label y ∈ {1, · · · , C}.
The image is processed by a (neural network) model fθ pa-
rameterized by θ to produce a logit vector x = fθ(I) ∈
RC . The softmax loss is formulated by means of cross-
entropy between one-hot label y and softmax of logits x as

`sm = − log
exy∑C
c=1 e

xc

, (1)

where xc indicates the c-th element of a logit vector x. Fol-
lowing [15], we reformulate it toward a loss-like form akin
to hinge loss [6, 29];

`sm = log

[
e−xy

C∑
c=1

exc

]
= log

[
1 + e−xy

∑
c6=y

exc

]
(2)

= softplus

[
log

{∑
c6=y

exc

}
− xy

]
, (3)

where softplus(·) = log[1 + exp(·)] is a softplus function,
smooth approximation of a hinge function. In this form,
the log-sum-exp resembles a maximum operator to provide
a hard logit over negative classes as log

∑
c6=y exp(xc) ≈

maxc6=y xc [15]. This reformulation (3) reveals that a soft-
max loss measures difference between the positive xy and
the hard negative log

∑
c6=y exp(xc) via a softplus function.

2.2. Multi-label loss

We then consider a multi-label setting where a logit vec-
tor x is associated with multiple labels P , a set of posi-
tive labels assigned to x; the number of positive labels is
1 ≤ |P| < C and we denote a set of negative labels by N
such that |P ∪N | = C and P∩N = ∅. For correctly iden-
tifying the positive classes P on multi-label classification,
we encourage the logits x to have the relationship of

xp > xn, ∀p ∈ P,∀n ∈ N ⇔ min
p∈P

xp > max
n∈N

xn, (4)
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where xp and xn indicate logits of positive and negative
classes, respectively; we refer to them as positive and nega-
tive logits. The analysis in Sec. 2.1 inspires us to formulate
a multi-label loss by measuring the difference between the
hard positive and hard negative logits in (4) via softplus.

Since the softmax loss (3) leverages log-sum-exp to rep-
resent negative logits, our particular interest is to effectively
describe the hard positive of minp∈P xp. We follow the ap-
proach to replace the min operator by log-sum-exp. The
minimum of positive logits can be written by using max
operator so that log-sum-exp is applied as follows.

min
p∈P

xp = −max
p∈P

(−xp) ≈ − log
∑
p∈P

e−xp . (5)

We embed this hard positive into a softplus loss function
(3) by replacing the single positive logit xy to construct the
multi-label loss of

˜̀= softplus

[
log

{∑
n∈N

exn

}
+ log

{∑
p∈P

e−xp

}]
(6)

= log

[
1 +

{∑
n∈N

exn

}
·
{∑

p∈P
e−xp

}]
. (7)

2.3. Classification margin

To enhance the discriminative relationship (4), a margin
for multi-label classification is naturally defined as

∆ , min
p∈P

xp −max
n∈N

xn. (8)

The multi-label loss (6) implicitly enlarges the margin due
to log-sum-exp which has the following property.

Proposition 1. The difference between hard positive and
negative in (6) is larger than the negative margin, −∆:

log
∑
n∈N

exn + log
∑
p∈P

e−xp > max
n∈N

xn −min
p∈P

xp. (9)

Proof. A log-sum-exp function is rewritten as

log
∑
n∈N

exn = xn∗+ log
(

1+
∑
n6=n∗

exn−xn∗
)
> xn∗ , (10)

where n∗= arg maxn∈N xn and
∑

n 6=n∗e
xn−xn∗ >0. Sim-

ilarly, we have

log
∑
p∈P

e−xp > max
p∈P

(−xp) = −min
p∈P

xp. (11)

Thus, the margin in the multi-label loss (6) is underesti-
mated toward larger margin through minimizing the loss as
in large-margin methods [6, 29].

Based on the margin-based analysis, we further enhance
large-margin effect in the multi-label loss for improving dis-
crimination. The implicit margin in (6) resorts to the gap

margin

positive negative

Figure 1. Our multi-label loss function enlarges a margin between
positive and negative logits by a temperature parameter T .

shown in (10), that is, log
∑

c e
xc − maxc xc = log(1 +∑

c 6=c∗ e
xc−xc∗ ). We thus introduce temperature T into

log-sum-exp for enlarging the gap as follows.

