
Solving relaxations of MAP-MRF problems:
Combinatorial in-face Frank-Wolfe directions

Vladimir Kolmogorov
Institute of Science and Technology Austria (ISTA)

Am Campus 1, Klosterneuburg 3400, Austria
vnk@ist.ac.at

Abstract
We consider the problem of solving LP relaxations

of MAP-MRF inference problems, and in particular the
method proposed recently in [16, 35]. As a key computa-
tional subroutine, it uses a variant of the Frank-Wolfe (FW)
method to minimize a smooth convex function over a combi-
natorial polytope. We propose an efficient implementation
of this subroutine based on in-face Frank-Wolfe directions,
introduced in [4] in a different context. More generally, we
define an abstract data structure for a combinatorial sub-
problem that enables in-face FW directions, and describe
its specialization for tree-structured MAP-MRF inference
subproblems. Experimental results indicate that the result-
ing method is the current state-of-art LP solver for some
classes of problems. Our code is available at pub.ist.
ac.at/˜vnk/papers/IN-FACE-FW.html.

1. Introduction
The main focus of this paper is on the problem of min-

imizing a function of discrete variables z = (z1, . . . , zn)
with unary and pairwise terms:

min
z∈D1×...×Dn

∑
v∈[n]

fv(zv) +
∑
uv∈E

fuv(zu, zv) (1)

Here G = ([n], E) is an undirected graph and D1, . . . , Dn

are finite sets. This problem is often referred to as
MAP-MRF inference (maximum a posteriori inference in a
Markov Random Field).

A prominent approach to tackle this NP-hard problem in
practice is to solve its natural LP relaxation (see e.g. [39]),
also called Basic LP relaxation [17]:

min
ξ≥0

∑
v∈[n]
a∈Dv

fv(a)ξva +
∑
uv∈E

(a,b)∈Du×Dv

fuv(a, b)ξua;vb (2a)

∑
b′∈Dv

ξua;vb′ = ξua,
∑
a′∈Du

ξua′;vb = ξvb ∀uv, a, b (2b)

∑
a∈Dv

ξua = 1 ∀v (2c)

Designing algorithms to (approximately) solve this relax-
ation for large-scale problems has been a very active area
of research. A popular approach is to use message passing
techniques, which perform a block-coordinate ascent on the
dual objective [5, 11, 13, 36, 38, 40] This strategy is very ef-
fective for some problems, but for other problems it may
get stuck in a suboptimal point. Many techniques have been
developed that are guaranteed to converge to the optimal so-
lution of the LP relaxation [8,9,16,18,20,21,25,26,28–32,
34, 35].

In this paper we revisit the approach in [16, 35]. Its key
computational subroutine is to minimize a quadratic con-
vex function over combinatorial polytope, which is done by
invoking a variant of the Frank-Wolfe (FW) algorithm [3].
We study efficient implementations of the latter in the con-
text of MAP-MRF inference. Our main contribution is in-
corporating in-face FW directions introduced in [4]. The
idea is to speed-up computations by running FW algorithm
on a smaller “contracted” subproblem obtained by taking
a face of the polytope containing the current point. It has
been used for applications such as low-rank matrix com-
pletion [4], cluster detection in networks [1], and training
sparse neural networks with `1 regularization [6]. We inves-
tigate the use of in-face FW directions for general combina-
torial polytopes, and describe an abstract data structure that
enables such directions. We then specialize it to subprob-
lems corresponding to tree-structured MAP-MRF inference
problems. Our approach has the following features:

• It may happen that the contracted subproblem splits into
independent subproblems. These subproblems are han-
dled by a block-coordinate version of FW.

• We store a cache of “atoms” for each contracted sub-
problem. We describe how to efficiently transform these
atoms when the current face is recomputed.

• For an edge uv ∈ E and fixed fractional unary vectors for
u, v we can compute an optimal fractional pairwise vec-
tor for edge uv by solving a small-scale optimal trans-
portation (OT) problems. Such computations were used
in [27] for computing primal feasible solutions of relax-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11980

ation (2). We show how to use them for improving the
performance of in-face FW directions.

To our knowledge, the issues above have not been discussed
in the literature so far.

We remark that in-face FW directions effectively imple-
ment the following rather natural idea: the optimization
should be performed only over “active” pairs (v, a) that are
likely to be present in the support of an optimal solution; the
other pairs should be fixed. A related idea appeared in the
context of message passing algorithms in [37], where mes-
sages are updated only in a subgraph in which the current
best labels keep changing. The method in [37] works only
with dual variables, and uses heuristic criteria for choosing
the subgraph. We believe that in-face FW directions allow
a more principled criterion for deciding which variables to
fix and for how long. Note that Freund et al. [4] proved that
their criterion retains the convergence rate of the basic FW
algorithm. We use a different criterion that also takes into
account the ratio of runtimes on the original and on con-
tracted subproblems.

In Section 4 we test the algorithms on benchmark prob-
lems in the evaluation [10], and compare them with LP
solvers used in [10]. Results suggest that the method
in [16, 35] with in-face FW directions is the current state-
of-the-art LP solver for certain classes of problems.

