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Figure 1. vMAP automatically builds an object-level scene model from a real-time RGB-D input stream. Each object is represented by a
separate MLP neural field model, all optimised in parallel via vectorised training. We use no 3D shape priors, but the MLP representation
encourages object reconstruction to be watertight and complete, even when objects are partially observed or are heavily occluded in the
input images. See for instance the separate reconstructions of the armchairs, sofas and cushions, which were mutually occluding each
other, in this example from Replica.

Abstract

We present vMAP, an object-level dense SLAM system
using neural field representations. Each object is repre-
sented by a small MLP, enabling efficient, watertight object
modelling without the need for 3D priors.

As an RGB-D camera browses a scene with no prior in-
formation, vMAP detects object instances on-the-fly, and
dynamically adds them to its map. Specifically, thanks to
the power of vectorised training, vMAP can optimise as
many as 50 individual objects in a single scene, with an
extremely efficient training speed of 5Hz map update. We
experimentally demonstrate significantly improved scene-
level and object-level reconstruction quality compared to
prior neural field SLAM systems. Project page: https:
//kxhit.github.io/vMAP.

1. Introduction
For robotics and other interactive vision applications, an

object-level model is arguably semantically optimal, with
scene entities represented in a separated, composable way,
but also efficiently focusing resources on what is important
in an environment.

The key question in building an object-level mapping
system is what level of prior information is known about
the objects in a scene in order to segment, classify and re-

construct them. If no 3D object priors are available, then
usually only the directly observed parts of objects can be
reconstructed, leading to holes and missing parts [4, 46].
Prior object information such as CAD models or category-
level shape space models enable full object shape estima-
tion from partial views, but only for the subset of objects in
a scene for which these models are available.

In this paper, we present a new approach which applies to
the case where no 3D priors are available but still often en-
ables watertight object reconstruction in realistic real-time
scene scanning. Our system, vMAP, builds on the attractive
properties shown by neural fields as a real-time scene repre-
sentation [31], with efficient and complete representation of
shape, but now reconstructs a separate tiny MLP model of
each object. The key technical contribution of our work is
to show that a large number of separate MLP object models
can be simultaneously and efficiently optimised on a single
GPU during live operation via vectorised training.

We show that we can achieve much more accurate and
complete scene reconstruction by separately modelling ob-
jects, compared with using a similar number of weights in
a single neural field model of the whole scene. Our real-
time system is highly efficient in terms of both computation
and memory, and we show that scenes with up to 50 objects
can be mapped with 40KB per object of learned parameters
across the multiple, independent object networks.
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We also demonstrate the flexibility of our disentangled
object representation to enable recomposition of scenes
with new object configurations. Extensive experiments have
been conducted on both simulated and real-world datasets,
showing state-of-the-art scene-level and object-level recon-
struction performance.

2. Related Work
This work follows in long series of efforts to build real-

time scene representations which are decomposed into ex-
plicit rigid objects, with the promise of flexible and efficient
scene representation and even the possibility to represent
changing scenes. Different systems assumed varying types
of representation and levels of prior knowledge, from CAD
models [28], via category-level shape models [10,11,32,36]
to no prior shape knowledge, although in this case only the
visible parts of objects could be reconstructed [15, 27, 38].

Neural Field SLAM Neural fields have recently been
widely used as efficient, accurate and flexible represen-
tations of whole scenes [16, 17, 19, 22]. To adopt these
representations into real-time SLAM systems, iMAP [31]
demonstrated for the first time that a simple MLP network,
incrementally trained with the aid of depth measurements
from RGB-D sensors, can represent room-scaled 3D scenes
in real-time. Some of iMAP’s most interesting properties
were its tendency to produce watertight reconstructions,
even often plausibly completing the unobserved back of
objects. These coherence properties of neural fields were
particularly revealed when semantic output channels were
added, as in SemanticNeRF [43] and iLabel [44], and were
found to inherit the coherence. To make implicit representa-
tion more scalable and efficient, a group of implicit SLAM
systems [25, 35, 40, 45, 48] fused neural fields with conven-
tional volumetric representations.

Object Representations with Neural Fields However,
obtaining individual object representations from these neu-
ral field methods is difficult, as the correspondences be-
tween network parameters and specific scene regions are
complicated and difficult to determine. To tackle this,
DeRF [23] decomposed a scene spatially and dedicated
smaller networks to each decomposed part. Similarly, Kilo-
NeRF [24] divided a scene into thousands of volumetric
parts, each represented by a tiny MLP, and trained them in
parallel with custom CUDA kernels to speed up NeRF. Dif-
ferent from KiloNeRF, vMAP decomposes the scene into
objects which are semantically meaningful.