Proposition 2. A temperature parameter T > 0 reformu-
lates log-sum-exp as T log

∑
c e

xc
T which has

max
c
xc < T log

∑
c

e
xc
T ≶ log

∑
c

exc for T ≶ 1. (12)

Proof. The tempered log-sum-exp is written by

T log
∑
c

e
xc
T = xc∗ + T log

(
1 +

∑
c6=c∗

e
xc−xc∗

T

)
, (13)

where the second term monotonically increases w.r.t. T > 0
as c∗ = arg maxc xc and xc − xc∗ ≤ 0,∀c 6= c∗.

Thereby, we propose the following multi-label loss.

` = softplus

[
TN log

∑
n∈N

e
xn
TN +TP log

∑
p∈P

e
− xp

TP

]
, (14)

where two temperatures TP and TN are applied to positive
and negative logits, respectively. While such a temperature
is incorporated into softmax in the field of knowledge dis-
tillation [13], in this study, the temperature controls a mar-
gin in the multi-label loss as shown in Fig. 1. Particularly,
a margin is further underestimated by T > 1 for induc-
ing larger-margin classification. As to negative logits, how-
ever, the number of negatives is generally larger than that
of positives, |N | � |P|, and thereby sufficiently large gap
of log(1 +

∑
n 6=n∗ e

xn−xn∗ ) can be given in (10) even for
TN = 1, inducing large margin on the side of negatives.
Therefore, the temperature parameters can be reduced into
only a positive one TP by TN = 1 in (14) for consider-
ing the larger margin only on positive logits via TP ≥ 1 as
shown in Fig. 1; it is empirically discussed in Sec. 4.2. It
should be noted that the proposed loss (14) enhances clas-
sification margin without imposing regularization on log-
its [15] nor manipulating logits [20].
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2.4. Two-way multi-label loss

We have analyzed a loss function from a viewpoint of
sample-wise classification and then formulated the multi-
label loss function (14) to work at each sample. On the
other hand, a BCE loss commonly applied in the multi-
label classification considers rather to discriminate samples
at each class by means of a sigmoid function, which can
be regarded as class-wise classification. These two types of
approaches deal with classification in orthogonal directions,
and in this study we unify them into two-way loss for multi-
label classification on the basis of a logit matrix shown in
Fig. 2; in the matrix, the sample-wise classification is per-
formed at each row while the class-wise one is along each
column, which are thus regarded as two-way classifications.
Notation. Suppose a bucket1 of M image samples. As
shown in Fig. 2, it produces a logit matrix X ∈ RM×C in
which the (i, c)-th element xic indicates the logit produced
by fθ(Ii) for the c-th class. Accordingly, a set of label yic ∈
{0, 1} constitutes a binary label matrix Y ∈ {0, 1}M×C .
Sample-wise way: In Sec. 2.2, we have considered a
sample-wise loss by applying the multi-label loss function
to row-wise logits {xic}Cc=1 as

`i = softplus

[
log

∑
n|yin=0

exin +T log
∑

p|yip=1

e−
xip
T

]
, (15)

which enhances a discrimination among classes enforcing
(4) to improve classification accuracy of top-K prediction
at the i-th sample. On the other hand, it pays less attention
to the relationship among samples such as xic and xjc at
the c-th class, due to which a learnt model might fail to
discriminate samples on the c-th class. It leads to inferior
performance on the metric of mAP across classes, a popular
performance metric in multi-label classification. This is the
main reason why the popular softmax loss is less frequently
applied to multi-label classification.
Class-wise way: To enhance the discrimination among
samples, we apply the multi-label loss function (14) in a
class-wise way, i.e., column-wise manner in Fig. 2, to pro-
duce the loss of

`c = softplus

[
log

∑
i|yic=0

exic + T log
∑

j|yjc=1

e−
xjc
T

]
. (16)

It measures separation between positive and negative sam-
ples in the c-th class, promoting the relationship of
minj|yjc=1 xjc > maxi|yic=0 xic to improve precision
at each class. It is noteworthy that we apply the same
loss function as (15) just by feeding column-wise samples
{xic}Mi=1. While a pair-wise comparison xjc > xic is con-
sidered in a SVM framework for shallow models [36], we

1We use a term of bucket to distinguish from batch in deep learning. B
samples in a batch can be divided into k buckets of M = B/k samples.

class-wise

sample-wise

classes

samples

positive logit

Figure 2. Logit matrix on a bucket of M images.

leverage our multi-label function (14) to effectively formu-
late the column-wise classification loss with a proper mar-
gin induced by a temperature T , working in end-to-end
learning of deep models.