2. Background
We will consider a more general problem of minimizing

a function represented as a sum of tractable subproblems:

min
X∈Rd

f(X), f(X) :=
∑
t∈T

ft(XAt
) (3)

Here term t ∈ T is specified by a subset of variables
At ⊆ [d] and a function ft : RAt → R ∪ {+∞} of |At|
variables. Vector XAt ∈ RAt is the restriction of vec-
tor X ∈ Rd to At. We assume that the effective domain
dom ft = {X ∈ RAt | ft(X) < +∞} is a finite non-
empty set (implying that (3) is a discrete optimization prob-
lem); usually one has dom ft ⊆ {0, 1}At . The arity |At|
of function ft can be arbitrarily large, however we assume
the existence of an efficient min-oracle that for a given vec-
tor y ∈ RAt computes X ∈ arg min

X∈dom ft

[ft(X) + 〈X, y〉] to-

gether with the cost ft(X).
Note, in the case of problem (1) vector X has the form

X = (Xva : v ∈ [n], a ∈ Dv), where Xva is the indicator
variable of the event [zv = a]. Thus, we have X ∈ {0, 1}d
where d =

∑n
v=1 |Dv|. Each term ft(·) is a MAP-MRF

problem on a tree-structured graph; they are chosen in such
a way that their sum equals the objective function in (1).
Relaxation of (3) We form a relaxation of the problem as
in [35]. First, define subsets Ẋt,Xt ⊆ RAt × R via

Ẋt = {[X ft(X)] : X ∈ dom ft} Xt = conv(Ẋt)

Throughout the paper we will refer to elements of dom ft
as “atoms” and to elements as Ẋt as “extended atoms”.
For a vector z ∈ RAt × R let z? ∈ RAt be its first
|At| components and z◦ ∈ R be its last component (so
that z = [z? z◦]). Also denote Ẋ =

⊗
t∈T Ẋt and

X =
⊗

t∈T Xt = conv(Ẋ). The t-th component of vec-
tor x ∈ X will be denoted as xt ∈ Xt. Problem (3) can now
be equivalently written as

min
x∈X , X∈Rd

xt
?=XAt∈dom ft ∀t∈T

∑
t∈T

xt◦ (4)

The relaxation is formed by removing non-convex con-
straints XAt

∈ dom ft. Dualizing constraints xt? = XAt

with Lagrange multipliers y = (yt ∈ RAt : t ∈ T) and
eliminating variables X yields Lagrangian

L(x; y) =
∑
t∈T

(xt◦ + 〈xt?, yt〉)

=
∑
t∈T
〈xt, [yt 1]〉 (x, y) ∈ X × Y

where we denoted

Y =

{
y :

∑
t∈Ti

yti = 0 ∀i ∈ [d]

}
,

Ti = {t ∈ T : i ∈ At}

Note that L(x; y) is convex in x and concave in y. Define
primal and dual objectives via

F (x) = max
y∈Y
L(x; y) H(y) = min

x∈X
L(x; y) (5)

Assuming strong duality, the optimal value of the relaxation
of (4) is then equals

min
x∈X

F (x) = max
y∈Y

H(y) (6)

The problem becomes to compute saddle point (x, y) that
attains the optimum values in (6).
Proximal point algorithm Next, we review a method for
solving (6) proposed in [16,35]. At each iteration it consid-
ers a smoothed version of the problem with the following
Lagrangian and primal and dual objectives:

Lγ,ȳ(x; y) = L(x; y)− ||y−ȳ||
2

2γ

Fγ,ȳ(x) = max
y∈Y
Lγ,ȳ(x; y)

Hγ,ȳ(y) = min
x∈X
Lγ,ȳ(x; y) = H(y)− ||y−ȳ||

2

2γ

Here γ > 0 is a fixed regularization parameter and ȳ ∈ Y
is the current proximal center. The algorithm first selects

11981

arbitrary vector y0 ∈ Y , sets ȳ0 = y0, and then computes
iterates (xn, yn, ȳn) for n = 1, 2, . . . using the following
equations:

xn ≈ arg min
x∈X

Fγ,ȳn−1(x) (7a)

yn = arg max
y∈Y

Lγ;ȳn−1(x; y) (7b)

ȳn = yn + αn(yn − yn−1) (7c)

[35] used a simple proximal point method (PPA) in
which αn = 0 for all n. [16] used an accelerated version
(APPA) where αn is given by αn = tn−1

tn+1
and t1, t2, . . .

is a sequence satisfying t1 = 1 and t2n−1 − t2n + tn > 0
for all n ≥ 2, e.g. given by the Nesterov’s choice tn+1 =
(1 +

√
1 + 4t2n)/2.

The main computational bottleneck of the algorithm is
the approximate minimization problem in (7a). It is solved
using several steps of the Frank-Wolfe (FW) algorithm (or
one of its variants) until the FW gap becomes smaller than
some threshold εn. (The background on FW is given be-
low). As shown in [16], this guarantees that point yn sat-
isfies Hγ,ȳn−1(yn) ≥ max

y∈Y
Hγ,ȳn−1(y) − εn, and yields

accuracy O(1/n2) after n iterations1 assuming that εn =
O(1/n4+δ) for some δ > 0.
Frank-Wolfe algorithms For brevity, let us denote ȳ =
ȳn−1 and F̃ (x)

def
= Fγ,ȳ(x). Expanding this, we obtain

F̃ (x) =
∑
t∈T

(
γ
2 ||x

t
?||2 + 〈xt, [ȳt 1]〉

)
−

d∑
i=1

|Ti|
2γ ν

2
i ,

νi = νi(x) = 1
|Ti|

∑
t∈Ti

(γ · xti + ȳti)

This is a convex differentiable function over polytopeX . Its
gradient is given by

∇tF̃ (x) = [yt 1], yt = yt(x) = γ · x̄t? + ȳt − νAt

Note that y = y(x) = (yt(x))t∈T is the vector that max-
imizes Lγ;ȳn−1(x; y) in eq. (7b). The basic Frank-Wolfe
algorithm with line search [3] minimizes F̃ by iteratively
repeating the following steps:
(1) compute ∇F̃ (x) at current point x;
(2) compute s ∈ arg mins∈X 〈∇F̃ (x), s〉;
(3) define xγ = x+γ(s−x), compute γ = arg min

γ∈[0,1]

F̃ (xγ);

(4) update x := xγ .
Note that step (2) requires calling min-oracles for each sub-
problem t ∈ T . The quantity gapFW(x; F̃) = 〈∇F̃ (x), x −
s〉 = maxs∈X 〈∇F̃ (x), x−s〉 is called the Frank-Wolfe gap
at x. It upper-bounds the suboptimality gap: gapFW(x; F̃) ≥
F̃ (x)−minx′∈X F̃ (x′).

