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Figure 1. (a) Set of photos generated by the proposed method. (b) While existing methods can generate faithful photos from perfectly
pixel-aligned edgemaps, they fall short drastically in case of highly deformed and sparse free-hand sketches. In contrast, our autoregressive
sketch-to-photo generation model produces highly photorealistic outputs from highly abstract sketches.

Abstract
Given an abstract, deformed, ordinary sketch from un-

trained amateurs like you and me, this paper turns it into a
photorealistic image – just like those shown in Fig. 1(a),
all non-cherry-picked. We differ significantly from prior
art in that we do not dictate an edgemap-like sketch to
start with, but aim to work with abstract free-hand human
sketches. In doing so, we essentially democratise the sketch-
to-photo pipeline, “picturing” a sketch regardless of how
good you sketch. Our contribution at the outset is a de-
coupled encoder-decoder training paradigm, where the de-
coder is a StyleGAN trained on photos only. This impor-
tantly ensures that generated results are always photoreal-
istic. The rest is then all centred around how best to deal
with the abstraction gap between sketch and photo. For
that, we propose an autoregressive sketch mapper trained
on sketch-photo pairs that maps a sketch to the StyleGAN
latent space. We further introduce specific designs to tackle
the abstract nature of human sketches, including a fine-
grained discriminative loss on the back of a trained sketch-
photo retrieval model, and a partial-aware sketch augmen-
tation strategy. Finally, we showcase a few downstream
tasks our generation model enables, amongst them is show-
ing how fine-grained sketch-based image retrieval, a well-
studied problem in the sketch community, can be reduced
to an image (generated) to image retrieval task, surpass-
ing state-of-the-arts. We put forward generated results in
the supplementary for everyone to scrutinise. Project page:
https:// subhadeepkoley.github.io/PictureThatSketch

1. Introduction
People sketch, some better than others. Given a shoe

image like ones shown in Fig. 1(a), everyone can scribble
a few lines to depict the photo, again mileage may vary –
top left sketch arguably lesser than that at bottom left. The
opposite, i.e., hallucinating a photo based on even a very ab-
stract sketch, is however something humans are very good
at having evolved on the task over millions of years. This
seemingly easy task for humans, is exactly one that this pa-
per attempts to tackle, and apparently does fairly well at –
given an abstract sketch from untrained amateurs like us,
our paper turns it into a photorealistic image (see Fig. 1).

This problem falls into the general image-to-image trans-
lation literature [41, 64]. Indeed, some might recall prior
arts (e.g., pix2pix [41], CycleGAN [105], MUNIT [38], Bi-
cycleGAN [106]), and sketch-specific variants [33, 86] pri-
marily based on pix2pix [41] claiming to have tackled the
exact problem. We are strongly inspired by these works, but
significantly differ on one key aspect – we aim to generate
from abstract human sketches, not accurate photo edgemaps
which are already “photorealistic”.

This is apparent in Fig. 1(b), where when edgemaps are
used prior works can hallucinate high-quality photorealis-
tic photos, whereas rather “peculiar” looking results are ob-
tained when faced with amateur human sketches. This is be-
cause all prior arts assume pixel-alignment during transla-
tion – so your drawing skill (or lack of it), got accurately re-
flected in the generated result. As a result, chance is you and
me will not fetch far on existing systems if not art-trained to
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sketch photorealistic edgemaps – we, in essence, democra-
tise the sketch-to-photo generation technology, “picturing”
a sketch regardless of how good you sketch.

Our key innovation comes after a pilot study where we
discovered that the pixel-aligned artefact [69] in prior art
is a direct result of the typical encoder-decoder [41] archi-
tecture being trained end-to-end – this enforces the gener-
ated results to strictly follow boundaries defined in the in-
put sketch (edgemap). Our first contribution is therefore a
decoupled encoder-decoder training, where the decoder is
pre-trained StyleGAN [46] trained on photos only, and is
frozen once trained. This importantly ensures generated re-
sults are sampled from the StyleGAN [46] manifold there-
fore of photorealistic quality.

The second, perhaps more important innovation lies with
how we bridge the abstraction gap [20, 21, 36] between
sketch and photo. For that, we propose to train an encoder
that performs a mapping from abstract sketch representa-
tion to the latent space of the learned latent space of Style-
GAN [46] (i.e., not actual photos as per the norm). To train
this encoder, we use ground-truth sketch-photo pairs, and
impose a novel fine-grained discriminative loss between the
input sketch and the generated photo, together with a con-
ventional reconstruction loss [102] between the input sketch
and the ground-truth photo, to ensure the accuracy of this
mapping process. To double down on dealing with the ab-
stract nature of sketches, we further propose a partial-aware
augmentation strategy where we render partial versions of a
full sketch and allocate latent vectors accordingly (the more
partial the input, the lesser vectors assigned).

