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Abstract

Neural network quantization is a popular approach for
model compression. Modern hardware supports quanti-
zation in mixed-precision mode, which allows for greater
compression rates but adds the challenging task of search-
ing for the optimal bit width. The majority of existing
searchers find a single mixed-precision architecture. To
select an architecture that is suitable in terms of perfor-
mance and resource consumption, one has to restart search-
ing multiple times. We focus on a specific class of methods
that find tensor bit width using gradient-based optimization.
First, we theoretically derive several methods that were em-
pirically proposed earlier. Second, we present a novel One-
Shot method that finds a diverse set of Pareto-front architec-
tures in O(1) time. For large models, the proposed method
is 5 times more efficient than existing methods. We verify
the method on two classification and super-resolution mod-
els and show above 0.93 correlation score between the pre-
dicted and actual model performance. The Pareto-front ar-
chitecture selection is straightforward and takes only 20 to
40 supernet evaluations, which is the new state-of-the-art
result to the best of our knowledge.

1. Introduction

In recent years, neural network quantization [31] has be-
come a popular hardware-friendly compression technique.
It is common to quantize linear and convolutional layer
operands while leaving vector operands unchanged. Mod-
ern algorithms achieve lossless quantization into fixed 8-bit
integer values in many applications [45, 15, 40, 35, 49, 25,
5]. At higher compression rates, mixed-precision is often
needed [22, 44]. For example, models often require 8-bit
precision for the first and last layers, while the middle lay-
ers can tolerate lower precision [15, 40]. In addition, the
selected precision may depend on a quantized operation [7]
or a hardware at hand [41]. This motivates many vendors to
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Figure 1. The searching time taken by each algorithm to dis-
cover a single bit width architecture belonging to a Pareto front.
EdMIPS [7], DNAS [44], GMPQ [42], and One-Shot MPS (our)
use a proxy dataset for ResNet-18 and MobileNet-v2. Bayesian
Bits [38] and HAQ [41] roughly take 100 times more searching
time compared to our method.

support mixed-precision models in hardware.
To attain the best mixed-precision performance, it is cru-

cial to find an optimal precision for each matrix multipli-
cation factor. Unfortunately, all possible bit width combi-
nations cannot be examined since the search space scales
exponentially with the number of multiplications. The in-
ability to predict the influence of individual loss coefficients
on the resulting compression rate furthermore exacerbates
the difficulty of searching. Existing methods [44, 7, 38, 9]
require multiple restarts of the searching process until a sat-
isfactory bit width allocation is found. This results in O(N)
searching time, where N is the number of restarts.

The authors of EdMIPS [7] mention that “sometimes, it
is mysterious why and how an architecture is found by Neu-
ral Architecture Search (NAS)”. We answer this question in
the context of EdMIPS and DNAS [44] methods. To do
so, we simplify and generalize Bayesian Bits [38], where a
variational inference (VI) approach is used to derive the loss
function for a hierarchical supernet. Then, we demonstrate
how the EdMIPS and DNAS loss functions can be derived.

Next, using our derivation, we propose a novel One-
Shot Mixed-Precision Search (One-Shot MPS) method that
finds a diverse set of Pareto-front architectures in O(1)
time. We extend the commonly used supernet transforma-
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tion of a floating-point model with a set of trainable func-
tions that predict the bit width probability depending on a
hardware regularization parameter. For ImageNet [11], we
observe at least 0.96 correlation score between child mod-
els sampled from a One-Shot model and standalone fine-
tuned models, cf . previous result attains a maximum score
of 0.55 [16]. Such a high score allows one to plot a Pareto
front of performance versus hardware resources using a lin-
ear sweep over the regularization parameter, and select the
most promising precision given hardware constraints be-
fore fine-tuning. The Pareto-front architecture selection is
straightforward and takes only 20 to 40 supernet evaluations
while existing One-Shot methods require at least 1000 eval-
uations [16, 10].

To sum up, our contribution is twofold. First, we pro-
vide a theoretical derivation of the earlier empirically-found
state-of-the-art searching methods. Second, we propose to
augment a supernet with a bit width prediction model that
allows searching for Pareto-front bit width combinations
corresponding to different compression rates in a constant
time. We validate the benefits of the approach on sev-
eral widely-used models including mobile-friendly archi-
tectures. To the best of our knowledge, the proposed pre-
dictor is not described in the existing literature.

2. Related work
The existing search methods can be split into four

groups. The first group [12, 28, 8, 34] uses suitable
proxy metrics that reflect model sensitivity to quantization.
In [12], it is shown that an average Hessian trace can sug-
gest a relative bit width for each layer. The Bayesian ap-
proach [28] uses a posterior uncertainty to identify and re-
move insignificant bits.

The second group of methods leverages Reinforcement
Learning (RL) [14, 41, 27]. Such methods assume that to
converge in a reasonable time, the optimal solution should
abide by resource constraints while attaining the best per-
formance after only several fine-tuning epochs. The advan-
tage of RL is that it works with non-differentiable feedback
from a target device, thereby finding a solution adapted to
all the particular features of the hardware at hand.