1The bound O(1/n2) holds for the dual, primal and infeasibility gaps,
see [16] for details.

Several techniques have been proposed in the literature
for speeding-up the basic algorithm. We will make use of
the following ideas.
• Block-Coordinate Frank-Wolfe (BCFW) [19]. At each

step it updates only variables xt for some fixed t ∈ T
while keeping all other components fixed. More pre-
cisely, it computes partial derivatives∇tF̃ (x), then com-
putes st ∈ arg minst∈Xt

〈∇tF̃ (x), st〉 and defines xγ via
(xγ)t = xt+γ(st−xt) and (xγ)t′ = xt

′
for t′ 6= t. The

rest is as above.

• Caching atoms [7,23,33]. The idea is store “atoms” st ∈
Ẋt returned by the t-th min-oracle in cache Wt ⊂ Ẋt.
Iterations are then divided into “exact” iterations which
call the (expensive) min-oracle that optimize over Xt,
and “approximate” iterations which optimize overWt.

• Optimizing the objective over extended atoms inWt (i.e.
subject to the constraint xt ∈ conv(Wt), assuming that
current x satisfies this constraint). This amounts to mini-
mizing a smooth convex function (quadratic in our case)
over a simplex. An example is the BCG method [2].

• In-face Frank-Wolfe directions [4]. In addition to “reg-
ular” FW steps, this method performs the following op-
erations: find a face X ′ ⊆ X of polytope X containing
current point x (e.g. the minimal such face), and run sev-
eral FW steps to minimize function F̃ over X ′. This may
lead to a speed-up if oracle calls over X ′ are faster than
overX . We will say thatX ′ is obtained fromX via “con-
traction”, and refer to FW steps over X ′ as “contracted
steps”. The same terminology will be used for subprob-
lems Xt.

3. Our implementation
Following [7,23,33], for each subproblem t we maintain

cache Wt ⊆ Ẋt of extended atoms. We implemented two
versions:
(1) xt is represented as a convex combination of elements
inWt. Then we store coefficients of this combination. Ex-
tended atoms with zero weight are immediately removed.
(2) Cache size is limited by a constant (10 in our implemen-
tation). As in previous works, we maintain a timestamp for
each atom, updating it whenever the atom is “accessed” (i.e.
returned as optimal in one of the operations). If the cache
becomes too big, we remove an atom with the oldest times-
tamp.
Let “conv” be the flag that specifies the version: conv =
true corresponds to option (1) and conv = false corre-
sponds to option (2).
In-face FW directions As stated in the introduction, the
main motivation of this paper is to incorporate in-face FW
directions for combinatorial subproblems into the frame-
work of [16, 35]. We focus on faces of polytopes X ′t ⊆ Xt

11982

that are specified by constraints of the form xti = consti
for some i ∈ At. 2 The following issues should be taken
into account:
• Fixing some variables may split subproblems into sev-

eral independent subproblems (that we call “contracted
subproblems”), and so variables of xt decouple into in-
dependent blocks. Optimizing over xt ∈ X ′t should be
done via the block-coordinate version of FW.

• Atoms in the cache Wt for the original subproblem t
should be transformed to atoms of contracted subprob-
lems, and vice versa. Ideally, the time for processing
each atom should depend on the size of the contracted
subproblems (in the case when |Wt| � 1).

To address these issues, we will describe an abstract data
structure called Subproblem. We will later show to im-
plement it for subproblems t corresponding to the MAP-
MRF inference problems on tree-structured graphs.

We distinguish between “parent” and “child” subprob-
lems. The former are added to the solver during initial-
ization. The user should specify mapping At when adding
parent subproblem (which is an array size |At|). Now sup-
pose that the algorithm decides to contract parent subprob-
lem t. Given current vector x, the user should first partition
set At as At = At0 ∪ At1 ∪ . . . ∪ Atk for some k ≥ 1
where At0 is the set of components that will be fixed to
their current values, and At1, . . . , Atk correspond to the in-
dependent subproblems. Let us write vectors z ∈ RAt as
(zAt0

, zAt1
, . . . , zAtk

). We require the contraction opera-
tion to satisfy the following conditions:
(1) There should exist functions fti : {0, 1}Ati → R ∪
{+∞} so that

ft(xAt0
, X1, . . . , Xk) = ft1(X1) + . . .+ ftk(Xk)

∀(X1, . . . , Xk) ∈ dom ft1 × . . .× dom ftk

(2) For each i ∈ [k] there should exist vector x̄i ∈ Xti with
x̄i? = xtAti

so that x̄1
◦ + . . . + x̄k◦ = x◦, where we denoted

Ẋti = {[X fti(X)] : X ∈ dom fti} and Xti = conv(Ẋti).
(3) Extended atom st ∈ arg minst∈Ẋt

〈∇tF̃ (x), st〉 should
satisfy stAti

∈ dom fti for each i ∈ [k].
Accordingly, each parent subproblem should implement

function Contract(xt, st). This function should find a de-
composition into k child subproblems as above, and return
these subproblems together with mappings At1, . . . , Atk
and values x̄1

◦, . . . , x̄
k
◦ . Note that the latter values are ac-

tually not used if conv = true, since in this case the
solver has enough information to recompute them. How-
ever, if conv = false then the solver does need values
x̄1
◦, . . . , x̄

k
◦ .