We finally formulate our two-way multi-label loss ¯̀by

¯̀=
1

M

M∑
i=1

`i({xic, yic}Cc=1;T )+
1

C

C∑
c=1

`c({xic, yic}Mi=1;T ).

(17)
The proposed two-way loss contributes to improving both
sample-wise and class-wise discrimination. It should be
noted that even in a case of single (one-hot) label

∑
c yic =

1,∀i, the class-wise samples demand multi-label classifica-
tion (column in Fig. 2). Thus, this two-way formulation is
intrinsically coupled with the multi-label loss function (14).

3. Discussion
3.1. Loss function

Softmax loss: It is possible to apply a softmax loss in a
multi-label scenario through describing labels in a proba-
bilistic way,

`ce = −
∑
c

ỹc log
exc∑
c′ e

xc′
, (18)

where ỹc = yc∑
c′ yc′

is a normalized label. This enforces
the positive logits {xp}p∈P to exhibit the same value so as
to produce exp∑

c exc = 1
|P| ,∀p ∈ P . It, however, is less

relevant to the multi-label classification (4), being a mean-
ingless constraint on feature representation. In contrast, the
proposed loss (14) lets the positive logits take any higher
values xp > xp∗ by paying attention to the hard positive
logit. It also coincides with the softmax loss in case of
single-label classification, i.e., |P| = 1.
BCE loss: The multi-label classification is addressed
mainly by a binary cross-entropy (BCE) loss of

`bce = −
∑
c

yc log
1

1 + e−xc
−(1−yc) log

1

1 + exc
, (19)

which can be contrasted with our multi-label loss in the fol-
lowing three points.
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First, the BCE loss is faced with imbalance issue due
to |P| � |N |. To mitigate it, some weighting schemes
are proposed in a simple statistical manner [25] and a so-
phisticated adaptive manner [2, 18]. On the other hand,
the proposed loss (17) is based on comparison of logits
among classes and samples in two ways through excavating
the hard negatives and positives by means of log-sum-exp,
which naturally alleviates the imbalance issue.

Second, BCE (19) is based on a point-wise loss with-
out paying much attention to relationships among classes
and samples, which thus leads to the above-mentioned is-
sue. The proposed loss effectively exploits the discrim-
inative characteristics through relative comparison among
classes and samples.

Third, the point-wise loss in BCE stems from a sig-
moid function which provides classification on the basis of
zero, i.e., x ≶ 0, which is regarded as a constraint in the
classification model. The proposed loss based on relative
comparison is actually invariant to logit shift2, ¯̀(X,Y ) =
¯̀(X+ ε,Y ), without imposing constraints on logits, which
thereby enables flexible feature representation learning.
Metric learning loss: In the literature of metric learning,
a multi-similarity loss [31] is formulated through relative
similarity weighting as

`ms = log

(
1 +

∑
p∈P

e−xp

)
+ log

(
1 +

∑
n∈N

exn

)
, (20)

where a logit xc is regarded as a similarity to the c-th class.
It is rewritten by using log-sum-exp with a BCE loss (19) to

`ms = `bce

({
− log

∑
p∈P

e−xp , log
∑
n∈N

exn

}
, {+1,−1}

)
.

(21)
This reformulation clarifies that the multi-similarity
loss [31] considers logit relationships within the respective
groups of positives and negatives to partially mitigate the
above-mentioned issues of BCE, though inheriting the zero-
basis constraint.

In the metric learning, a circle loss [27] to learn simi-
larities is also presented in a similar form to our loss (7).
The circle loss is derived from maximizing pair-wise dis-
crepancy of

∑
p∈P

∑
n∈N e

xn−xp in a rather heuristic man-
ner. In contrast, we theoretically formulate the multi-label
loss (14) through analyzing a softmax loss from the view-
point of a margin-aware loss function. Thus, the tempered
log-sum-exp is introduced into the loss to adaptively control
margin based on the logit distribution for enhancing classi-
fication margin. In [27], large-margin discrimination is real-
ized by means of logit bias as xp−εP and/or xn+εN . In the
multi-label scenario, however, due to the above-mentioned
invariance against logit shift, the logit biases are reduced

2Details are shown in the supplementary material.

into a constant bias2 ε = εP + εN in a softplus function (6);
such a bias simply increases the loss in disregard of logits,
thus less contributing to larger-margin classification.

