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Abstract

Image classifiers are known to be difficult to interpret
and therefore require explanation methods to understand
their decisions. We present ShearletX, a novel mask ex-
planation method for image classifiers based on the shear-
let transform – a multiscale directional image representa-
tion. Current mask explanation methods are regularized
by smoothness constraints that protect against undesirable
fine-grained explanation artifacts. However, the smooth-
ness of a mask limits its ability to separate fine-detail pat-
terns, that are relevant for the classifier, from nearby nui-
sance patterns, that do not affect the classifier. ShearletX
solves this problem by avoiding smoothness regularization
all together, replacing it by shearlet sparsity constraints.
The resulting explanations consist of a few edges, textures,
and smooth parts of the original image, that are the most
relevant for the decision of the classifier. To support our
method, we propose a mathematical definition for explana-
tion artifacts and an information theoretic score to evaluate
the quality of mask explanations. We demonstrate the supe-
riority of ShearletX over previous mask based explanation
methods using these new metrics, and present exemplary
situations where separating fine-detail patterns allows ex-
plaining phenomena that were not explainable before.

1. Introduction

Modern image classifiers are known to be difficult to
explain. Saliency maps comprise a well-established ex-
plainability tool that highlights important image regions
for the classifier and helps interpret classification deci-
sions. An important saliency approach frames saliency
map computation as an optimization problem over masks
[8, 10, 13, 14, 18, 24, 29]. The explanation mask is opti-
mized to keep only parts of the image that suffice to retain
the classification decision. However, Fong and Vedaldi [14]
showed that an unregularized explanation mask is very sus-
ceptible to explanation artifacts and is hence unreliable.

Figure 1. Left column: ImageNet samples with prediction. Mid-
dle column: Smooth pixel mask explanation from Fong et al. [13].
Right column: ShearletX (ours). Retained probability is computed
as class probability after masking divided by class probability be-
fore masking. ShearletX is the first mask explanation method that
can separate fine-detail patterns, that are relevant for the classifier,
from nearby patterns that are irrelevant, without producing arti-
facts.

Therefore, current practice [8,13,14] heavily regularizes the
explanation masks to be smooth. The smooth explanation
masks can communicate useful explanatory information by
roughly localizing the relevant image region. However, the
pattern that is relevant for the classifier is often overlaid on
patterns that do not affect the classifier. In such a situa-
tion the mask cannot effectively separate the relevant pat-
tern from the nuisance pattern, due to the smoothness con-
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straints. As a result, many details that are irrelevant to the
classifier, such as background elements, textures, and other
spatially localized patterns, appear in the explanation.

An ideal mask explanation method should be resistant to
explanation artifacts and capable of highlighting only rele-
vant patterns. We present such a method, called ShearletX,
that is able to separate different patterns that occupy nearby
spatial locations by optimizing a mask in the shearlet rep-
resentation of an image [25]. Due to the ability of shear-
lets to efficiently encode directional features in images, we
can separate relevant fine-grained image parts, like edges,
smooth areas, and textures, extremely well. We show both
theoretically and experimentally that defining the mask in
the shearlet domain circumvents explanation artifacts. The
masked image is optimized so that the classifier retains its
prediction as much as possible and to have small spatial sup-
port (but not high spatial smoothness), while regularizing
the mask to be sparse in the shearlet domain. This regular-
ization assures that ShearletX retains only relevant parts, a
fact that we support by a new information theoretic score for
the quality of mask explanations. Figure 1 gives examples
demonstrating that ShearletX can separate relevant details
from nuisance patterns, which smooth pixel masks cannot.
Our contributions are summarized as follows:

1. ShearletX: The first mask explanation method that can
effectively separate fine-detail patterns, that are rele-
vant for the classifier, from nearby nuisance patterns,
that do not affect the classifier.