Our autoregressive generative model enjoys a few in-
teresting properties once trained: (i) abstraction level (i.e.,
how well the fine-grained features in a sketch are reflected
in the generated photo) can be easily controlled by alter-
ing the number of latent vectors predicted and padding the
rest with Gaussian noise, (ii) robustness towards noisy and
partial sketches, thanks to our partial-aware sketch aug-
mentation strategy, and (iii) good generalisation on input
sketches across different abstraction levels (from edgemaps,
to sketches across two datasets). We also briefly show-
case two potential downstream tasks our generation model
enables: fine-grained sketch-based image retrieval (FG-
SBIR), and precise semantic editing. On the former, we
show how FG-SBIR, a well-studied task in the sketch com-
munity [10,71–73], can be reduced to an image (generated)
to image retrieval task, and that a simple nearest-neighbour
model based on VGG-16 [78] features can already surpass
state-of-the-art. On the latter, we demonstrate how pre-
cise local editing can be done that is more fine-grained than
those possible with text and attributes.

We evaluate using conventional metrics (FID, LPIPS),
plus a new retrieval-informed metric to demonstrate supe-
rior performance. But, as there is no better way to convince

the jury other than presenting all facts, we offer all gener-
ated results in the supplementary for everyone to scrutinise.

2. Related Works
Image-to-Image Translation: Images from source do-
main can be translated to a specific target domain through
a learned generative mapping function, to perform tasks
like semantic label-map to RGB [65], day-to-night [41],
edgemap-to-photo [41] translations. Following the advent
of deep neural networks, the seminal work of pix2pix [41]
introduced a unified framework that trains a U-Net-based
generator [70] with a weighted summation of reconstruc-
tion and adversarial GAN losses [41]. It essentially gen-
erates a pixel-to-pixel mapped output I ′(x, y) in the tar-
get domain corresponding to input I(x, y) from source do-
main [41]. This has consequently laid foundation to various
vision tasks, like image colourisation [90], conditional im-
age generation [18,38], style-transfer [105], inpainting [34]
and enhancements [51, 67, 105]. Furthermore, pix2pix first
illustrated generation of pixel-perfect photos [41] even from
sparse line drawings like edgemaps. However, making it
work for free-hand sketch is still an open problem as sketch
is highly abstract [58], lacking alignment, unlike edgemaps.
Sketch-to-Photo Generation: Photorealistic image
(photo) generation from free-hand sketches is still in its
infancy, despite significant advances on various sketch-
based vision tasks [9, 11, 73, 84, 91]. Pix2pix [41] forms
the basis for most of the recent deep learning-based sketch-
to-photo generation frameworks (Table 1). Particularly
they use either GAN-based models [16, 29] with condi-
tional self-attention [53], feature manifold projection [15],
domain adaptation [89], two-stage generation [30], or
contextual loss [58]. Nonetheless, the majority of these
works [15, 53] are restricted to using edgemaps as a
pseudo sketch-replacement for model training. However,
a free-hand sketch [62] with human-drawn sparse and
abstract strokes, is a way of conveying the “semantic
intent”, and largely differs [58] from an edgemap. While
edgemap perfectly aligns with photo boundaries, a sketch
is a human abstraction of any object/concept, usually with
strong deformations [58]. To alleviate this, earlier attempts
have been made via unsupervised training [57, 97] by
excluding paired sketch-photo data, or using specific loss
functions [58]. The generated images nevertheless follow
the sketch boundaries, yielding deformed photos.
GAN for Vision Tasks: In a typical GAN model, the gen-
erator directly produces new samples from random noise
vectors while the discriminator aims to differentiate be-
tween real and generator-produced fake samples, improving
each other via an adversarial game [31]. With significant
progress in design [13,44,45], GAN-based methods secured
success in a variety of downstream tasks like video genera-
tion [26], image inpainting [99], manipulation [42], [104],
super-resolution [28], etc. Generating highly photorealistic
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Table 1. Recent sketch-to-photo generation literature can be grouped as – (i) Categorical, (ii) Semi Fine-Grained (FG), (iii) Scene-level,
and (iv) Facial-Photo. Additionally, we summarise existing state-of-the-arts in terms of training data preparation and salient design choices.

Paper Category Type of Sketch Data Preparation + Salient Design Component

SketchyGAN [16] Categorical Synth+Real • Fully automatic edgemap augmentation + input injection at multiple layers.
iSketch&Fill [30] Categorical Synthetic • Edgemap creation with Im2Pencil [54] and sketch-simplification [77] + ResNet [35] generator.

CoGS [33] Categorical Synth+Real • Saliency with [40] for synthetic sketches + VQ-GAN [25] with VAE over codebook vectors.

ContextGAN [58] Semi-FG Synthetic • Synthetic sketch generation with XDoG [87] and [43] + optimisation-based GAN inversion.
Two-Stage [57] Semi-FG Real • Synthetic noisy-stroke for augmentation + two-stage sketch-to-edgemap-to-photo generation.
SYO-GAN [86] Semi-FG Synthetic • Pseudo sketch creation with PhotoSketch [52] + fine-tuning GAN model with a few pose-specific sketches.

SketchyCOCO [29] Scene-level Semi-real • Synthetic scene sketch + generation of foreground object followed by contextual background.
Two-Stage [85] Scene-level Synthetic • Edgemaps generated with [66] + edgemap standardisation followed by content-style disentanglement.