Below we will use index symbol t to denote both parent
and child subproblems (together with notation At, xt, ft,

2Our implementation also supports constraints of the form xti = xtj for
some {i, j} ⊆ At, but we haven’t used it in experiments.

etc). Note, for child subproblems we have t = t′i for some
parent subproblem t′.
Compact representation of atoms In many combinatorial
problems, atoms (i.e. elements of dom ft) can be described
in a compact way. Accordingly, for each subproblem we in-
troduce type Atom whose implementation should be spec-
ified by the user. The user should implement the following
basic functions:
• AtomToVector(a): compute extended atom [a f(a)] ∈
Ẋt corresponding to atom a.

• DotProduct(a, g): compute inner product 〈a, g〉 of
atom a and vector g ∈ RAt .

• WeightedDotProduct(a, b): compute
∑
i∈At

(1 −
1
|Ti|)aibi for atoms a, b.

• MinOracle(g): return atom a ∈ arg mina(〈a, g〉 +
ft(a)).

Next, we discuss how to transform atoms during contrac-
tions. Each parent subproblem t must store a current atom
denoted as at, and implement functions t ::SetAtom(a) and
t :: GetAtom() that respectively set and return at. Child
subproblems ti must also implement these two functions,
but they are now defined as follows. ti :: SetAtom(a)
should set components of the parent atom at to a, i.e. update
atAti

:= a. Similarly, ti :: GetAtom() should return atom
atAti

of the child subproblem (or NULL, if atAti
/∈ dom fti).

We now describe how these functions are used. Consider
subproblem t which has been contracted to child subprob-
lems t1, . . . , tk via the call Contract(x, s) (for brevity,
we write x, s instead of xt, st). By construction, atom at

will satisfy atAt0
= sAt0

where At0 are the variables that
have been fixed. Now suppose that the solver decides to
contract t again (i.e. recompute child subproblems). The
solver first computes atom s′ ∈ arg mins′∈Ẋt

〈∇tF̃ (x′), s′〉
where x′ ∈ Xt is the current vector for t. Then it calls
Contract(x′, s′) which returns new child subproblems
t1′, . . . , tk′. If conv = false then cachesWt1′ , . . . ,Wtk′

are set by repeating the following steps:
(1) for each i ∈ [k] pick atom ai ∈ Wti (in a round-robin
fashion), call ti ::SetAtom(ai);
(2) for each i′ ∈ [k′] call ai

′ ← ti′ :: GetAtom(), add
[ai
′
fti′(a

i′)] toWti′ (if ai
′ 6= NULL).

If conv = true then we use ti :: SetAtom(·) and ti′ ::
GetAtom() in a similar way to restore the desired invariant,
i.e. make sure that xti

′
is a convex combination of current

atoms for each i′ ∈ [k′]; details are omitted. In the end of
the contraction operation we call t ::SetAtom(s′).

3.1. MAP-MRF tree subproblems

We now detail the implementation of Subproblem in
the case when ft(·) corresponds to the MAP-MRF inference
problem on a tree-structured graph. In other words, we as-
sume that ft(·) corresponds to problem (1) (with labelings

11983

z represented via vectors X ∈ {0, 1}d) in which the graph
([n], E) is a tree. Recall than d =

∑n
v=1 |Dv|.

An atom is stored in a natural way as a vector of size n
(which can be much smaller than dim(X) = d). Next, we
discuss the implementation of function Contract(x, s) for
vector x ∈ Rd+1 and atom s ∈ D1 × . . . × Dn. First, we
find pairs (v, a) satisfying xva = 0 and sv 6= a, and force
constraint Xva = 0 for such pairs (assuming that there are
least 25% of such pairs; otherwise we do not contract). Let
Vfixed ⊆ [n] be the set of nodes v for which |Dv| − 1 vari-
ables Xva has been forced to 0, and let V = [n] − Vfixed.
Clearly, the problem splits into k ≥ 0 independent sub-
problems corresponding to the trees G1, . . . ,Gk of the in-
duced forest G[V]. Each node of the child subproblem has a
pointer to the corresponding node of the parent subproblem
(and vice versa). Clearly, this allows an efficient implemen-
tation of functions GetAtom() and SetAtom(·).

As discussed in the previous section, we need to be able
to compute values x̄k◦ for each child subproblem i ∈ [k] (in
the case when conv = false). For that we need to know
the cost of (fractional) vector x restricted to tree Gi. This
can be easily computed if we know the “fractional cost” ξuv
of each edge uv ∈ E in x. This fractional cost must have
the following form for some vector (ξua;vb)a,b:

ξuv =
∑

a∈Du,b∈Dv

fuv(a, b)ξua;vb (8a)

∑
b∈Dv

ξua;vb = xua ∀a ∈ Du (8b)

∑
a∈Du

ξua;vb = xvb ∀b ∈ Dv (8c)

Accordingly, we additionally maintain |E| real numbers for
the current vector x as described below.

One possibility would be to increase the dimensions of
vector X , i.e. let X = (Xva : v ∈ [n], a ∈ Dv) t (Xuv :
uv ∈ E). If X corresponds to atom z = (z1, . . . , zn)
then Xuv = fuv(zu, zv). The solver would then auto-
matically maintain the desired fractional cost ξuv = Xuv

for each edge uv. We opted for another approach: we
store costs ξuv internally at the given subproblem. Note
that solver changes current x via updates of the form x :=
α0x +

∑r
i=1 αia

i where a1, . . . , ar are extended atoms
and α0, α1, . . . , αr are non-negative coefficients that sum
to 1. Before applying such update, the solver calls func-
tion Update x(α0, x, α1, a

1, . . . , αr, a
r) for the the given

subproblem, and this function updates ξuv for all edges uv.
This allows the solver to manipulate with vectors of smaller
sizes.
Optimal transportation problem Note that minimiz-
ing the value of ξuv over (ξua;vb)a,b in (8) (for fixed vec-
tors (xua)a and (xvb)b) is a classical optimal transportation
(OT) problem. It is usually small-scale; we solve it via a
successive shortest path algorithm. We use in two ways.