2. Artifact Analysis: Our explanation method is based
on low-level vision for maximal interpretability and
belongs to the family of methods that produce out-
of-distribution explanations. To validate that the re-
sulting out-of-distribution explanations are meaning-
ful, we develop a theory to analyze and quantify expla-
nation artifacts, and prove that ShearletX is resilient to
such artifacts.

3. Hallucination Score: a new metric for mask explana-
tions that quantifies explanation artifacts by measuring
the amount of edges in the explanation that do not ap-
pear in the original image.

4. Concisesness-Preciseness Score: A new information
theoretic metric for mask explanations that gives a high
score for explanations that extract the least amount of
information from the image to retain the classification
decision as accurately as possible.

5. Experimental Results: We demonstrate that ShearletX
performs better than previous mask explanations using
our new metrics and give examples where ShearletX
allows to explain phenomena that were not explainable
with previous saliency methods.

The source code for the experiments is publicly available 1.
1https://github.com/skmda37/ShearletX

2. Related Work

The explainability field has experienced a surge in re-
search activity over the last decade, due to the societal need
to explain machine learning models. We focus on explain-
ability aspects of image classifiers, where saliency maps
provide an important and useful way of understanding a
classifier’s prediction. The community has also introduced
other tools, such as concept-based methods [22] and inher-
ently interpretable architectures [9], but we will not focus
on these in our work. In the following, we review previ-
ously introduced saliency map methods.

Pixel Attribution Methods

Many saliency map methods assign a relevance score to
each pixel indicating its relevance for the prediction. Such
methods include Gradient Saliency [38], Grad-CAM [37],
LRP [5], Guided Backprop [41], and Integrated Gradients
[42]. Although these methods can help explain classifiers,
they are heuristic in their approach and not optimized for a
well-defined notion of relevance. Therefore, the fidelity of
pixel attribution methods needs to be checked post-hoc with
metrics such as the area over the perturbation curve [4] and
can be low. Moreover, Kindermans et al. [1] showed that
pixel attribution methods can be highly unreliable. Other
well-known explanation methods, such as LIME [35] and
SHAP [28] can be applied to images, by first segmenting the
image into superpixels and assigning a relevance score to
each superpixel. However, research recently revealed vari-
ous vulnerabilities of LIME and SHAP [40].

Pixel Mask Explanations

Mask explanations do not attribute individual relevance
scores to (super)pixels but rather optimize a mask to delete
as much information of the image as possible while retain-
ing the classifier’s prediction. The advantage of this ap-
proach is that one optimizes for a natural interpretability
objective that can be quickly validated in two steps: (1) De-
termining which and how much information was deleted by
the mask (2) Computing the class probability score after
masking the image. Fong and Vedaldi [14] were the first
to find an explanation mask as a solution to an optimization
problem that can be summarized as

max
m2M

E
u⇠⌫

h
�c(x�m+ (1�m)� u)

i
� � · kmk1, (1)

where x 2 Rd is the input image, �c returns the classifier’s
class probability, u 2 Rd is a random perturbation from a
predefined probability distribution ⌫ (e.g., constant, blur, or
noise), m 2 Rd is a mask on x, � 2 R+ is the Lagrange
multiplier encouraging sparsity in m, and M is a prior over
the explanation masks. Fong and Vedaldi [14] found that

218601



not choosing a prior, i.e. M = [0, 1]d, produces explana-
tion artifacts. To mitigate artifacts, they enforce a more
regular structure on the mask by using an upsampled lower
resolution mask and regularizing the mask’s total variation
(TV). Fong et al. [13] improved this method by reformulat-
ing the area constraint and adding a new parametric family
of smooth masks, which allowed to remove all hyperparam-
eters from the optimization problem. The masks remain ex-
tremely smooth but the main advantage is that the size of
the mask can be controlled by an area constraint that di-
rectly controls the size of the mask as a percentage of the
total image area. We will refer to this method as smooth
pixel mask to highlight the fact that this method produces
extremely smooth explanations due to strong smoothness
constraints on the mask.