DeepFaceDraw [15] Facial photo Synthetic • Photocopy filter and [77] for training data + region-wise embedding with 2-stage generation.
Controlled S2I [96] Facial photo Synthetic • HED [92] for edgemaps + dilation-based sketch refinement network for adapting edge-based models.

Proposed Fine-grained Real • Unlabelled photos & sketch-photo pairs + autoregressive latent-mapper & pre-trained StyleGAN [46].

outputs, StyleGAN [46, 47] introduced a non-linear map-
ping from input code vector z ∈ Z to intermediate latent
code w ∈ W , which controlled the generation process.
While traditional GAN is unable to generate conditional
output, it can be augmented with additional information
to conditionally control the data generation process [61].
However, existing conditional generative [55, 79] models
are unable to inject fine-grained control, especially when
conditioned with abstract free-hand sketches.
GAN Inversion: Exploring GANs has recently led to an
interest in inverting a pre-trained GAN [4] for tasks like
image manipulation [4]. Typical GAN training aims to
learn the weights of generator and discriminator with ap-
propriate loss objectives, to generate random new images
G(z) by sampling random noise vectors z ∈ Z [31]. Con-
trarily, during GAN inversion, given a reference image we
try to find a noise vector z∗ in the generator latent space
that can accurately reconstruct that image while its weights
fixed [104]. While some methods [1,2,22,23] directly opti-
mise the latent vector to minimise the reconstruction loss, a
few works [4,32,69,82] train dedicated encoders to find the
latent code corresponding to an input image. Among them,
optimisation-based methods perform better in terms of re-
construction accuracy, while encoding-based methods work
significantly faster. Other methods [5, 103], take a hybrid
approach in order to attain “the best of both worlds” [88].
However, images from different domain (e.g., semantic la-
bel map, edgemap) are not invertible into the latent space of
a photo pre-trained generator [6]. Consequently, end-to-end
trainable methods [3,14,63,69] emerged which aims to map
a given image (from a source domain) into the latent space
of a pre-trained GAN trained with target domain images.
These learned encoders are then used in tasks like, inver-
sion [4], semantic editing [4], super-resolution [60], face
frontalisation [69], inpainting [69].

3. Pilot Study: Problems and Analysis
Challenges: Sketches being highly abstract in nature, gen-
erating a photo from a sketch can have multiple possi-
ble outcomes [69]. Generating photorealistic images from
sparse sketches incurs three major challenges – (i) Locality-
bias assumes that any particular output (e.g., photo) pixel

position I ′(x, y) is perfectly aligned with the same pixel lo-
cation I(x, y) of the conditional input (e.g., sketch) [69].
However, a free-hand sketch being highly deformed does
not necessarily follow the paired photo’s intensity bound-
ary [36]. (ii) Hallucinating the colour/texture in a realis-
tic and contextually-meaningful manner, is difficult from
sparse sketch input. (iii) Deciphering the fine-grained user-
intent is a major bottleneck as the same object can be
sketched in diverse ways by different users [75].
Analysis: The popular encoder-decoder architecture [41]
for converting an input sketch S to output RGB photo R
via image-to-image translation [41] can be formulated as:

P (R|S) = P (Z|S)︸ ︷︷ ︸
Encoder

P (R|Z)︸ ︷︷ ︸
Decoder

(1)

where the encoder P (Z|S) embeds the sketch into a la-
tent feature Z , from which the decoder P (R|Z) gener-
ates the output photo. Existing works [18, 38, 105] have
evolved through designing task-specific encoder/decoder
frameworks. Despite achieving remarkable success in other
image translation problems (e.g., image-restoration [67],
colourisation [41]), adapting them off-the-shelf fails for our
setup. Importantly, we realise that as the loss backpropa-
gates from the decoder to encoder’s end, while training [41]
with sketch-photo pairs (S,R), it implicitly enforces the
model to follow sketch as a pseudo edge-boundary [57].
Consequently, the model is hard-conditioned by the sketch
to treat its strokes as the intensity boundary of the generated
photo, thus resulting in a deformed output.

Instead of end-to-end encoder-decoder training, we
adopt a two stage-approach (Fig. 2). In the first stage, we
model P (R|Z) as an unsupervised GAN [31], which being
trained from a large number of unlabelled photos of a par-
ticular class, is capable of generating realistic photos G(z),
given a random vector z ∼ N (0, 1) [31]. As GAN models
learn data distribution [68], we can loosely assume that any
photo can be generated by sampling a specific z∗ from the
GAN latent space [1]. Once the GAN model is trained, in
the second stage, keeping the G(·) fixed, we aim to learn
P (Z|S) as a sketch mapper that would encode the input
sketch S into a latent code Z corresponding to the paired
photo R in the pre-trained GAN latent space.
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Advantages of decoupling the encoder-decoder training
are twofold – (i) the GAN model [46, 47] pre-trained on
real photos is bound to generate realistic photos devoid of
unwanted deformation, (ii) while output quality and diver-
sity of coupled encoder-decoder models were limited by the
training sketch-photo pairs [41], our decoupled decoder be-
ing independent of such pairs, can model the large variation
of a particular dataset using unlabelled photos [46,47] only.
Sketch-photo pairs are used to train the sketch mapper only.