First, we observed that sometimes the FW approach with
option conv = false makes some components of vector
x extremely small, e.g. 10−20 or 10−30. This can be ex-
plained as follows. Suppose that the value xva becomes
positive in the early stage of the algorithm, but later on all
atoms z satisfy zv 6= a. Furthermore, suppose that opti-
mizing the objective over conv(xt ∪Wt) always assigns a
positive weight to xt, and this weight is smaller than some
constant c < 1 sufficiently often. Then after n such steps
xva becomes smaller than cn.

To address this issue, we do the following from time to
time (if conv = false): we go through all subproblems
t and update xt by calling xt ← t :: Adjust x(xt). The
latter function is implemented as follows for tree-structured
MAP-MRF subproblems: we change all fractional compo-
nents smaller than 10−8 to zero, renormalize unary frac-
tional components for each node so that they sum to 1, and
then compute the fractional cost ξuv for each edge uv and
the total cost by solving OT problems. The frequency of
such updates is set so that their time is at most 20% of the
total time. More precisely, we run the Adjust x loop after
each update of proximal center ȳ assuming that τ > 5τ0
where τ0 is the time spent in the previous Adjust x loop
and τ is the time that elapsed after the last Adjust x loop.
This scheme improved the performance of in-face FW di-
rections for some instances, since it led to smaller con-
tracted subproblems. For the algorithm without in-face
FW directions this scheme affected the performance only
marginally.

Following [27], we also use the OT procedure for com-
puting feasible primal solutions of relaxation (2). Note that
vectors x ∈ X do not directly give such a solution, since
for each node v ∈ [n] and label a ∈ Dv variables xtva will
in general be different for different subproblems t contain-
ing v. To circumvent this problem, we compute the aver-
age of values xtva over t containing v; this gives a feasible
fractional solution for nodes. The corresponding fractional
solution for edges (and the LP cost of this solution) is then
computed by solving OT problems.

3.2. Perfect Matching subproblems

We also experimented with subproblems corresponding
to functions of the following form: ft(X) = 〈C,X〉 if X ∈
{0, 1}E is a perfect matching in an undirected graph (V, E),
and ft(X) = +∞ otherwise. We obtained such subprob-
lems by considering quadratic pseudo-boolean optimiza-
tion problems (minimize f(z) =

∑
v cvzv +

∑
uv cuvzuzv

over z ∈ {0, 1}n), and tightening it with planar subprob-
lems [41]; the latter are solved by a reduction to the perfect
matching problem. A face of the perfect matching polytope
can be described by constraints of the form

X(E0) = 0 (9a)
X(δS) = 1 ∀S ∈ S (9b)

11984

where E0 ⊆ E , S is a laminar family of odd-cardinality
subsets of V , and δS is the set of edges of the cut (S,V −
S). Given a fractional point X in the polytope, comput-
ing the minimal face containing X boils down to com-
puting a Gomory-Hu tree in graph (V, E) with appropriate
weights [24].

In our informal experiments (not reported here) we were
not able to obtain a speed-up with in-face FW directions.
First, we observed that set E0 is usually empty (or very
small). This could be due to the way that our planar
subproblems are formed (we add to planar subproblems
odd cycles that are currently violated). The runtime of
Gomory-Hu computations was negligible using the recent
code of [14, 15]. However, adding constraints (9b) did not
not make the Blossom V code [12] faster. Note that we
incorporated constraints (9b) by adding a large constant to
edge weights of edges in sets δS for S ∈ S.

We conjecture that in-face FW directions could still be
beneficial either (i) in applications where set E0 is large, or
(ii) if the perfect matching code is modified so that con-
straints (9b) are incorporated more directly. We leave this
as a future work.

3.3. Frank-Wolfe algorithm
In this section we describe the FW version that we

have implemented. One basic operation is to minimize
F̃ (. . . , xt, . . .) over xt ∈ conv(Z) for some finite set
Z = {z1, . . . , zk}; all other components except for xt

are fixed.3 Denote xt =
∑k
i=1 αiz

i, then equivalently we
need to minimize quadratic function f(α) = 1

2α
TAα +

bTα over simplex α ∈ {α ∈ Rk≥0 :
∑k
i=1 αi =

1}. Define vector λ ∈ RAt via λi =
∑
t∈Ti

γxt
i

|Ti| −
νi(x) where x is the current vector, then matrix A ∈
Rk×k and vector b ∈ Rk are given by Aij = γ ·
WeightedDotProduct(zi, zj) and bi = 〈zi, [ȳt 1]〉 +
〈zi∗, λ〉. Since values WeightedDotProduct(a, b) for
a, b ∈ Wt are needed multiple times, we store them for
each cacheWt in a matrix of size |Wt| × |Wt|.

To minimize f(·), we implemented a projected conjugate
gradient descent (PCG) method with the following modifi-
cation. Suppose that a step takes the procedure outside the
simplex, i.e. the weight αi of point zi becomes negative. We
then stop at the boundary (making αi = 0), remove zi from
Z, and restart PCG. Thus, each step either makes Z smaller
(which can happen at most |Z| − 1 times) or makes a suf-
ficient progress on the objective (as guaranteed by PCG).
We stop when the FW gap is reduced by a factor of 10. This
can be viewed as a particular implementation of the Simplex
Descent Oracle in the BCG method [2].

We use three types of operations: CacheLoop,
OracleLoop and ContractLoop. In the first two we

3If conv = true then Z = Wt, and if conv = false then Z =
Wt ∪ {xt} where xt is the current vector.

cycle through child subproblems in a random order, and in
the third one we cycle through parent subproblems in a ran-
dom order. For each subproblem t we do the following.
• CacheLoop: run Simplex Descent Oracle (SiDO) de-

scribed above (forZ =Wt orZ =Wt∪{xt}, depending
on flag conv).