Wavelet Mask Explanations

Kolek et al. [24] proposed the CartoonX method, which
masks in the wavelet representation of images to extract
the relevant piece-wise smooth part of an image. Wavelets
sparsely represent piece-wise smooth images and therefore
the wavelet sparsity constraint in CartoonX typically leads
to piece-wise smooth explanations. However, Kolek et al.
[24] do not compare CartoonX to smooth pixel masks [13],
which also enforce piece-wise smoothness by regularizing
and parameterizing the pixel mask. Besides lacking a clear
advantage over smooth pixel masks, we find that CartoonX
produces blurry spatial areas that can be quite difficult to in-
terpret (see Figure 2). ShearletX improves upon CartoonX
by (a) leveraging the advantages of shearlets over wavelets
for representing edges in images, (b) eliminating an am-
biguous spatial blur in CartoonX, and (c) having a clear ad-
vantage over smooth pixel masks.

3. Background

To develop and analyze ShearletX we need to first give
the necessary technical background for wavelets [30] and
shearlets [25] in the context of images.

Wavelets for Images

A gray-level image can be mathematically modeled as a
square integrable function f : R2 ! R. A wavelet
 : R2 ! R is a spatially localized bump with oscillations,
that is used to probe the local frequency, or scale, of an im-
age. Three suitably chosen mother wavelets  1, 2, 3 2
L2(R2) with dyadic dilations and translations yield an or-
thonormal basis

n
 k
j,n :=

1

2j
 k

⇣ ·� 2jn

2j

⌘o

j2Z,n2Z2,1k3
(2)

of the square integrable function space L2(R2). The three
indices k 2 {1, 2, 3} correspond to vertical, horizontal, and

diagonal directions. The image f can be probed in direction
k 2 {1, 2, 3}, at location n 2 Zn, and at scale 2j 2 Z by
taking the inner product hf, k

j,ni, which is called a wavelet
(detail) coefficient. The wavelet coefficient hf, k

j,ni has
high amplitude if the image f has sharp transitions over the
support of  k

j,n. Pairing  1, 2, 3 2 L2(R2), with an ap-
propriate scaling function � 2 L2(R2), defines a multires-
olution approximation. More precisely, for all J 2 Z, any
finite energy image f decomposes into

f =
X

n2Z2

an�J,n +
X

1k3

X

jJ,

dkj,n 
k
j,n, (3)

where an = hf,�J,ni and dkj,n = hf, k
j,ni are the ap-

proximation coefficients at scale J and wavelet coefficients
at scale j � 1, respectively. In practice, images are dis-
crete signals x[n1, n2] with pixel values at discrete positions
n = (n1, n2) 2 Z2 but they can be associated with a func-
tion f 2 L2(R2) that is approximated at some scale 2L by
x. The discrete wavelet transform (DWT) of an image x
then computes an invertible wavelet image representation

DWT (x) =
n
aJ,n

o

n
[
n
d1j,n, d

2
j,nd

3
j,n

o

L<jJ,n
(4)

corresponding to discretely sampled approximation and
wavelet coefficients of f .

Shearlets for Images

Wavelets are optimal sparse representations for signals with
point singularities [12], in particular, piece-wise smooth
1d signals. However, images are 2d signals where many
singularities are edges, which are anisotropic (directional),
and are not optimally represented by wavelets. Shear-
lets [25] extend wavelets and form a multiscale directional
representation of images, which allows efficient encoding
of anisotropic features. Next, we describe the continuous
shearlet system, and note that the discrete shearlet system
is just a discrete sampling of the continuous system. The
shearlet transform was introduced in [16]. Similarly to the
wavelet transform, the shearlet transform applies transfor-
mations to a function, called the mother shearlet, to gen-
erate a filter bank. The transformations are (a) translation,
to change the location of the shearlet probe, (b) anisotropic
dilation, to change the scale and shape, creating elongated
probes of different scales, and (c) shearing, to probe at dif-
ferent orientations. To dilate and shearing a function, we
define the following three matrices:

Aa :=

✓
a 0
0

p
a

◆
, eAa :=

✓p
a 0
0 a

◆
, Ss :=

✓
1 s
0 1

◆
,
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where s, a 2 R. Given (a, s, t) 2 R+ ⇥ R ⇥ R2,  2
L2(R2), and x 2 R2, we define

 a,s,t,1(x) := a�
3
4 

�
A�1

a S�1
s (x� t)

�
,

 a,s,t,�1(x) := a�
3
4 e 

⇣
eA�1
a (ST

s )
�1

(x� t)
⌘
,

(5)

where e (x1, x2) :=  (x2, x1), for all x = (x1, x2) 2 R2,
and  is the mother shearlet. The continuous shearlet trans-
form is then defined as follows.

Definition 3.1 (Continuous Shearlet Transform). Let  2
L2(R2). Then the family of functions  a,s,t,◆ : R2 ! R
parametrized by (a, s, t, ◆) 2 R+⇥R⇥R2⇥{�1, 1} that are
defined in (5) is called a shearlet system. The corresponding
shearlet transform is defined by

SH : L2(R2) ! L1�
R+ ⇥ R⇥ R2 ⇥ {�1, 1}

�
, (6)

where SH (f)(a, s, t, ◆) := hf, a,s,t,◆i.

The continuous shearlet transform can be digitized to the
digital shearlet transform2 [27], denoted as DSH, by sam-
pling a discrete system from the function system (6). Note
that the digital shearlet transform, like the discrete wavelet
transform, is an invertible transformation.

4. Method

In this section, we develop our novel mask explanation
method ShearletX (Shearlet Explainer).

ShearletX

The optimization objective for ShearletX is

max
m

E
u⇠⌫

h
�c(DSH�1(m�DSH(x) + (1�m)� u))

i

� �1kmk1 � �2kDSH�1(m�DSH(x))k1, (7)

where m 2 [0, 1]n denotes a mask on the digital shearlet
coefficients, �c returns the class probability of the classi-
fier, ⌫ is the perturbation distribution, �1 2 R+ controls the
sparseness of the shearlet mask, and �2 2 R+ controls the
penalty for spatial energy. The final ShearletX explanation
is given by masking the shearlet coefficients and inverting
the masked shearlet coefficients back to pixel space, i.e.,

ShearletX(x) := DSH�1(m�DSH(x)). (8)

The expectation term in the ShearletX objective (7) en-
sures that the image after masking and perturbing retains the
classification decision. We find that the spatial penalty is a
crucial technical addition, that deletes classifier irrelevant

2For the digital shearlet transform, we used pyshearlab from http:
//shearlab.math.lmu.de/software#pyshearlab.

Figure 2. Left Column: Input images classified by VGG-19 [39].
Comparing CartoonX by Kolek et al. [24], WaveletX (ours), and
ShearletX (ours). WaveletX improves CartoonX significantly due
to the spatial penalty that eliminates undesirable blurry spatial ar-
eas that are difficult to interpret. Note that ShearletX represents
relevant edges better and produces much crisper explanations than
WaveletX. This is because anisotropic features, such as edges, can
be encoded more efficiently with shearlets than with wavelets.

spatial energy in the explanation and ensures that no irrel-
evant blurry areas remain in the explanation, as opposed to
CartoonX [24] (see Figure 2). A smooth area is retained
by ShearletX only if it is important for the classifier (see
English Foxhound and Frog in Figure 1). Moreover, the
color can be distorted if the original color is not important.
When the color is important for the classifier, ShearletX will
keep the color (see, for example, Figure 1, where ShearletX
keeps the brown color of the English Foxhound’s head and
the green color of the Frog).

For the perturbation distribution ⌫, we deliberately avoid
in-distribution perturbations from an in-painting network,
as opposed to [8]. The reason is that in-distribution masks
may delete parts of the image that are relevant to the clas-
sifier if the in-painter in-fills such parts effectively, mak-
ing the explanation hard to interpret. Therefore, we follow
the out-of-distribution approach of CartoonX [24], and use
white noise in the representation system that is adapted to
the mean and variance of the shearlet coefficients (see Sup-
plementary Material B.1 for details).