Pre-trained
GAN

Sketch
Mapper

Figure 2. The sketch mapper aims to predict the corresponding la-
tent code of associated photo in the manifold of pre-trained GAN.

4. Background: StyleGAN
In a GAN [31] framework, a generator G(·) aims to gener-
ate an image G(z) from a noise vector z ∈ Z of size Rd

sampled from a Gaussian distribution [31], while a discrim-
inator D(·) tries to distinguish between a real and a gen-
erated fake image [31]. The training progresses through a
two-player minimax game, thus gradually improving each
other over the value function V (D,G) as [31]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(2)

Instead of passing a random noise vector z ∈ Z directly
as the network input [68], StyleGAN [46,47] eliminates the
idea of input layer and always starts from a learned con-
stant tensor of size R4×4×d. The generator network G(·)
consists of a number of progressive resolution blocks, each
having the sequence conv3×3 � AdaIN � conv3×3
� AdaIN [46, 47]. StyleGAN employs a non-linear map-
ping network f : Z → W (an 8-layer MLP) to trans-
form z into an intermediate latent vector w ∈ W of size
Rd [46, 47]. The same latent vector w, upon repeatedly
passing through a common affine transformation layer A at
each level of the generator network, generates the style y =
(ys, yb) = A(w) for that level. Adaptive instance normalisa-
tion (AdaIN) [46,47] is then controlled by y via modulating
the feature-map xf as AdaIN(xf , y) = ys

xf−µ(xf )
σ(xf )

+ yb
after each conv3×3 block of G(·) [46, 47]. Moreover,
stochasticity is injected by adding one-channel uncorrelated
Gaussian noise image (per-channel scaled with a learned
scaling factor B) to each layer of the network before every
AdaIN operation [46, 47].

However, due to the limited representability and disen-
tanglement of a single latent vector w ∈ W [1], we embed
the input in the extended W+ latent space [1] consisting of
different latent vectors w+ ∈ W+ of size Rk×d, one for
each level of the generator network G(·). For an output of

resolution M ×M , k = 2 log2(M)− 2 [47]. In this work,
we set M = 256, making k = 14.

5. Sketch-to-Photo Generation Model
Overview: We aim to devise a sketch-to-photo genera-
tion model utilising the rich latent space of a pre-trained
StyleGAN [47] trained on a particular class to achieve fine-
grained generation. Once the StyleGAN [47] is trained, we
fix its weights and train a sketch mapper Es that projects an
input sketch (s) into a latent code w+

s = Es(s) ∈ R14×d

lying in the manifold of pre-trained StyleGAN. In other
words, given a sketch input we aim to pick the correspond-
ing latent which when passed through the frozen genera-
tor G(·) would generate an output (r̂) most similar to the
ground-truth paired photo (r). In particular, we have three
salient design components: (i) an autoregressive sketch
mapper (ii) fine-grained discriminative loss besides usual
reconstruction objective, and (iii) a photo-to-photo mapper
Er working as a teacher [27] to improve the learning of Es.

5.1. Model Architecture
Baseline Sketch Mapper: Inspired by GAN inversion lit-
erature [88], we design our baseline sketch mapper using
a ResNet50 [35] backbone extracting feature map fs =
Fs(s) ∈ Rhf×wf×d. In order to generate the latent code
of size R14×d, we use 14 individual (not shared) latent em-
bedding networks (successive stride-two conv-layers with
LeakyReLU [93]), each of them takes fs as input to predict
a d-dimensional latent vector. Concatenating them results
in the R14×d latent code [69]. Finally, this latent code upon
passing through the pre-trained generator G(·) generates the
output photo r̂. Trained with weighted summation of pixel
loss (l2) and perceptual [102] loss, baseline sketch mapper
eventually learns to map an input sketch to its corresponding
photo in the latent space of a pre-trained StyleGAN [47].

However, it has a few limitations: Firstly, this baseline
ignores the varying levels of sketch abstraction [95]. Ide-
ally, for highly abstract/partial sketches, the output space
should be large with many plausible RGB photos [12],
whereas, for a detailed sketch, it should reflect the fine-
grained details. Secondly, reconstruction loss [69] alone,
fails to decipher the fine-grained semantic intent of the user.
Autoregressive Latent Mapper: Instead of predicting the
latent code w+

s = {w+
1 , · · · , w

+
k } in one shot, we aim to

model it in an autorgressive setting keeping a sequential
dependency among them. Given an input sketch (s), the
autoregressive sketch mapper Es modelling the distribution
P (w+

s |s) can be mathematically expressed as:

P (w+
s |s) = P (w+

1 , · · · , w
+
k |s) =

k∏
i=1

P (w+
i |w

+
<k, s) (3)

where the value of the ith predicted latent vector w+
i de-

pends on all preceding latents. The motivations behind au-
toregressive modelling are: (i) the disentangled latent space
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of a StyleGAN depicts semantic feature hierarchy [94],
where the latent code w+

1 to w+
14 controls coarse to fine-

level features. (ii) a highly abstract/partial sketch should
ideally influence the first few latent vectors governing the
major semantic structure, while the later vectors could
be sampled randomly from a Gaussian distribution to ac-
count for the uncertainty involving such sparse sketches.
Whereas, a highly detailed sketch should influence more la-
tent vectors to faithfully reproduce the user’s intent. (iii) we
aim to synergise the disentangled property of StyleGAN’s
latent space and the varying levels of sketch abstraction
such that the user has the provision to decide how far should
the generated output be conditioned on the input sketch and
to what extent can it be hallucinated. This is decided by the
number of steps of unrolling in the autoregressive process
and additionally keeping the later latent codes as random
vectors to facilitate multi-modal generation [69].