• OracleLoop: run SiDO; compute ∇tF̃ (x); call t-th
oracle: st ← arg minst∈Xt

〈∇tF̃ (x), st〉; add st toWt;
run SiDO again. Note that SiDO is usually much faster
than the min-oracle (especially if |Wt| is small), so using
it before the oracle call is a cheap way to get a better
gradient ∇tF̃ (x).

• ContractLoop: compute ∇tF̃ (x); call t-th
oracle: st ← arg minst∈Xt

〈∇tF̃ (x), st〉; call
Contract(xt, st); update child subproblems and
transform atoms as described in the previous section.
An important question is how often each operation

should be run. In general, CacheLoop makes a smaller
progress compared to OracleLoop (i.e. improves the ob-
jective by a smaller amount), and similarly in-face FW
steps can be expected to make a smaller progress compared
to regular steps. However, the former operations can be
much faster. We thus argue that the criterion for choosing
the operation should be based on the actual runtimes. To
choose between CacheLoop and OracleLoop, we use
the same method as in [33]. Namely, we define procedure
InnerIteration as follows. It calls OracleLoop
once and then CacheLoop one or more time. Let ∆i

be the improvement in the objective after the i-th call,
and τi be the time after the i-th call (both relative to the
beginning of InnerIteration). We terminate the it-
eration if after the i-th call we have ∆i

τi
≤ ∆i−1

τi−1
(for

i ≥ 2). We use a similar technique to choose between
InnerIteration and ContractLoop: we define pro-
cedure OuterIteration that calls ContractLoop
once and then InnerIteration one or more time, us-
ing a similar termination criterion.
Proximal Point Algorithm Following [16], we use in-
exact Accelerated Proximal Point Algorithm (APPA). The
n-subproblem is solved to accuracy εn = ε0/n

2 where ε0

is the initial FW gap. Unlike [16], we restart the APPA
method if the the primal objective F̃ (x) becomes worse;
this is a well-known strategy in the case of (exact) acceler-
ated algorithms [22].
Numerical stability As we described in Section 3.1, if
conv = false then some components of vector x may
become extremely small. A similar issue may happen with
conv = true: weights of some atoms may become small,
e.g. 1e−20. As a result, the algorithm may get stuck, or |Wt|
may grow very large. To avoid this issue, we use a similar
technique as in Section 3.1: we simply remove atoms whose
weight is smaller than 1e−8.

11985

X-axis: runtime (in seconds)
Y-axis below 0: lower bound
Y axis above 0: upper bound

1.0 1.2 1.4 1.6 1.8 2.0

1.0

1.2

1.4

1.6

1.8

2.0

FW∗conv
FWconv
FW∗

FW

TRW-S
ADSAL
AD3

legend

0 200 400 600 800 1000 1200 1400 1600
−105
−104
−103
−102
−101
−100
−10−1

0
10−1
100
101
102
103
104
105

family-gm

0 500 1000 1500 2000 2500 3000
−106
−105
−104
−103
−102
−101
−100

0
100
101
102
103
104
105
106
107

pano-gm

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−101

−100

−10−1

−10−2

0

10−2

10−1

100

101 matching0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−101

−100

−10−1

−10−2

0

10−2

10−1

100

101 matching1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
−101

−100

−10−1

0

10−1

100

101

matching2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−101

−100

−10−1

−10−2

0

10−2

10−1

100

101 matching3

0 1 2 3 4 5

−103
−102
−101
−100
−10−1
−10−2

0
10−2
10−1
100
101
102
103
104

objseg-349

0 2 4 6 8 10
−104
−103
−102
−101
−100
−10−1
−10−2

0
10−2
10−1
100
101
102
103
104 objseg-353

0 1 2 3 4 5

−103
−102
−101
−100
−10−1
−10−2

0
10−2
10−1
100
101
102
103
104

objseg-358

0 1 2 3 4 5

−103
−102
−101
−100
−10−1
−10−2

0
10−2
10−1
100
101
102
103
104

objseg-416

Figure 1. Top row: ‘mrf-photomontage’ (γ = 10). Middle row: ‘matching’ (γ = 1). Bottom row: ‘object-seg’ (γ = 1).

4. Experimental results
In this section we test different algorithms on (pair-

wise) MAP-MRF inference problems from the OPENGM2
benchmark study [10]. Unlike [10], we do not aim to ob-
tain the best possible solution of (1). Instead, we investigate
what is the best algorithm for solving its BLP relaxation (2).
Note that this is a well-defined subproblem, and used as a
subroutine for other solvers in [10] (branch-and-bound tech-
niques, techniques combining LP solvers with persistency
criteria, etc).

Accordingly, we included TRW-S method [11] and AD-
SAL method [28] that seem to dominate other LP solvers
according to the results of [10]. On a subset of instances
we also ran the Gurobi solver (ver. 10.0.0) and the ADMM-
based “AD3” method [21].4 Gurobi runtimes were as fol-

4The code of https://github.com/andre-martins/AD3
includes parameter η and also a possibility to adapt this parameter dur-
ing optimization. It appears that [10] used the default value of η, namely
η = 0.1. We noticed that η was changed very rarely during optimization
(usually halved once). We turned off adapt eta flag and hand-picked η
which gave the best result.

Note, objseg-349 uses Potts interaction potentials. This is exploited in
our implementation (via distance transforms) but not in AD3 and not in the

lows (in seconds, using 4 physical cores; for the first in-
stance Gurobi aborted, probably because of requesting too
much memory: we used a machine with 16Gb RAM, out of
which 12Gb was free):

family-gm matching0 objseg-349 1CKK
- 1.36 24.05 3795

We tested 4 versions of FW algorithms that we term
as FW, FWconv, FW∗, FW∗conv. Subscript conv indicates option
conv = true, while “∗” means that in-face FW directions
are used. The FW method depends on parameter γ; values
that are too small or too large result in slow convergence
(see [35]). For each family of problems we used the same
γ of the form γ = 10k, k ∈ Z with the best performance
on one of the instances. Since the ratios between allowed
γ’s are rather large, we believe that it should be feasible to
learn such γ (or even fine-tune it) for a given application
using parameters such as the number of subproblems, etc.