3.2. Two-way formulation

Class-wise way: In the proposed two-way loss, the class-
wise loss is especially distinctive in comparison to a stan-
dard softmax loss (1) which considers only sample-wise
relationships. It resembles contrastive learning in self-
supervised learning [11]; from that view, the target c-th
class vector is trained so as to be close enough to the sam-
ples associated with the c-th class while being away from
the other samples. Thus, the proposed two-way loss would
contribute to favorable feature representation learning.
Joint way: The proposed loss (17) compares logits in
respective two ways of class- and sample-wise direc-
tions (Fig. 2). It is also conceivable to contrast positive
logits with negatives in a joint manner for encouraging
minj,p|yjp=1 xjp > maxi,n|yin=0 xin, which leads to

`j = softplus

[
log

∑
i,n|yin=0

exin + T log
∑

j,p|yjp=1

e−
xjp
T

]
. (22)

The joint loss is different from (15, 16) in that summation
indexes run over all the elements in a logit matrix. As the
joint loss measures two-way discrimination at once by using
only a single loss function, it would be vulnerable to irregu-
lar logit values, such as too large negative and/or small pos-
itive logits, which dominate the loss via log-sum-exp func-
tion. We empirically compare the proposed two-way loss
with the joint loss (22) in Sec. 4.2.

4. Results
We apply the proposed loss to train CNNs on multi-label

image classification. Performance of multi-label classifica-
tion is measured based on the following two metrics.
mAP@class: Average precision over N samples is com-
puted at each class and then is aggregated across classes by

1

C

C∑
c=1

AP({xic, yic}Ni=1), (23)

where AP(·) computes average precision of input samples.
This is a popular metric in the multi-label classification.
mAP@sample: In contrast to mAP@class, we measure
mean average precision over samples by

1

N

N∑
i=1

AP({xic, yic}Cc=1). (24)

It is connected to classification accuracy, a standard metric
for single-label classification; AP at each sample summa-
rizes top-K accuracies over Ks.
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Table 1. Performance results with various temperatures. The per-
formances of vanilla setting, TP = 1 and TN = 1, are underlined.

mAP@class mAP@sample
TN 0.5 1 2 4 0.5 1 2 4

→ 0 71.03 71.58 71.88 71.86 85.01 85.37 85.55 85.47
0.5 72.20 72.30 72.17 71.95 85.72 85.81 85.68 85.51

TP 1 72.85 72.93 72.56 72.20 86.07 86.14 85.94 85.66
2 73.42 73.66 73.23 72.53 86.27 86.48 86.34 85.85
4 73.56 74.11 73.90 73.24 86.26 86.66 86.66 86.23

Table 2. Performance results by applying logit bias ε [27].

ε 0.5 1 2 4 8

mAP@class 73.08 73.16 73.28 73.44 73.18
mAP@sample 86.19 86.22 86.25 86.21 86.02

4.1. Training procedure

We finetune ImageNet-pretrained CNN models on a tar-
get dataset with a multi-label loss. SGD with momentum of
0.9 and weight decay of 10−4 is applied to a batch of 512
samples over 40 training epochs with a cosine-scheduled
learning rate starting from 0.01 for the FC classifier and
0.001 for the other layers. We apply distributed training
across 4 GPUs of NVIDIA V100, which produces 4 buckets
of M = 512/4 = 128 samples to construct a logit matrix
(Fig. 2); the bucket-level losses are averaged in the batch.

4.2. Ablation study

We first analyze the method from various aspects
through the following ablation studies, and then in Sec. 4.3
compare the method to the other loss functions on various
multi-label tasks. The ablation study is conducted on MS-
COCO [19] using ResNet-50 [12].

Temperature T : In the loss (14), temperature parameters
TP and TN are applied to enhance classification margin on
positive and negative logits, respectively. Tab. 1 shows per-
formance results across various temperatures. As discussed
in Sec. 2.3, performance is improved by increasing the pos-
itive temperature TP to enlarge margin on the positive side.
On the other hand, the negative temperature provides fa-
vorable performance by TN = 1, as the number of nega-
tive logits is larger than that of positives, in this case ×30
(Tab. 6), to provide a sufficient margin even by TN = 1.
Thus, we apply TN = 1 and TP = T = 4 in (15, 16).