Given the extracted feature map fs = Fs(s), the global
average pooled holistic visual feature vector vh is trans-
formed via a fully-connected (FC) layer to initialise the
first hidden state of sequential decoder fseq(·, ·) as h0 =
tanh(Wh ⊗ vh + bh), with Wh, bh being trainable pa-
rameters. At every jth time step, we apply a shared FC-
layer on the hidden state hj to obtain the jth latent code
as w+

k = Wo ⊗ hj + bo. The current hidden state is up-
dated by hk = fseq(hk−1; η(fs, w

+
k−1)), where the pre-

vious hidden state of sequential decoder hk−1 holds the
knowledge about previously predicted latent codes, and η
models the influence of the formerly predicted latent code
on the next prediction along with extracting the relevant in-
formation from the feature map fs. In order to model the
interaction between w+

k and fs, we use a simple Hadamard
product f̂s = fs ⊙ w+

k−1 ∈ Rhf×wf×d which upon pass-
ing through successive two-strided convolutional layers fol-
lowed by LeakyReLU produces a d-dimensional output of
η. fseq(·, ·) can be modelled using any sequential network
(e.g., LSTM [37], RNN [59], GRU [17]) or self-attention
based transformer [83] network. However, here we use
GRU [17], as it was empirically found to be easily optimis-
able and cheaper while producing compelling results. We
wrap this entire process inside the sketch mapper Es.

To allow multi-modal generation, we always predict a
maximum 10 out of the 14 unique latent vectors and sample
the rest 4 from Gaussian distribution to inject output vari-
ation [69]. Moreover, to enforce our model in learning to
generate from partial sketches, we introduce a smart aug-
mentation strategy, where, we partially render the sketch
from 30-100% at an interval of 10%. While feeding the
{30%, 40%, · · · , 100%} sketches, we enforce the mapper
to predict only the first m = {3, 4, · · · , 10} correspond-
ing latent vectors. In every case, we pass random vectors
sampled from Gaussian distribution in place of the remain-
ing (14-m) unpredicted vectors. This strategy ensures that

GRU

Coarse

Medium

Fine

Pre-trained
FG-SBIR

GT

4 X 4 Const.

GRU

GRU

Figure 3. Es learns to map a sketch to the latent code of its paired
photo in a pre-trained StyleGAN manifold, trained with a mix of
reconstruction, fine-grained discriminative, and distillation losses.

our model eventually learns to generate plausible photos at
varying levels of completion, thus allowing the user to con-
trol the extent of abstraction as per his/her choice.

5.2. Training Procedure
Reconstruction Loss: Given an input sketch-photo pair
{s, r} and the generated output photo r̂ = G(Es(s)), we
compute pixel level l2 reconstruction loss as:

Lrec(r, r̂) = ||r − r̂||2 (4)
Besides pixel-wise similarity, we also learn perceptual

similarities via LPIPS [102] loss, which has been found [32]
to retain photorealism. With ϕ(·) as the pre-trained percep-
tual feature encoder [102], LPIPS loss becomes:

LLPIPS(r, r̂) = ||ϕ(r)− ϕ(r̂)||2 (5)
Fine-Grained Discriminative Loss: While reconstruc-
tion loss aims to align the pixel values between gener-
ated and ground-truth photo, the discriminative sketch-
photo (paired) association compared to other photos needs
to be modelled further to reflect the fine-grained user intent
of input sketch in the output space. Triplet with cosine-
distance based pre-trained fine-grained SBIR [19] model
Fg(·) places a sketch nearer to its paired photo compared to
others in a joint-embedding space. Therefore, we compute
a discriminative fine-grained loss that measures the cosine
similarity between s and r̂ as:

Ldisc(s, r̂) = 1− Fg(s) · Fg(r̂)

||Fg(s)|| ||Fg(r̂)||
(6)

Photo-to-Photo Mapper as Teacher: Photo-to-photo
mapping being an easier task than sketch-to-photo under-
pins our motivation towards introducing a photo-to-photo
mapper Er(·) as a teacher [27] to additionally guide the
learning of our sketch-mapper Es(·), thus handling the sub-
jective nature of sketches and its resultant large sketch-
photo domain gap. Architecturally, Er(·) is identical to our
baseline Es(·) with the aim of reconstructing the input photo
(r) at the output (r̂): G(Er(r)) ≈ r̂. Once trained, latent
vectors predicted by Er (weights frozen) acts as a ground-
truth additionally supervising Es via a distillation loss as:

LKD(s, r) = ||Es(s)− Er(r)||2 (7)
We impose LKD only on the predicted latents (max 10)
not on the random ones. Our overall training objective is
Ltotal = λ1Lrec + λ2LLPIPS + λ3Ldisc + λ4LKD.
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6. Experiments
Dataset: UT Zappos50K [98] and pix2pix Handbag [41]
datasets are used to pre-train the StyleGAN generator in
shoe and handbag classes respectively. While for chair
class, we collected over 10, 000 photos from websites
like IKEA, ARGOS, etc. We used QMUL-ShoeV2 [12,
80], QMUL-ChairV2 [12, 80], and Handbag [81] datasets
containing sketch-photo pairs to train the sketch mapper.
Out of 6730/1800/568 sketches and 2000/400/568 photos
from ShoeV2/ChairV2/Handbag datasets, 6051/1275/400
sketches and 1800/300/400 photos are used for training re-
spectively, keeping the rest for testing. Notably, StyleGAN
pre-training does not involve any sketch-photo pairs.

Implementation Details: Adam [49] optimiser is used to
pre-train a category specific StyleGAN [47] with feature
embedding size of d = 512 for 8M iterations at learning
rate of 10−3 and batch size 8. Based on empirical observa-
tions, we disable path-length regularisation [47] and reduce
R1 regularisation’s weight to 2 for superior quality and di-
versity. We use a combination of Rectified Adam [56] and
Lookahead [101] method as an optimiser to train the sketch-
to-photo mapper for 5M iterations at a constant learning
rate of 10−5 and a batch size of 4. λ1, λ2, λ3, and λ4 are
set to 1, 0.8, 0.5, and 0.6 respectively.

Evaluation: We use four metrics – (i) Fréchet Inception
Distance (FID) [46]: uses pre-trained InceptionV3’s activa-
tion distribution statistics to estimate distance between syn-
thetic and real data where a lower value indicates better gen-
eration quality. (ii) Learned Perceptual Image Patch Simi-
larity (LPIPS) [102]: is a weighted l2 distance between two
ImageNet-pretrained AlexNet [50]-extracted deep features
of ground-truth and generated images. A higher LPIPS
value denotes better diversity. (iii) Mean Opinion Score
(MOS): for human study, each of the 30 human workers
was asked to draw 50 sketches in our system, and rate ev-
ery generated photo (both ours and competitor’s) on a scale
of 1 to 5 [39] (bad→excellent) based on their opinion of
how closely it matched their photorealistic imagination of
the associated sketch. For each method, we compute the
final MOS value by taking the mean (µ) and variance (σ)
of all 1500 of its MOS responses. (iv) Fine-Grained Metric
(FGM): to judge the fine-grainedness of sketch mapping,
we propose a new metric, which uses features from a pre-
trained FG-SBIR model [100] to compute cosine similarity
between input sketch and generated photo. A higher FGM
value denotes better fine-grained association between them.

Competitors: We compare our proposed framework with
various state-of-the-art (SOTA) methods and two self-
designed baselines. Among those, pix2pix [41] uses a con-
ditional generative model for sketch-to-photo translation.
MUNIT [38] aims to produce diverse outputs given one in-
put sketch. It tries to decompose an image into a content and

a style code followed by learning those codes simultane-
ously. CycleGAN [105] utilises cycle-consistency loss with
a GAN model for bidirectional image-to-image translation.
U-GAT-IT [48] uses an attention module for image trans-
lation while focusing on the domain-discriminative parts.
Moreover, employing a pre-trained StyleGAN [47] we com-
pare with the baseline B-Sketch Mapper which is equiva-
lent to the baseline sketch mapper described in Sec. 5.1.
Following optimisation-based GAN inversion [1], we de-
sign B-Sketch Optimiser where we iteratively optimise the
latent code using input sketch as a ground-truth with percep-
tual loss [102]. For a fair comparison, we trained all com-
peting methods in a supervised manner with sketch-photo
pairs from ShoeV2, ChairV2, and Handbag datasets.

6.1. Performance Analysis & Discussion
Result Analysis: The proposed method consistently sur-
passes (Table 2) other state-of-the-arts in terms of qual-
ity (FID), and diversity (LPIPS). Pix2pix [41] with its
naive conditional image-to-image translation formulation
is outperformed by CycleGAN [105] (by −14.26 FID on
ShoeV2), as the latter is reinforced with a cycle consistency
loss in an adversarial training paradigm in addition to the
bidirectional guidance. U-GAT-IT [48] with its attention-
based formulation, surpasses others proving the efficacy of
attention-module in image translation tasks. Although MU-
NIT [38] and pSp [69] supports multi-modal generation,
our method, excels both in terms of output diversity (0.489
LPIPS on ShoeV2). Naive Baselines of B-Sketch Mapper
and B-Sketch Optimiser with their simplistic design fall
short of surpassing the proposed framework. Our method
achieves the highest (Table 2) degree of fine-grained asso-
ciation (0.88 FGM on ShoeV2), thanks to its novel fine-
grained discriminative loss. When compared to our frame-
work, there exists a noticeable deformity in the photos gen-
erated by its competitors (Fig. 4). Photos generated by
pix2pix [41], MUNIT [38] and CycleGAN [105] suffer
from deformity and lack of photorealism. Although U-
GAT-IT [48] and pSp [69] outputs are somewhat realistic,
they are mostly unfaithful to the input sketch. As observed
from Fig. 4, the photos generated by SOTA methods almost
invariably fail to capture the semantic intent of the user,
yielding deformed images. Contrarily, given the visually
pleasing (Fig. 4), and richer generation quality, our method
vastly outperforms most SOTA and baselines in terms of
MOS value (Table 2). Furthermore, our method can repli-
cate the appearance of a given photo onto the generated
one (Fig. 4) by predicting coarse and mid-level latent codes
from the input sketch and taking the fine-level codes of the
reference photo predicted by our photo-to-photo mapper.