WaveletX

Solely adding the spatial penalty to the CartoonX objec-
tive yields significantly better explanations than the origi-
nal CartoonX method and eliminates the undesirable blurry
areas, that are difficult to interpret (see Figure 2). We will
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refer to this new method as WaveletX to highlight the fact
that WaveletX and ShearletX only differ in the choice of
the representation system. The WaveletX optimization ob-
jective is

max
m

E
u⇠⌫

h
�c(DWT �1(m�DWT (x) + (1�m)� u))

i

� �1kmk1 � �2kDWT �1(m�DWT (x))k1, (9)

where DWT denotes the discrete wavelet transform of im-
ages. Note that we recover the CartoonX [24] objective if
we set �2 = 0. In Figure 2, we compare CartoonX [24],
WaveletX, and ShearletX on examples classified by a VGG-
19 [39] network trained on ImageNet [11].

5. Theory

Fong and Vedaldi [14] first observed the problem of ex-
planation artifacts for mask explanations. We identify ex-
planation artifacts as artificial edges in the explanation (see
Figure 3). Artificial edges can form patterns that activate the
class label but are not present in the original image. There-
fore, a good mask explanation method should not be able to
form many artificial edges. In this section, we show theo-
retically that ShearletX and WaveletX are not prone to ar-
tificial edges, by proving that the continuous counterparts
of WaveletX and ShearletX cannot create edges that are not
present in the original image.

ShearletX is Resistant to Edge Artifacts

In this section, we prove that ShearletX applied to contin-
uous images cannot create artificial edges. When working
with shearlets, it is common to model edges as the wave-
front set of a continuous image [2,3]. The wavefront set is a
concept that characterizes the oriented singularities of dis-
tributions, in particular, of L2(R2) functions. We state the
mathematical definition of the wavefront set below and pro-
vide an intuitive explanation afterwards since the definition
is somewhat technical.

Definition 5.1. [20, Section 8.1] Let f 2 L2(R2) and k 2
N. A point (x,�) 2 R2 ⇥ S1 is a k-regular directed point
of f if there exist open neighbourhoods Ux and V� of x and
�, respectively, and a smooth function � 2 C1(R2) with
supp� ⇢ Ux and �(x) = 1 such that
��c�f(⇠)

��  Ck

�
1 + |⇠|

��k 8 ⇠ 2 R2 \ {0} s.t. ⇠/|⇠| 2 V�

holds for some Ck > 0, where bf denotes the Fourier trans-
form of f . The k-wavefront set WFk(f) is the complement
of the set of all k-regular directed points and the wavefront
set is defined as WF(f) :=

S
k2N WFk(f).

The wavefront set defines the directional singularities of
a function f via the Fourier decay of local patches of the

function. For piece-wise smooth images with discontinu-
ities along smooth curves, the wavefront set is exactly the
set of edges with the orientation of the edge. This explains
why the wavefront set is a good model for edges. The wave-
front set of an image can be completely determined by the
decay properties of its shearlet coefficients [15]. More pre-
cisely, the regular point-direction pairs of an image (the
complement of the wavefront set) are exactly the pairs of
locations and directions where the shearlet coefficients ex-
hibit rapid decay as a ! 0 (the precise statement can be
found in Supplementary Material A). We use this property
of shearlets to prove that ShearletX cannot produce artificial
edges for continuous images.

Theorem 1. Let x 2 L2[0, 1]2 be an image modeled as
a L2-function. Let m be a bounded mask on the shearlet
coefficients of x and let x̂ be the image x masked in shearlet
space with mask m. Then, we have WF(x̂) ⇢ WF(x) and
thus masking in shearlet space does not create new edges.