To represent multiple objects, ObjectNeRF [39] and Ob-
jSDF [37] took pre-computed instance masks as additional
input and conditioned object representation on learnable ob-
ject activation code. But these methods are still trained of-
fline and tangle object representations with the main scene
network, so that they need to optimise the network weights

with all object codes during training, and infer the whole
network to get the shape of a desired object. This con-
trasts with vMAP which models objects individually, and
is able to stop and resume training for any objects without
any inter-object interference.

The recent work most similar to ours has used the at-
tractive properties of neural field MLPs to represent single
objects. The analysis in [5] explicitly evaluated the use of
over-fit neural implicit networks as a 3D shape representa-
tion for graphics, considering that they should be taken seri-
ously. The work in [1] furthered this analysis, showing how
object representation was affected by different observation
conditions, though using the hybrid Instant NGP rather than
a single MLP representation, so it is not clear whether some
object coherence properties would be lost. Finally, the Co-
deNeRF system [9] trained a NeRF conditioned on learn-
able object codes, again proving the attractive properties of
neural fields to represent single objects.

We build on this work in our paper, but for the first time
show that many individual neural field models making up
a whole scene can be simultaneously trained within a real-
time system, resulting in accurate and efficient representa-
tion of many-object scenes.

3. vMAP: An Efficient Object Mapping System
with Vectorised Training

3.1. System Overview

We first introduce our detailed design for object-level
mapping with efficient vectorised training (Section 3.2), and
then explain our improved training strategies of pixel sam-
pling and surface rendering (Section 3.3). Finally, we show
how we may recompose and render a new scene with these
learned object models (Section 3.4). An overview of our
training and rendering pipeline is shown in Fig. 2.

3.2. Vectorised Object Level Mapping

Object Initialisation and Association To start with, each
frame is associated with densely labelled object masks.
These object masks are either directly provided in the
dataset, or predicted with an off-the-shelf 2D instance seg-
mentation network. Since those predicted object masks
have no temporal consistency across different frames, we
perform object association between the previous and the
current live frame, based on two criteria: i) Semantic Con-
sistency: the object in the current frame is predicted as the
same semantic class from the previous frame, and ii) Spa-
tial Consistency: the object in the current frame is spatially
close to the object in the previous frames, measured by the
mean IoU of their 3D object bounds. When these two cri-
teria are satisfied, we assume they are the same object in-
stance and represent them with the same object model. Oth-
erwise, they are different object instances and we initialise
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Figure 2. An overview of training and rendering pipeline of vMAP.

a new object model and append it to the models stack.
For each object in a frame, we estimate its 3D object

bound by its 3D point cloud, parameterised by its depth map
and the camera pose. Camera tracking is externally pro-
vided by an off-the-shelf tracking system, which we found
to be more accurate and robust compared to jointly opti-
mising pose and geometry. If we detect the same object
instance in a new frame, we merge its 3D point cloud from
the previous frames to the current frame and re-estimate its
3D object bound. Therefore, these object bounds are dy-
namically updated and refined with more observations.

Object Supervision We apply object-level supervision
only for pixels inside a 2D object bounding box, for max-
imal training efficiency. For those pixels within an object
mask, we encourage the object radiance field to be occupied
and supervise them with depth and colour loss. Otherwise
we encourage the object radiance field to be empty.

Each object instance samples training pixels from its
own independent keyframe buffer. Therefore, we have flex-
ibility to stop or resume the training of any object, with no
training interference between objects.

Vectorised Training Representing a neural field with
multiple small networks can lead to efficient training, as
shown in prior work [24]. In vMAP, all object models are
of the same design, except for the background object which
we represent with a slightly larger network. Therefore, we
are able to stack these small object models together for vec-

torised training, leveraging the highly optimised vectorised
operations in PyTorch [8]. Since multiple object models
are batched and trained simultaneously as opposed to se-
quentially, we optimise the use of the available GPU re-
sources. We show that vectorised training is an essential
design element to the system, resulting in significantly im-
proved training speed, further discussed in Section 4.3.