In summary, with the help of smooth [6] latent space of
StyleGAN [46, 47] along with auto-regressive sketch map-
per and the fine-grained discriminative loss, our approach
almost always ensures photorealistic translations with ac-
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Ours Pix2PixInput MUNIT Ours OursInput InputCycleGAN

ShoeV2 ChairV2 Handbag

pSpUGATITOurs-ref
Figure 4. Qualitative comparison with various state-of-the-art competitors on ShoeV2 dataset. Ours-ref (column 3) results depict that our
method can faithfully replicate the appearance of a given reference photo (shown in the top-right inset).

Table 2. Benchmarks on ChairV2, ShoeV2, and Handbag datasets.

Methods
ChairV2 ShoeV2 Handbag

FID↓ LPIPS↑ MOS↑ FGM↑ FID↓ LPIPS↑ MOS↑ FGM↑ FID↓ LPIPS↑ MOS↑ FGM↑µ± σ µ± σ µ± σ

pix2pix [41] 177.79 0.096 2.32±0.7 0.51 65.09 0.071 2.11±0.1 0.58 184.57 0.074 2.94±0.3 0.41
MUNIT [38] 168.81 0.264 2.28±0.3 0.37 92.21 0.248 2.01±0.5 0.49 175.68 0.163 2.11±0.2 0.33
CycleGAN [105] 124.96 0.000 2.38±0.1 0.45 79.35 0.000 2.64±0.6 0.53 150.11 0.000 2.87±0.1 0.38
U-GAT-IT [48] 107.24 0.000 2.71±0.8 0.32 76.89 0.000 2.87±0.7 0.44 127.49 0.000 2.96±0.5 0.30
pSp [69] 105.54 0.325 3.64±0.1 0.60 54.48 0.298 3.01±0.9 0.67 122.54 0.298 3.52±0.7 0.51

B-Sketch Optimiser 138.40 0.135 2.15±0.6 0.28 63.52 0.127 2.08±0.1 0.31 163.32 0.104 2.17±0.2 0.24
B-Sketch Mapper 111.99 0.228 3.51±0.3 0.56 57.27 0.218 3.14±0.2 0.61 130.87 0.138 3.01±0.3 0.45
Proposed 90.21 0.507 4.69±0.1 0.79 35.85 0.489 4.24±0.5 0.88 100.23 0.408 4.16±0.1 0.72

curate reproduction of users intent in the target domain.
Generalisation onto Unseen Dataset: Fig. 5 shows a few
shoe sketches randomly sampled from Sketchy [76] and
TU-Berlin [24] datasets, and a few XDoG [87] edgemaps.
While the edgemaps are perfectly pixel-aligned, sketches
show significant shape deformation and abstraction. How-
ever, our model trained on ShoeV2 generalises well to all
unseen sketch styles, yielding compelling results.

TU-Berlin Sketchy XDoG

Figure 5. Generalisation across unseen sketch styles.

Robustness and Sensitivity: The free-flow style of ama-
teur sketching is likely to introduce irrelevant noisy strokes
[10]. To prove our model’s robustness to noise, during
testing, we gradually add synthetic noisy strokes [57] onto
clean input sketches. Meanwhile, to assess sensitivity to
partial sketches [12], we render input sketches partially at
25%, 50%, 75%, and 100% completion-levels before gener-
ation. We observe (Fig. 6 (right)) that our method is resilient
to partial inputs, and the output quality remains steady even

when the input sketches are extremely noisy (Fig. 6 (left)).
As our method is not hard-conditioned on input sketches,
noise-addition or partial-completion has negligible impact
on the final output, thus achieving an impressive FID of 49.6
(ShoeV2) even with the addition of 80% noisy strokes.

Figure 6. Examples showing the effect of noisy stroke addition
(left) and generation from partial sketches (right).