We also evaluate the naive hard positive logit of
minp∈P xp by simply setting TP → 0. It significantly
degrades performance as shown in the top row of Tab. 1.
Such an extreme operator produces sparse backward update
as well as provides no margin in the loss. This compari-
son clarifies that log-sum-exp function effectively produces
hard positive logit with a proper margin via T .

Table 3. Performance regarding ways to compute multi-label loss.

(a) Ours (b) Softmax
way both class sample both class sample

mAP@class 74.11 73.06 67.18 69.19 68.13 58.00
mAP@sample 86.66 82.75 86.07 84.33 69.15 83.60

Table 4. Performance results by other related loss functions.

(a) Multi-sim loss (20) (b) Joint-way (22)
TP 1 2 4 1 2 4

mAP@class 70.36 70.94 71.27 70.19 71.71 71.82
mAP@sample 85.42 85.75 85.95 84.82 85.57 85.64

Table 5. Performance about bucket size M in a batch size of 512.

M 16 32 64 128 256 512

mAP@class 70.76 72.84 73.68 74.11 74.15 74.01
mAP@sample 85.79 86.33 86.60 86.66 86.58 86.47

Logit bias: In [27], the margin is also discussed through
adding bias to logits, which is eventually described by a
single bias parameter ε to shift the logit difference in a soft-
plus function as described in Sec. 3.1. Tab. 2 shows per-
formance results of various bias ε. The logit bias slightly
improves performance by ε = 4, though being inferior to
our temperature approach of TP = 4 (Tab. 1). As shown
in (13), the temperature T adaptively controls margin based
on the logit distribution while a bias ε constantly affects log-
its in the softplus function, less contributing to large-margin
classification during end-to-end learning.

Ways: We then analyze the ways to apply the multi-label
loss function (14) to a logit matrix. The proposed two-way
approach (17) is compared to class-wise (16) and sample-
wise (15) losses as shown in Tab. 3a. Those two approaches
improve class-wise and sample-wise performances, respec-
tively. By combining those two ways into the loss (17),
performance is significantly improved to outperform the re-
spective approaches. The feature representation is effec-
tively learned from these two perspectives to discriminate
both samples and classes.

Loss function: The proposed loss is compared to the re-
lated loss functions of softmax loss (18), multi-similarity
loss (20) [31] and joint-way loss (22), which are mentioned
in Sec. 3. As in our loss, the softmax loss is applicable
in two ways to improve performance as shown in Tab. 3b,
though being inferior to ours (Tab. 3a). Particularly, one-
way softmax loss significantly degrades performance on the
counter-metric; e.g., performance of class-way loss dete-
riorates at the metric of mAP@sample. This result indi-
cates that the implicit constraint of uniform positive logits
(Sec. 3.1) in the softmax loss would make the feature repre-
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Table 6. Multi-label image datasets.

Dataset MSCOCO [19] VISPR [23] VAW [25] WIDER [17] VOC2007 [9] VOC2012 [9]

# classes 80 68 620 14 20 20
# training samples 82,081 14,167 229,076 28,340 5,011 5,717

# test samples 40,137 8,000 31,819 29,117 4,952 5,823
# label per sample 2.9 5.2 1.8 2.9 1.4 1.4

sentation overly fit the target performance metric while im-
peding generalization. In contrast, the proposed multi-label
loss is suitable for the two-way approach without imposing
any constraints, to improve performance.

As discussed in Sec. 3.1, the multi-similarity loss
(20) [31] evaluates logits on the basis of zero point and
thus is directly applicable to multi-label classification as in
a BCE loss. For fair comparison, we apply the proposed
temperature scaling to the loss as shown in Tab. 4a. The
multi-similarity loss works well on both the performance
metrics due to the zero-basis measurement. It, however, is
significantly inferior to our two-way loss. This comparison
clarifies the efficacy of our two-way approach to relatively
compare logits without introducing a fixed zero-basis.

The joint loss (22), a variant of our loss, produces poor
performance as shown in Tab. 4b. It would be hard to com-
pare diverse logits including inconsistent ones on different
samples for different classes, xic and xjd (i 6= j, c 6= d), in
a single loss function at once. On the other hand, the pro-
posed two-way approach measures losses along either of
class-wise and sample-wise ways by fixing the other way,
which contributes to consistent loss measurement with ro-
bustness against irregular logits.