The idea behind the proof is that creating artificial sin-
gularities in regular point-directions of the image would
require creating asymptotically slower shearlet decay by
masking the coefficients. This is impossible, as masking
can only increase the decay rate. See Supplementary Mate-
rial A for a full proof of Theorem 1.

While in the real world images are digital, they are still
an approximation of continuous images that becomes better
with increasing resolution. In Section 7, we show exper-
imentally that Theorem 1 indeed predicts the behavior of
masked digital images, and ShearletX is not susceptible to
explanation artifacts.

WaveletX is Resistant to Edge Artifacts

When analyzing WaveletX, we opt to model singularities
via local Lipschitz regularity instead of using the wavefront
set approach. This approach is preferable since the Lips-
chitz regularity of a function is completely characterized by
the rate of decay of its wavelet coefficients, as the scale goes
to zero [31, Theorem 9.15]. We hence define a regular point
as a point for which the image is ↵-Lipschitz regular in a
neighborhood of the point, with ↵ � 1 (see Definition A.2
in the supplementary material for Lipschitz regularity, and,
in particular, the definition for ↵ > 1). A singular point is
a point which is not regular. Singular points describe image
elements such as edges and point singularities.

Theorem 2 (Informal version of Theorem 6). Let x 2
L2[0, 1]2 be an image modeled as a L2-function. Masking
the wavelet coefficients of x with a bounded mask cannot
create new singularities.

The above theorem is an informal version of our for-
mal Theorem 6 in Supplementary Material A. Similarly to
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Figure 3. First row: image correctly classified as barn, WaveletX,
ShearletX, smooth pixel mask by Fong et al. [14], and pixel mask
without smoothness constraints. Second row visualizes the edges
in the image and all explanations. Edges marked in red are arti-
ficial and quantified by the hallucination score (HS). Green edges
are present in the original image. The pixel mask without smooth-
ness constraints hallucinates an artificial barn, which is an example
of an explanation artifact and results in a very high HS.

ShearletX, Theorem 2 predicts the behavior for digital im-
ages well, and WaveletX is not prone to produce explana-
tion artifacts.

6. Explanation Metrics for Mask Explanations

We now propose two new explanation metrics for mask
explanations: (1) The conciseness-preciseness (CP) score
to evaluate the preciseness of a mask explanation adjusted
for its conciseness (2) The hallucination score to quantify
explanation artifacts.

Conciseness and Preciseness

Several metrics, such as remove and retrain (ROAR) [19]
and area over the perturbation curve (AOPC) [4], have been
proposed to quantify the fidelity of saliency maps. How-
ever, these metrics are designed for pixel attribution meth-
ods that provide an ordering of feature importance. Mask
explanations can be immediately evaluated by simply plug-
ging in the masked image into the classifier and checking
the class probability. A good mask explanation retains the
class probability of the prediction. We refer to this property
as preciseness of the explanation. However, a good expla-
nation mask should not only be precise but also concise,
i.e., the mask should extract the least amount of informa-
tion from the available pool of data. We introduce a class of
new explanation metrics that combine both aspects into one
metric, which we call conciseness-preciseness (CP) scores.
The definition is

CP =
Retained Class Probability

Retained Image Information
. (10)

The retained class probability (preciseness) is computed
as the class probability after masking divided by the class

probability before masking. We compute the retained in-
formation of the image (conciseness) as the information of
the masked image divided by the information of the orig-
inal image. We experiment with three different ways of
measuring the information of the image: (1) CP-Entropy:
The entropy in the respective image representation system
(wavelet, shearlet, or pixel), (2) CP-`1: The `1-norm in
the respective representation system (wavelet, shearlet, or
pixel), (3) CP-`1 Pixel: The `1-norm in pixel space irre-
spective of representation system. For the CP-Entropy, we
compute the retained image information of an image with
representation coefficients {ci}i and mask {mi}i as

exp
�
H{|mici|2}i

�
/ exp

�
H{|ci|2}i

�
(11)