6.2. Ablation on Design
[i] Benefit of W+-space embedding: To assess the contri-
bution of W+ latent space embedding, we design two ex-
periments – (a) W latent space, and (b) Naive W+. For W
latent space, given s, we employ a generic ResNet50 [35]
back-boned encoder producing a single latent vector w ∈
W of size Rd which upon repeatedly passing through ev-
ery level of StyleGAN, generates an output. Whereas, for
Naive W+ encoding, we extend (a) with an additional layer
to convert the w ∈ W latent vector to w+ ∈ W+ latent code
of size R14×d. Despite Naive W+ achieving lower FID than
W latent embedding, it causes a drastic FID surge (11.02
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on ShoeV2) when compared to Ours-full model (Table 3).
It shows how the proposed method improves output qual-
ity and diversity compared to naive embedding in the W or
W+. [ii] Effect of FG-discriminative loss: Fine-grained
discriminative loss aims to minimise the sketch-photo do-
main gap. Eliminating it causes a stark increase in FID of
14.44 on ShoeV2 dataset (Table 3). We hypothesise that this
drop is due to the lack of cross-domain regularisation of-
fered by the fine-grained discriminative loss. Furthermore,
as evident from the w/o FG-SBIR loss result in Table 3, it
apparently provides further guidance for better correlating a
sketch-photo pair. [iii] Choice of photo-to-photo mapper
as teacher: Training a good teacher [27] network should
not only be free of additional label-cost but should also be
well-suited to the student network’s objective [7]. We posit
that the photo-to-photo task is meaningful in this scenario,
as the GAN was pre-trained on photos only, without access
to any sketch. As seen in Table 3, omitting the Er teacher
network results in a noticeable drop in performance (FID of
11.02 on ShoeV2, confirming that Er as a teacher-assistant
handles the large sketch-photo domain gap efficiently. [iv]
Does autoregressive mapping help? To judge the con-
tribution of our autoregressive modelling, we replaced the
autoregressive module with the baseline latent mapper ex-
plained in Sec. 5.1. In w/o autoregressive, we see a signif-
icant dip (21.42 FID drop in ShoeV2) in the output quality.
A probable reason might be that the autoregressive module
helps in the sequential unrolling of the abstractness of an
input sketch, thus aiding in better semantic understanding.

Table 3. Ablation on design.

Methods ChairV2 ShoeV2
FID↓ LPIPS↑ FID↓ LPIPS↑

w/o autoregressive 111.99 0.228 57.27 0.218
w/o FG-SBIR loss 104.29 0.425 50.29 0.417
w/o Er teacher 99.38 0.418 46.87 0.404

Naive W+ 99.24 0.401 46.87 0.368
W latent space 107.99 0.359 52.35 0.344
Ours-full 90.21 0.507 35.85 0.489

Table 4. Results for standard FG-SBIR task.

Methods ChairV2 ShoeV2

Acc.@1 Acc.@5 Acc.@1 Acc.@5

Triplet-SN [100] 47.4 71.4 28.7 63.5
HOLEF-SN [81] 50.7 73.6 31.2 66.6
StyleMeUp [75] 62.8 79.6 36.4 68.1
CrossHier [74] 62.8 79.1 36.2 67.8
Semi-Sup [8] 60.2 78.1 39.1 69.9
Proposed 65.1 79.2 44.1 75.1

6.3. Downstream Applications
Fine-Grained SBIR: Fine-grained SBIR aims at retriev-
ing a particular image given a query sketch [100]. Here,
we perform retrieval by first translating a query sketch into
the photo domain, and then finding its nearest neighbour-
hood feature match in the entire photo gallery using an Im-
ageNet pre-trained VGG-16 [78] feature extractor. Hence,
we essentially convert the sketch-based retrieval task into an

image-based retrieval task. As seen in Table 4, our method
beats SOTA FG-SBIR schemes [8, 74, 75, 81, 100] in terms
of Acc.@q, which measures the percentage of sketches hav-
ing a true-paired photo in the top-q retrieved list.
Precise Semantic Editing: Local semantic image editing
is a popular application of GAN inversion [4]. Our method
enables realistic semantic editing, where modifying one re-
gion of an input sketch, yields seamless local alterations in
the generated images. Fig. 7 depicts one such sketch editing
episode where the user gradually changes the heel length
via sketch, to observe consistent local changes in the output
photo domain. To our best knowledge, this is one of the first
attempts towards such fine-grained semantic editing.

Figure 7. Sketches of an editing episode (edited strokes in red) and
corresponding output photos.

Fine-grained Control: The proposed method also allows
multi-modal generation with fine-grained appearance con-
trol by replacing [69] medium or fine-level latent codes with
random vectors (Fig. 8). Furthermore, Fig. 9 shows results
with increasing number of unrolling (Sec. 5.1) steps, where
detail gets added progressively with every increasing step.

Figure 8. Multi-modal generation showing varied colour (top),
appearance features (bottom). Reference photo shown in inset.

Figure 9. (Left to right) Generation by using increasing numbers
({2, 4, 6, 8, 10}) of d-dimensional latent vectors.

7. Conclusion
We address a key challenge for conditional sketch-to-

photo generation – existing models consider input abstract
sketches as a hard constraint, resulting in deformed out-
put images. A novel supervised sketch-to-photo genera-
tion model is proposed that explicitly handles sketch-photo
locality bias, enabling it to generate photorealistic images
even from highly abstract sketches. It is based on an autore-
gressive latent mapper, that maps a sketch to a pre-trained
StyleGAN’s latent space to generate an output. Extensive
experiments show our method to outperform existing state-
of-the-arts.
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