3.3. Neural Implicit Mapping

Depth Guided Sampling Neural fields trained on RGB
data only have no guarantee to model accurate object ge-
ometry, due to the fact that they are optimising for appear-
ance rather than the geometry. To obtain more geomet-
rically accurate object models, we benefit from the depth
map available from an RGB-D sensor, providing a strong
prior for learning the density field of 3D volumes. Specifi-
cally, we sample Ns and Nc points along each ray, for which
Ns points are sampled with a Normal distribution centered
around the surface ts (from the depth map), with a small
dσ variance, and Nc points are uniformly sampled between
the camera tn (the near bound) and the surface ts, with a
stratified sampling approach. When the depth measurement
is invalid, the surface ts is then replaced with the far bound
tf . Mathematically, we have:

ti ∼ U
(
tn +

i− 1

Nc
(ts − tn) , tn +

i

Nc
(ts − tn)

)
, (1)

ti ∼ N (ts, d
2
σ) . (2)
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We choose dσ = 3cm which works well in our implementa-
tion. We observe that training more points near the surface
helps to guide the object models to quickly focus on repre-
senting accurate object geometry.

Surface and Volume Rendering As we are concerned
more by 3D surface reconstruction than 2D rendering, we
omit the viewing direction from the network input, and
model object visibility with a binary indicator (no transpar-
ent objects). With similar motivation to UniSURF [21], we
parameterise the occupancy probability of a 3D point xi as
oθ (xi) → [0, 1], where oθ is a continuous occupancy field.
Therefore, the termination probability at point xi along ray
r becomes Ti = o (xi)

∏
j<i (1− o (xj)), indicating that

no occupied samples xj with j < i exist before xi. The
corresponding rendered occupancy, depth and colour are
defined as follows:

Ô(r) =

N∑
i=1

Ti, D̂(r) =

N∑
i=1

Tidi, Ĉ(r) =

N∑
i=1

Tici . (3)

Training Objective For each object k, we only sample
training pixels inside that object’s 2D bounding box, de-
noted by Rk, and only optimise depth and colour for pixels
inside its 2D object mask, denoted by Mk. Note that it is al-
ways true that Mk ⊂ Rk. The depth, colour and occupancy
loss for the object k are defined as follows:

Lk
depth = Mk ⊙

∑
r∈Rk

|D̂(r)−D(r)|, (4)

Lk
colour = Mk ⊙

∑
r∈Rk

|Ĉ(r)− C(r)|, (5)

Lk
occupancy =

∑
r∈Rk

|Ô(r)−Mk(r)| . (6)

The overall training objective then accumulates losses for
all K objects:

L =

K∑
k=1

Lk
depth + λ1 · Lk

colour + λ2 · Lk
occupancy . (7)

We choose loss weightings λ1 = 5 and λ2 = 10, which we
found to work well in our experiments.

3.4. Compositional Scene Rendering

Since vMAP represents objects in a purely disentan-
gled representation space, we can obtain each 3D object by
querying within its estimated 3D object bounds and easily
manipulate it. For 2D novel view synthesis, we use the Ray-
Box Intersection algorithm [14] to calculate near and far
bounds for each object, and then rank rendered depths along
each ray to achieve occlusion-aware scene-level rendering.
This disentangled representation also opens up other types

of fine-grained object-level manipulation, such as chang-
ing object shape or textures by conditioning on disentangled
pre-trained feature fields [20, 42], which we consider as an
interesting future direction.

4. Experiments
We have comprehensively evaluated vMAP on a range

of different datasets, which include both simulated and
real-world sequences, with and without ground-truth object
masks and poses. For all datasets, we qualitatively compare
our system to prior state-of-the-art SLAM frameworks on
2D and 3D scene-level and object-level rendering. We fur-
ther quantitatively compare these systems in datasets where
ground-truth meshes are available. Please see our attached
supplementary material for more results.

4.1. Experimental Setup

Datasets We evaluated on Replica [29], ScanNet [3], and
TUM RGB-D [6]. Each dataset contains sequences with
different levels of quality in object masks, depth and pose
measurements. Additionally, we also showed vMAP’s per-
formance in complex real-world with self-captured video
sequences recorded by an Azure Kinect RGB-D camera. An
overview of these datasets is shown in Tab. 1.

Object Masks Depth Quality Pose Estimation

Replica Perfect GT Perfect GT Perfect GT
ScanNet Noisy Noisy Perfect GT
TUM RGB-D Detic Noisy ORB-SLAM3
Our Recording Detic Noisy ORB-SLAM3

Table 1. An overview of datasets we evaluated.