where H denotes the entropy of the induced probability
distributions. We use here the exponential of the entropy,
also called the extent [6], as it balances the “dimensions”
and when normalized as in (11) it does not depend on the
unit of length in the domain of the image. For CP-`1, we
compute the retained information as the relative sparsity
k{mici}ik1/k{ci}ik1. Note that by measuring information
through entropy or `1-norm in the respective representation
system we normalize for the fact that shearlets and wavelets
already represent images much more sparsely than pixel
representations. The CP score can be interpreted as a mea-
sure of preciseness adjusted for by the conciseness of the
explanation. Explanations with higher CP scores are supe-
rior, assuming no explanation artifacts, which we measure
with another metric that we define next.

Hallucination Score

Artificial edges in a mask explanation are edges that are
present after masking that were not present in the original
image. They can form artificial patterns, that appear as hal-
lucinations (see the far right example in Figure 3). The hal-
lucinations can activate the class label, which is what the
explanation optimized for, but do not actually explain the
prediction. Therefore, artificial edges are undesirable and
can lead to explanation artifacts. We propose to measure
such explanation artifacts with a metric that we call hallu-
cination score (HS). We compute the hallucination score of
an explanation as the number of edges that occur in the ex-
planation but not in the original image, normalized by the
number of edges that occur in the original image:

HS =
#
⇣

Edges(Explanation) \ Edges(Image)
⌘

#Edges(Image)
, (12)

where “Explanation” refers to the image obtained after
masking, “Image” refers to the original input image, and
“Edges” denotes an edge extractor that computes the set of
pixels that belong to the edges of the input. Figure 3 pro-
vides an example for the hallucination score.
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(a) (b) (c)

Figure 4. Scatter plot of hallucinaton score (lower is better) and conciseness-preciseness score (higher is better) for ShearletX, WaveletX,
smooth pixel masks [13], and pixel mask without smoothness constraints. Retained information of an image for the CP score is measured
(a) as entropy in respective representation, (b) as `1-norm in respective representation, (c) as `1-norm in pixel space irrespective of repre-
sentation. The black horizontal line marks explanations where the artificial edges amount to 20% of all edges in the original image. The
mean hallucination and CP score are highlighted as big colored dots. ShearletX beats smooth pixel masks and WaveletX across all CP
scores while having much better hallucination score than pixel masks without smoothness constraints.

7. Experiments

In this section, we experimentally show (a) that Shear-
letX and WaveletX do not create a significant amount of ar-
tificial edges in practice and are thus resilient to explanation
artifacts and (b) that ShearletX outperforms all other mask
explanation methods in conciseness-preciseness scores.

Implementation

We use the ImageNet [11] dataset and indicate in each ex-
periment which classification model was used. For Shear-
letX, we optimize the shearlet mask with the Adam op-
timizer [23] for 300 steps on the ShearletX objective in
(7). We use a single shearlet mask for all three RGB chan-
nels as in [24]. The hyperparameter choice for ShearletX,
WaveletX, smooth pixel masks, and pixel masks without
smoothness constraints are discussed in detail in Supple-
mentary Material B.1. We note as a limitation that, in
practice, ShearletX is 5⇥ times slower than smooth pixel
masks [13] and WaveletX but not prohibitively slow for
many applications (see Supplementary Material B.2 for run-
time comparison). For details on the edge detector that we
used for the hallucination score, see Supplementary Mate-
rial B.1.

Comparison of Mask Explanations

We compute ShearletX, WaveletX, the smooth pixel mask
by Fong et al. [14] (with area constraint 20%), and the
pixel mask without smoothness constraints for 500 random
samples from the ImageNet validation dataset and compute
the hallucination scores and conciseness-preciseness scores,

which are plotted in Figure 4. We use a ResNet18 [17]
classifier but our results are consistent across different Im-
ageNet classifiers and different area constraints (5%, 10%,
and 20%) for the smooth pixel mask (see Supplementary
Material B.3).