In Fig. 1 and 2 we plot lower and upper bounds as func-
tions of time. We added a constant to all values so that the
average of the best known lower and upper bounds is zero,
and then used symmetric log scaling (‘symlog’ in python).

reduction to Gurobi.

11986

0 20 40 60 80 100 120 140
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 1CKK

0 20 40 60 80 100 120 140
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 1CM1

0 20 40 60 80 100 120 140
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 1SY9

0 50 100 150 200 250 300 350 400
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 2BBN

0 50 100 150 200 250 300 350 400
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 2BCX

0 25 50 75 100 125 150 175 200
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 2BE6

0 50 100 150 200 250
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 2F3Y

0 50 100 150 200 250
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 2FOT

0 50 100 150 200 250
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 2HQW

0 50 100 150 200 250 300
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 2O60

0 20 40 60 80 100 120 140
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 3BXL

0 20 40 60 80 100

−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 pdb1b25

0 5 10 15 20 25 30 35 40

−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 pdb1d2e

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 pdb1fmj

0 1 2 3 4 5

−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103

pdb1i24

0 1 2 3 4 5 6
−104
−103
−102
−101
−100
−10−1

0

10−1
100
101
102
103 pdb1iqc

Figure 2. Results on ‘protein-folding’ (γ = 100).

Note that the time for computing the upper bound (via OT)
was not counted. The result of ADSAL is a single point that
we copied from [10]. The runtime of ADSAL was always
larger than the maximum X-range in the plots (sometimes
significantly), even though we used a slower machine: In-
tel Core i5-10210U CPU @ 1.60GHz and 16Gb RAM vs.
Intel Core i5-4570 CPU @ 3.20GHz and 32GB RAM used
in [10].
Discussion We can see from the plots that FW∗σ sig-
nificantly outperforms FWσ on ‘mrf-photomontage’ and
‘protein-folding’ (both for σ = conv and empty σ), as well
as TRW-S and ADSAL. 5 This suggests that FW with in-

5As a single exception, FW starts giving better upper bound than FW∗

face FW directions is the current state-of-the-art LP solver
for these applications. On two other applications, however
(‘matching’ and ‘object-seg’) FW∗σ and FWσ are roughly sim-
ilar and in general outperformed by other techniques, e.g.
AD3 & Gurobi on ‘matching’ and TRW-S on ‘object-seg’.

On most plots upper and lower bounds seem to be con-
verging to each other. We conclude that the FW approach
can be used for finding both primal and dual solutions of
relaxation (2).

once the lower bound reaches the optimal value (after roughly 500 sec-
onds). We do not have an explanation for this behavior. Perhaps, an al-
ternative method for extracting a primal solution should be used in this
regime.

11987

References
[1] Immanuel M. Bomze, Francesco Rinaldi, and Damiano Zef-

firo. Fast cluster detection in networks by first order opti-
mization. SIAM J. MATH. DATA SCI., 4(1):285–305, 2022.
1

[2] G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended condi-
tional gradients: the unconditioning of conditional gradients.
In International Conference on Machine Learning (ICML),
2019. 3, 6

[3] M. Frank and P. Wolfe. An algorithm for quadratic pro-
gramming. Naval Research Logistics Quarterly, 3:149–154,
1956. 1, 3

[4] Robert M. Freund, Paul Grigas, and Rahul Mazumder. An
extended Frank-Wolfe method with “in-face” directions, and
its application to low-rank matrix completion. SIAM J. Opti-
mization, 27(1):319–346, 2017. 1, 2, 3

[5] A. Globerson and T. S. Jaakkola. Fixing max-product:
Convergent message passing algorithms for MAP LP-
relaxations. In Conference on Neural Information Process-
ing Systems (NIPS), 2007. 1

[6] Paul Grigas, Alfonso Lobos, and Nathan Vermeersch.
Stochastic in-face Frank-Wolfe methods for non-convex
optimization and sparse neural network training. CoRR,
arXiv:1906.03580, 2019. 1

[7] T. Joachims, T. Finley, and C. Yu. Cutting-plane training of
structural SVMs. Machine Learning, 1:27–59, 2009. 3

[8] J. Johnson, D. M. Malioutov, and A. S. Willsky. Lagrangian
relaxation for map estimation in graphical models. In 45th
Annual Allerton Conference on Communication, Control and
Computing, 2007. 1

[9] V. Jojic, S. Gould, and D. Koller. Accelerated dual decom-
position for MAP inference. In International Conference on
Machine Learning (ICML), 2010. 1

[10] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S.
Nowozin, D. Batra, S. Kim, B. X. Kausler, T. Kröger, J. Lell-
mann, N. Komodakis, B. Savchynskyy, and C. Rother. A
comparative study of modern inference techniques for struc-
tured discrete energy minimization problems. International
Journal of Computer Vision, 115(2):155–184, 2015. 2, 7, 8

[11] Vladimir Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. IEEE Trans. Pattern Anal.
Mach. Intell., 28(10):1568–1583, Oct. 2006. 1, 7

[12] V. Kolmogorov. Blossom V: A new implementation of a
minimum cost perfect matching algorithm. Mathematical
Programming Computation, 1(1):43–67, July 2009. 6

[13] V. Kolmogorov. A new look at reweighted message pass-
ing. IEEE Trans. Pattern Anal. Mach. Intell., 37(5):919–930,
2015. 1