Datasets with perfect ground-truth information represent
the upper-bound performance of our system. We expect
vMAP’s performance in the real-world setting can be fur-
ther improved, when coupled with a better instance segmen-
tation and pose estimation framework.

Implementation Details We conduct all experiments on
a desktop PC with a 3.60 GHz i7-11700K CPU and a sin-
gle Nvidia RTX 3090 GPU. We choose our instance seg-
mentation detector to be Detic [47], pre-trained on an open-
vocabulary LVIS dataset [7] which contains more than 1000
object classes. We choose our pose estimation framework
to be ORB-SLAM3 [2], for its fast and accurate tracking
performance. We continuously update the keyframe poses
using the latest estimates from ORB-SLAM3.

We applied the same set of hyper-parameters for all
datasets. Both our object and background model use 4-layer
MLPs, with each layer having hidden size 32 (object) and
128 (background). For object / background, we selected
keyframes every 25 / 50 frames, 120 / 1200 rays each train-
ing step with 10 points per ray. The number of objects in a
scene typically varies between 20 and 70, among which the
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TSDF-Fusion∗ iMAP iMAP∗ NICE-SLAM NICE-SLAM∗ vMAP

Scene Acc. [cm] ↓ 1.28 4.43 2.15 2.94 3.04 3.20
Scene Comp. [cm] ↓ 5.61 5.56 2.88 4.02 3.84 2.39
Scene Comp. Ratio [<5cm %] ↑ 82.67 79.06 90.85 86.73 86.52 92.99

Object Acc. [cm] ↓ 0.45 - 3.57 - 3.91 2.23
Object Comp. [cm] ↓ 3.69 - 2.38 - 3.27 1.44
Object Comp. Ratio [<5cm %] ↑ 82.98 - 90.19 - 83.97 94.55
Object Comp. Ratio [<1cm %] ↑ 61.70 - 47.79 - 37.79 69.23

Table 2. Averaged reconstruction results for 8 indoor Replica scenes. ∗ represents the baselines we re-trained with ground-truth pose.

room-1 room-2 office-0 office-4

TSDF
Fusion

iMAP

NICE
SLAM

vMAP

Figure 3. Scene reconstruction for 4 selected Replica scenes. Interesting regions are highlighted with coloured boxes, showing vMAP’s
significantly improved reconstruction quality. All scene meshes are provided by the original authors.
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TSDF-Fusion ObjSDF vMAP TSDF-Fusion ObjSDF vMAP

Figure 4. Visualisation of object reconstructions with vMAP compared to TSDF-Fusion and ObjSDF. Note that all object reconstructions
from ObjSDF require much longer off-line training. All object meshes from ObjSDF are provided by the original authors.

NICE-SLAM∗ vMAP

Figure 5. Visualisation of scene reconstruction from NICE-SLAM∗ (left) and vMAP (right) in a selected ScanNet sequence. Interesting
regions are zoomed in. NICE-SLAM∗ was re-trained with ground-truth poses.

largest number of objects are in Replica and ScanNet scenes
with an average of 50 objects per scene.

Metrics Following the convention of prior work [31, 48],
we adopt Accuracy, Completion, and Completion Ratio for
3D scene-level reconstruction metrics. Besides, we note
that such scene-level metrics are heavily biased towards the
reconstruction of large objects like walls and floors. There-
fore, we additionally provide these metrics at the object-
level, by averaging metrics for all objects in each scene.

4.2. Evaluation on Scene and Object Reconstruction

Results on Replica We experimented on 8 Replica
scenes, using the rendered trajectories provided in [31],
with 2000 RGB-D frames in each scene. Tab. 2 shows the
averaged quantitative reconstruction results in these Replica
indoor sequences. For scene-level reconstruction, we com-
pared with TSDF-Fusion [46], iMAP [31] and NICE-
SLAM [48]. To isolate reconstruction, we also provided
results for these baselines re-trained with ground-truth pose
(marked with ∗), with their open-sourced code for the fair
comparison. Specifically, iMAP∗ was implemented as a
special case of vMAP, when considering the entire scene

as one object instance. For object-level reconstruction, we
compared baselines trained with ground-truth pose.

vMAP’s significant advantage thanks to object-level rep-
resentation is to reconstruct tiny objects and objects with
fine-grained details. Noticeably, vMAP achieved more than
50 – 70% improvement over iMAP and NICE-SLAM for
object-level completion. The scene reconstructions of 4 se-
lected Replica sequences are shown in Fig. 3, with interest-
ing regions highlighted in coloured boxes. The quantitative
results for 2D novel view rendering are further provided in
the supplementary material.