The scatter plots in Figure 4 show that pixel masks with-
out smoothness constraints have extremely high hallucina-
tion scores, which confirms their proneness to explanation
artifacts. The smooth pixel masks by Fong et al. [14] have
almost no artificial edges (hallucination score very close to
zero) because the masks are constrained to be extremely
smooth. ShearletX and WaveletX have on average a mod-
erately higher hallucination score than smooth pixel masks
but their upper tail remains vastly lower than the tail for
pixel masks without smoothness constraints (note the log-
arithmic scales in the scatter plots). In Figure 3, one can
see that a hallucination score in the order of 10�2 produces
very few visible artificial edges. Therefore, we conclude
from the scatter plot that ShearletX and WaveletX create
very few artificial edges and are resilient to explanation ar-
tifacts. This also confirms that our Theorem 1 and Theorem
2 approximately hold for discrete images.

Figure 4 further shows that ShearletX has a significantly
higher CP-Entropy, CP-`1, and CP-`1 Pixel score than the
smooth pixel masks by Fong et al. [14]. This validates our
claim that ShearletX can delete many irrelevant features that
the smooth pixel masks cannot. ShearletX also outperforms
WaveletX on all CP scores and even slightly on the hallu-
cination score. Pixel masks without smoothness constraints
have the highest CP-Entropy score but are disqualified due
to their unacceptable hallucination score. ShearletX, is the
only method that has top performance on all CP scores.
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Figure 5. ShearletX compared to smooth pixel mask [13], LIME [35], Grad-CAM [37], LRP [5], Integrated Gradients [42], and Guided
Backprop [41]. First two examples are correctly classified by VGG [39] and last two examples are misclassified by MobilenetV3Small [21].
For the harp, note that ShearletX is the only method that effectively seperates the harp from the child playing the harp, indicating, the harp
can also be correctly classified without a human playing the harp. For the throne, we observe that ShearletX is able to seperate the throne
from other decorations. Here, other methods such as guided backprop, seem to operate more like an edge detector and highlight many
other edges such as the floor tiles. Smooth methods such as Grad-CAM and the smooth pixel mask give very rough localizations of part of
the throne. Finally, for the misclassifications, which we find more challenging to explain, we can see that only ShearletX can effectively
expose the crab and the iron that the classifier saw in the hangers and soccer ball, respectively.

General Saliency Map Comparison

Our experimental results proved that ShearletX has an ad-
vantage over the state of the art mask explanation by Fong
et al. [13]. Other saliency map methods [5,37,41,42] assign
a relevance score to each pixel, allowing to order pixels by
relevance. Such methods need to be quantitatively validated
post-hoc with metrics such as the area over the perturbation
curve [4] or the pointing game [13]. It is challenging to
meaningfully compare ShearletX on such metrics, since (1)
we cannot order the features in ShearletX by relevance due
to the binary nature of masks and (2) in ShearletX the mask
is in shearlet space and not in pixel space. Nevertheless, in
Supplementary Material B.4 we add a quantitative compar-
ison. In Figure 5, we compare ShearletX qualitatively to
pixel attribution methods to demonstrate the insights Shear-
letX can give that more heuristic pixel attribution methods
cannot.

8. Conclusion

We presented ShearletX, a novel mask explanation
method, and two explanation metrics (hallucination score
and conciseness-preciseness score) to evaluate mask ex-
planations. ShearletX is more effective than other meth-
ods at separating fine-detail patterns, which are relevant
for the classifier, from nearby nuisance patterns, that do
not affect the classifier. Our theoretical results and exper-
iments show ShearletX is well-protected against explana-
tion artifacts and delivers superior explanations than pre-
vious mask explanation methods. Our examples illustrate
cases when ShearletX can meaningfully interpret classifica-
tions but pixel attribution methods cannot. In the future, we
will focus on improving the runtime of ShearletX, which is
currently slower than other mask explanation methods, to
provide real-time explanations of excellent quality.
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