[14] Vladimir Kolmogorov. A computational study of Gomory-
Hu tree construction algorithms. arXiv:2204.10169v3, Aug.
2022. 6

[15] Vladimir Kolmogorov. OrderedCuts: A new approach for
computing Gomory-Hu tree. arXiv, Aug. 2022. 6

[16] V. Kolmogorov and T. Pock. One-sided Frank-Wolfe algo-
rithms for saddle problems. In International Conference on
Machine Learning (ICML), 2021. 1, 2, 3, 6

[17] Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný.
The power of linear programming for general-valued CSPs.
SIAM Journal on Computing, 44(1):1—-36, 2015. 1

[18] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy
minimization and beyond via dual decomposition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
33(3):531–552, March 2011. 1

[19] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher.
Block-coordinate Frank-Wolfe optimization for structural
SVMs. In International Conference on Machine Learning
(ICML), 2013. 3

[20] D. V. N. Luong, P. Parpas, D. Rueckert, and B. Rustem.
Solving MRF minimization by mirror descent. In Advances
in Visual Computing - 8th International Symposium, ISVC
2012, Rethymnon, Crete, Greece, July 16-18, 2012, Revised
Selected Papers, Part I, pages 587–598, 2012. 1

[21] A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar,
N. A. Smith, and E. P. Xing. An augmented Lagrangian
approach to constrained MAP inference. In International
Conference on Machine Learning (ICML), 2011. Code:
https://github.com/andre-martins/AD3. 1,
7

[22] B. O’Donoghue, , and E. Candes. Adaptive restart for ac-
celerated gradient schemes. Foundations of computational
mathematics, 15(3):715–732, 2015. 6

[23] A. Osokin, J.-B. Alayrac, I. Lukasewitz, P. K. Dokania, and
S. Lacoste-Julien. Minding the gaps for block Frank-Wolfe
optimization of structured SVMs. In International Confer-
ence on Machine Learning (ICML), 2016. 3

[24] M.W. Padberg and M.R. Rao. Odd minimum cut-sets and
b-matchings. Math. Oper. Res., 7:67–80, 1982. 6

[25] P. Ravikumar, A. Agarwal, and M. J. Wainwright. Message-
passing for graph-structured linear programs: Proximal
methods and rounding schemes. Journal of Machine Learn-
ing Research, 11:1043–1080, 2010. 1

[26] B. Savchynskyy, J. Kappes, S. Schmidt, and C. Schnörr. A
study of nesterov’s scheme for lagrangian decomposition and
map labeling. In Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pages 1817–1823.
IEEE, 2011. 1

[27] Bogdan Savchynskyy and Stefan Schmidt. Getting feasible
variable estimates from infeasible ones: MRF local polytope
study. In ICCV Workshops, 2013. 1, 5

[28] B. Savchynskyy, S. Schmidt, J. H. Kappes, and C. Schnörr.
Efficient MRF energy minimization via adaptive diminishing
smoothing. In Uncertainty in Artificial Intelligence (UAI),
2012. 1, 7

[29] M. I. Schlesinger and V. V. Giginyak. Solution to structural
recognition (MAX,+)-problems by their equivalent transfor-
mations. (2):3–18, 2007. 1

[30] S. Schmidt, B. Savchynskyy, J. H. Kappes, and C. Schnörr.
Evaluation of a first-order primal-dual algorithm for mrf
energy minimization. In International Workshop on En-
ergy Minimization Methods in Computer Vision and Pattern
Recognition, pages 89–103. Springer, 2011. 1

[31] Alexander Schwing, Tamir Hazan, Marc Pollefeys, and
Raquel Urtasun. Globally convergent parallel MAP LP re-

11988

laxation solver using the Frank-Wolfe algorithm. In Interna-
tional Conference on Machine Learning (ICML), 2014. 1

[32] Alexander G. Schwing, Tamir Hazan, Marc Pollefeys, and
Raquel Urtasun. Globally convergent dual MAP LP relax-
ation solvers using Fenchel-Young margins. In NIPS, 2012.
1

[33] N. Shah, V. Kolmogorov, and C. H. Lampert. A multi-plane
block-coordinate Frank-Wolfe algorithm for training struc-
tural SVMs with a costly max-oracle. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.
3, 6

[34] G. Storvik and G. Dahl. Lagrangian-based methods for find-
ing MAP. IEEE Trans. on Image Processing, 9(3):469–479,
march 2000. 1

[35] Paul Swoboda and Vladimir Kolmogorov. MAP infer-
ence via block-coordinate Frank-Wolfe algorithm. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1, 2, 3, 7

[36] P. Swoboda, J. Kuske, and B. Savchynskyy. A dual ascent
framework for Lagrangean decomposition of combinatorial
problems. In CVPR, 2017. 1

[37] Daniel Tarlow, Dhruv Batra, Pushmeet Kohli, and Vladimir
Kolmogorov. Dynamic tree block coordinate ascent. In In-
ternational Conference on Machine Learning (ICML), 2011.
2

[38] Siddharth Tourani, Alexander Shekhovtsov, Carsten Rother,
and Bogdan Savchynskyy. Taxonomy of dual block-
coordinate ascent methods for discrete energy minimization.
In Conference on Uncertainty in Artificial Intelligence (AIS-
TATS), 2020. 1

[39] Tomas Werner. A linear programming approach to max-sum
problem: A review. IEEE transactions on pattern analysis
and machine intelligence, 29(7):1165–1179, 2007. 1

[40] T. Werner. A linear programming approach to max-sum
problem: A review. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 29(7):1165–1179, 2007. 1

[41] J. Yarkony, R. Morshed, A. Ihler, and C. Fowlkes. Tightening
MRF relaxations with planar subproblems. In Uncertainty in
Artificial Intelligence (UAI), 2011. 5

11989