Bucket size M : The class-wise loss (16) is computed on
a bucket of M samples which are randomly drawn trhough
random mini-batch sampling. We investigate performances
across various bucket sizes. In this case, 512 samples in
a batch are grouped into k buckets each of which contains
M = 512/k samples where k ∈ {1, 2, 4, 8, 16, 32} pro-
duces M ∈ {512, 256, 128, 64, 32, 16}; it could be natu-
rally and efficiently implemented by distributed training on
k GPUs. It should be noted that we fix the batch size to 512
so that the bucket size M affects only the class-wise loss
(16) in the two-way loss (17). As shown in Tab. 5, the score
of mAP@sample is less sensitive to M since the sample-
wise loss (15) responsible for the metric is irrelevant to the
bucket size. On the other hand, mAP@class is improved by
largerM , implying that it would be somehow difficult to ex-
plore discriminative features from a smaller number of sam-
ples; asM→1, the proposed two-way loss is reduced to the
sample-wise loss disregarding discrimination over samples.
Discriminativity among samples is enhanced by moderate
size of bucket to boost performance on both metrics in our
two-way framework. We use M = 128 throughout the ex-
periments while M ≥ 64 produces favorable performance.

4.3. Performance comparison

We compare the proposed loss with the others by us-
ing various CNN models on diverse datasets. We employ
ResNet-50 [12], ResNeXt-50 [38], DenseNet-169 [14] and
RegNetY-32gf [26]. Performances are reported on datasets
of MS-COCO [19], VISPR [23], VAW [25], WIDER At-
tribute [17] and VOC-2007/2012 [9], which are summarized
in Tab. 6. The comparison methods include softmax cross-
entropy loss (18), binary cross-entropy (BCE) loss weighted
by class frequencies [25], Focal loss [18] and asymmetric
loss (ASL) [2]; we set the hyper-parameters to γ = 2 in
FocalLoss and {γ+ = 0, γ−= 4,m= 0.05} in ASL as sug-
gested in [2, 18]. For fair comparison, we apply the same
training protocol as shown in Sec. 4.1; only the loss func-
tions are compared by fixing the other components.

The performance results are shown in Tab. 7, demon-
strating efficacy of our loss on diverse datasets with various
CNN models. While the softmax loss works well only on
the metric of mAP@sample, the proposed two-way loss is
superior on both metrics, outperforming the others. Some
other experimental results are shown in the supplementary
material.

4.4. ImageNet of single-label dataset

Finally, we apply the loss to train ResNet-50 [12] on Im-
ageNet [7] posing single-label classification; the training
protocol is the same as Sec. 4.1 except that the model is
trained from scratch over 90 epochs with an initial learning
rate of 0.1. In the ImageNet, the proposed two-way loss dif-
fers from a softmax loss in that the class-wise loss (16) is
incorporated, while the sample-wise loss (15) is reduced to
the softmax loss (1) in this single-label learning.

To evaluate the feature representation learnt by the
losses, we measure classification accuracy not only on Im-
ageNet validation set but also on the other datasets by fol-
lowing the transfer learning scheme; pretrained ResNet-50
backbone is applied as frozen feature extractor and only an
FC classifier is tuned on the downstream tasks, details of
which are shown in supplementary material. Tab. 8 reports
classification accuracies of ASL [2], softmax (1) and our
loss (17) on various datasets of single-label classification.

While the three losses produce similar performances on
ImageNet, one can find difference among the transfer learn-
ing performances. ASL is inferior to the other two losses
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Table 7. Classification accuracies (%) on diverse datasets with various CNNs.

mAP@class mAP@sample
CNN ResNet50 ResNeXt50 DenseNet169 RegNetY32gf ResNet50 ResNeXt50 DenseNet169 RegNetY32gf

MSCOCO [19] Softmax 58.00 59.53 58.21 64.14 83.60 84.46 83.13 86.92
BCE 67.71 69.68 64.04 73.38 79.65 80.62 76.14 83.21

Focal [18] 69.42 71.33 67.18 74.99 84.38 85.22 83.33 87.51
ASL [2] 70.92 73.04 69.25 76.70 85.05 86.06 84.40 88.29

Ours 74.11 75.44 73.51 79.57 86.66 87.11 86.62 89.54

VISPR [23] Softmax 36.61 36.97 28.64 36.79 85.23 85.43 83.75 85.90
BCE 44.22 45.34 39.73 46.11 72.39 73.14 69.31 73.75