Results on ScanNet To evaluate on a more challenging
setting, we experimented on ScanNet [3], a dataset com-
posed of real scenes, with much noisier ground-truth depth
maps and object masks. We choose a ScanNet sequence
selected by ObjSDF [37], and we compared with TSDF-
Fusion and ObjSDF for object-level reconstruction, and
we compared with NICE-SLAM (re-trained with ground-
truth pose) for scene-level reconstruction. Unlike ObjSDF,
which was optimised from pre-selected posed images with-
out depth for much longer off-line training, we ran both
vMAP and TSDF-Fusion in an online setting with depth. As
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Figure 6. Visualisation of scene reconstruction from TSDF-Fusion
(left) and vMAP (right) in a selected TUM RGB-D sequence,
trained in real time for 99 seconds.

ATE RMSE [cm]↓ iMAP NICE-SLAM vMAP ORB-SLAM2

fr1/desk 4.9 2.7 2.6 1.6
fr2/xyz 2.0 1.8 1.6 0.4
fr3/office 5.8 3.0 3.0 1.0

Table 3. Camera tracking results on TUM RGB-D.

shown in Fig. 4, we see that vMAP generates objects with
more coherent geometry than TSDF-Fusion; and with much
finer details than ObjSDF, though with a much shorter train-
ing time. And consistently, we can see that vMAP generates
much sharper object boundaries and textures compared to
NICE-SLAM, as shown in Fig. 5.

Results on TUM RGB-D We evaluated on a TUM RGB-
D sequence captured in the real-world, with object masks
predicted by an off-the-shelf pre-trained instance segmen-
tation network [47], and poses estimated by ORB-SLAM3
[2]. Since our object detector has no spatio-temporal consis-
tency, we found that the same object can be occasionally de-
tected as two different instances, which leads to some recon-
struction artifacts. For example, the object ‘globe’ shown in
Fig. 6 was also detected as ‘balloon’ in some frames, result-
ing the ‘splitting‘ artifacts in the final object reconstruction.
Overall, vMAP still predicts more coherent reconstruction
for most objects in a scene, with realistic hole-filling capa-
bilities compared to TSDF-Fusion. However, we acknowl-
edge that the completion of complete out-of-view regions
(e.g., the back of a chair) is beyond the reach of our system
due to the lack of general 3D prior.

Though our work focuses more on mapping performance
than pose estimation, we also report ATE RMSE [30] in
Tab. 3 following [31,48], by jointly optimising camera pose
with map. We can observe that vMAP achieves superior
performance, due to the fact that reconstruction and track-
ing quality are typically highly interdependent. However,
there is a noticeable performance gap compared to ORB-
SLAM. As such, we directly choose ORB-SLAM as our ex-
ternal tracking system, which leads to faster training speed,
cleaner implementation, and higher tracking quality.

Figure 7. Visualisation of table-top reconstruction (top) and in-
dividual object reconstructions (bottom), from vMAP running in
real time using an Azure Kinect RGB-D camera for 170 seconds.

NICE-SLAM∗ iMAP vMAP vMAP (w/o BG)

Model Param. ↓ 12.12M 0.32M 0.66M 0.56M
Runtime ↓ 34min34s 12min29s 8min16s 6min01s
Mapping Time ↓ 845ms 360ms 226ms 120ms

Table 4. vMAP is extremely memory-efficient and runs 1.5x and
4x faster than iMAP and NICE-SLAM respectively, with even
higher performance gains without the background (BG) model.

Results on Live Kinect Data Finally, we show the recon-
struction result of vMAP on a table-top scene, from run-
ning in real-time with an Azure Kinect RGB-D camera. As
shown in Fig. 7, vMAP is able to generate a range of realis-
tic, watertight object meshes from different categories.

4.3. Performance Analysis

In this section, we compare different training strategies
and architectural design choices for our vMAP system. For
simplicity, all experiments were done on the Replica Room-
0 sequence, with our default training hyper-parameters.

Memory and Runtime We compared memory usage and
runtime with iMAP and NICE-SLAM in Tab. 4 and Fig. 9,
all trained with ground-truth pose, and with the default
training hyper-parameters listed in each method, for fair
comparison. Specifically, we reported the Runtime for train-
ing the entire sequence, and Mapping Time for training each
single frame, given the exact same hardware. We can ob-
serve that vMAP is highly memory efficient with less than
1M parameters. We want to highlight that vMAP achieves
better reconstruction quality, and runs significantly faster
(∼5Hz) than iMAP and NICE-SLAM with 1.5x and 4x
training speed improvement respectively.

Vectorised v.s. Sequential Training We ablated training
speed with vectorised and sequential operations (for loops),
conditioned on different numbers of objects and different
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Figure 8. Vectorised operation allows extremely fast training
speed compared to standard sequential operations using for loops.

sizes of object model. In Fig. 8, we can see that vectorised
training enables tremendous improvements in optimisation
speed, especially when we have a large number of objects.
And with vectorised training, each optimisation step takes
no more than 15ms even when we train as many as 200 ob-
jects. Additionally, vectorised training is also stable across
a wide range of model sizes, suggesting that we can train
our object models with an even larger size if required, with
minimal additional training time. As expected, vectorised
training and for loops will eventually have similar training
speed, when we reach the hardware’s memory limit.

To train multiple models in parallel, an initial approach
we tried was spawning a process per object. However, we
were only able to spawn a very limited number of processes,
due to the per process CUDA memory overhead, which sig-
nificantly limited the number of objects.

Object Model Capacity As vectorised training has min-
imal effect on training speed in terms of object model de-
sign, we also investigated how the object-level reconstruc-
tion quality is affected by different object model sizes. We
experimented with different object model sizes by varying
the hidden size of each MLP layer. In Fig. 9, we can see that
the object-level performance starts to saturate starting from
hidden size 16, with minimal or no improvement by fur-
ther increasing model sizes. This indicates that object-level
representation is highly compressible, and can be efficiently
and accurately parameterised by very few parameters.

Stacked MLPs v.s. Shared MLP Apart from represent-
ing each object by a single individual MLP, we also ex-
plored a shared MLP design by considering multi-object
mapping as a multi-task learning problem [26, 33]. Here,
each object is additionally associated with a learnable la-
tent code, and this latent code is considered as an condi-
tional input to the network, jointly optimised with the net-
work weights. Though we have tried multiple multi-task
learning architectures [12, 18], early experiments (denoted
as vMAP-S in Fig. 9) showed that this shared MLP design
achieved slightly degraded reconstruction quality and had
no distinct training speed improvement compared to stacked

0 0.5 1 1.5 2
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16 32 64
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128 256 384 512
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8

16 32 64

vMAP-S
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Obj. Comp. Ratio (< 1cm %) ↑

vMAP
iMAP

Figure 9. Object-level Reconstruction v.s. Model Param. (denoted
by network hidden size). vMAP is more compact than iMAP, with
the performance starting to saturate from hidden size 16.

MLPs, particularly when powered by vectorised training.
Furthermore, we found that shared MLP design can lead to
undesired training properties: i) The shared MLP needs to
be optimised along with the latent codes from all the ob-
jects, since the network weights and all object codes are
entangled in a shared representation space. ii) The shared
MLP capacity is fixed during training, and therefore the rep-
resentation space might not be sufficient with an increasing
number of objects. This accentuates the advantages of dis-
entangled object representation space, which is a crucial de-
sign element of vMAP system.

5. Conclusion
We have presented vMAP, a real-time object-level map-

ping system with simple and compact neural implicit rep-
resentation. By decomposing the 3D scene into meaningful
instances, represented by a batch of tiny separate MLPs,
the system models the 3D scene in an efficient and flexible
way, enabling scene re-composition, independent tracking
and continually updating of objects of interest. In addition
to more accurate and compact object-centric 3D reconstruc-
tion, our system is able to predict plausible watertight sur-
faces for each object, even under partial occlusion.

Limitations and Future Work Our current system re-
lies on an off-the-shelf detector for instance masks, which
are not necessarily spatio-temporally consistent. Though
the ambiguity is partially alleviated by data association and
multi-view supervision, a reasonable global constraints will
be better. As objects are modelled independently, dynamic
objects can be continually tracked and reconstructed to en-
able downstream tasks, e.g., robotic manipulation [34]. To
extend our system to a monocular dense mapping system,
depth estimation networks [13, 41] or more efficient neural
rendering approaches [19] could be further integrated.
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