Focal [18] 46.89 47.76 40.78 48.75 84.35 84.26 82.91 85.29
ASL [2] 48.53 49.53 42.61 51.03 84.81 84.99 83.99 86.15

Ours 51.89 52.79 48.57 53.75 85.64 85.40 85.88 86.67

VAW [25] Softmax 52.59 53.33 47.30 55.02 77.68 78.09 75.97 78.99
BCE 51.21 51.31 44.53 52.25 72.43 72.29 66.50 72.43

Focal [18] 54.38 54.50 48.94 56.77 77.66 77.70 75.81 78.71
ASL [2] 55.39 55.72 48.17 57.88 78.05 78.32 75.91 79.03

Ours 56.42 57.00 54.28 59.33 78.81 78.95 78.36 80.07

WIDER [17] Softmax 63.91 65.14 63.61 66.47 83.09 83.74 83.02 84.65
BCE 70.16 71.40 70.16 73.26 77.62 78.56 77.36 79.94

Focal [18] 65.88 67.29 64.49 68.72 82.27 82.92 81.89 83.66
ASL [2] 67.99 69.71 67.34 71.11 83.44 84.12 83.38 85.00

Ours 72.28 72.77 73.03 74.92 85.43 85.43 85.87 86.97

VOC2007 [9] Softmax 83.49 84.31 82.53 86.63 93.23 93.66 92.61 94.99
BCE 85.58 86.65 81.96 88.25 91.44 91.91 87.55 92.62

Focal [18] 85.59 86.27 78.33 87.87 93.04 93.24 89.83 94.56
ASL [2] 86.70 87.53 81.44 89.26 93.42 93.80 91.05 95.08

Ours 89.04 89.57 88.67 91.44 94.44 94.53 94.13 95.72

VOC2012 [9] Softmax 82.46 83.37 81.56 86.48 93.65 93.81 92.72 95.23
BCE 85.56 86.56 81.94 88.27 92.60 93.01 89.63 94.05

Focal [18] 85.59 86.04 79.41 87.99 93.56 93.74 90.65 95.17
ASL [2] 86.56 87.09 81.83 89.06 94.01 94.19 92.18 95.46

Ours 88.12 88.72 87.95 91.01 94.38 94.73 94.28 96.04

Table 8. Classification accuracies (%) on various datasets by transferring ImageNet-pretrained ResNet-50 features.

Dataset ImageNet Aircraft [21] Caltech101 [10] Car [16] CUB [34] DTD [5] Flower [22] Food101 [3] Pets [24] SUN [37]

ASL [2] 76.76 27.42 85.22 32.99 55.26 64.89 75.88 57.08 91.33 53.38
Softmax 76.32 39.18 88.17 45.13 63.15 70.85 85.75 65.44 92.12 58.85

Ours 76.29 44.01 88.36 46.50 65.96 72.71 87.72 66.83 92.18 59.49

of softmax and ours; it degrades performance especially on
Aircraft dataset3. As discussed in Sec. 3.1, ASL which is
a variant of BCE loss imposes the zero-basis constraint on
the logits in a sigmoid function. It might lead to over-fitting
toward the primary (ImageNet) task, hampering generaliza-
tion of the learnt features. On the other hand, the losses of
softmax and ours based on relative comparison among log-
its let features be flexibly learned to enhance generalization
performance. The proposed loss further enhances the dis-
criminative power of feature representation through com-
parison along two directions of classes and samples in the

3Aircraft dataset [21] poses fine-grained discrimination of aircraft ap-
pearances. Since the ImageNet pre-training task pays less attention to those
visual features, the performance comparison on that dataset might high-
light difference in general discriminative power of feature representations.

two-way formulation, which leads to better performance,
such as on Aircraft dataset, as shown in Tab. 8.

5. Conclusion

We have proposed a novel loss to cope with multiple la-
bels. The multi-label loss function is theoretically formu-
lated in a margin-aware form through analyzing the softmax
loss. Then, it is effectively applied in the two-way man-
ner to finally construct multi-label loss for improving both
class-wise and sample-wise performance. The experimen-
tal results show that the proposed loss is effective not only
for improving performance on multi-label classification but
also for providing transferrable features on single-label Im-
ageNet pre-training.
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