The third and largest group of methods uses various tech-
niques to relax the discrete problem of choosing integer bit
widths into a continuous problem. This enables updating
architecture parameters using Stochastic Gradient Descent
(SGD). After searching, the most likely tensor precision is
selected. Methods inspired by differentiable NAS construct
a supernet in which each matrix multiplication factor is rep-
resented as a weighted sum of mixed-precision quantizers
applied to an original FP32 factor [44, 7, 42]. A similar ap-
proach is to take a linear combination of two integer quan-
tizers [46, 19] or bit widths [13]. In [37, 9], the authors
reparameterize quantizers with a trainable step and dynamic

range, achieving a legitimate bit width after rounding. The
Bayesian Bits [38] method recursively decomposes a resid-
ual error between the quantized and FP32 tensors. The pro-
cess involves the relaxation of stochastic gates that, if open,
double a tensor precision. Methods in this group typically
use a regularization parameter in a loss function to balance
a task performance and a compression rate. The parameter
has to be selected in advance, and generally, several restarts
should be made before a suitable parameter is found.

Finally, the fourth group of methods uses One-Shot mod-
els that can predict the performance of any bit width config-
uration. These methods may look very similar to supernet
methods [44, 7] described above. However, the crucial dif-
ference is that One-Shot models allow for the decomposi-
tion of the search process into two steps. In the first step,
the One-Shot model is trained such that child architectures
sampled from it can predict the performance without fine-
tuning. After training, the architecture is selected via Evo-
lutionary Search (ES) [16] or a heuristic algorithm [6, 10].
Weight co-adaptation is a well-known issue [1]. Solving
this issue is essential for achieving good-quality predictions
in the first step. A high correlation between a child and stan-
dalone model performance was first achieved by a dropout
technique [1]. Later, single-path sampling [16] and varieties
of progressive training [6, 10] were shown to be effective.
In fact, the latter methods are so successful in combating
co-adaptation that the sampled child models are already op-
timal, i.e. they do not require fine-tuning at all.

3. The derivation of DNAS and EdMIPS

3.1. Supernet with one-hot gates

In this section, we show that EdMIPS and DNAS meth-
ods can be derived from Bayesian principles using VI. The
proposed derivation is inspired by Bayesian Bits [38] where
authors use a hierarchical transformation of quantization
operations. Our derivation uses a much simpler transfor-
mation that is generic and easier to apply. In particular,
Bayesian Bits supports only power-of-two bit width op-
tions, while our method supports any bit width.

We assume that we are given a regular model with FP
weights ω. The model is trained to maximize the log-
likelihood log pω(D) on a supervised dataset D. Our goal is
to find the optimal bit width of weights bω ∈ Bω and activa-
tions bx ∈ Bx subject to hardware constraints such as a limit
on memory or bit operations (BOPs). For simplicity, we of-
ten use a Cartesian product of bit options B = Bx × Bω .

We consider the class of methods that find a suitable ar-
chitecture using gradient descent. The proposed supernet
block for a single matrix-multiplication operation is shown
in Figure 2. In the block, we place discrete categorical
random variables z ∈ {0, 1}|B∗| encoded as one-hot vec-
tors in front of each quantizer Q. The ∗ symbol is used as
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Figure 2. The transformation of a matrix multiplication operation
y = ωTx in a supernet. One-hot gates z, placed in front of each
quantizer Q, determine the weight ω or input tensor x precision.
The example is given for quantizers in 2, 4, and 8 bits.

a wildcard for {ω, x}. The aforementioned goal can now
be specified as finding a posterior probability distribution
pω(z|D) = pω(D, z)/pω(D) of the gates being open, such
that the supernet maximizes the log-likelihood subject to
hardware constraints. Calculating the marginal density of
observations pω(D) =

∫
pω(D, z)dz is intractable. Thus,

we resort to the VI approach of approximating pω(z|D) by
some variational distribution qπ(z) with parameters π. In
other words, we aim at minimizing the KL-divergence be-
tween the variational distribution and the posterior,

KL(qπ(z)||pω(z|D)) = Ez∼qπ(z)

[
log

qπ(z)

pω(D, z)

]
+ log pω(D) = −F(ω, π) + log pω(D), (1)

where F(ω, π) is known as the evidence lower bound
(ELBO). Minimizing the left-hand side equals maximizing
ELBO because the log-evidence term log pω(D) is constant
w.r.t. q. Therefore, our goal of finding the posterior pω(z|D)
reduces to maximizing ELBO,

F(ω, π) = Ez∼qπ(z) [log pω(D|z)]−KL(qπ(z)||pω(z)).
(2)

The first term minimizes task loss. This leads to a higher
bit width selection and a smaller quantization error. The
second term is a prior-based regularizer. We select it to en-
courage modest resource utilization by penalizing the open-
ing of high-precision gates. The prior probability of a gate
zk being open in layer k at bit width b depends on the
amount of resources each gate adds to the total consumed
resources. Let us denote this amount as hk,b. The Bayesian
approach is to view hk,b as state energy, where the state is
defined by the bit width allocation. Hence, we propose to
model the gate-opening prior by a Boltzmann distribution,

pk,b =
e−ηhk,b∑
b∈B e−ηhk,b

. (3)

Here, η ≥ 0 is a hardware penalty that plays a role of an in-
verse temperature. Intuitively, (3) promotes bit widths that

result in smaller resources h for η > 0. The prior does
not give any preference to any particular gate when η = 0.
Note how simple and generic it becomes to model the prior
probability using any hardware metric.

The joint prior over the gates in layer k is modeled as a
Categorical distribution because only a single gate z can be
opened per a multiplication factor,

pω(zk) = Cat(zk; pk,b) =
∏
b∈B

p
I(zk=zk,b)
k,b . (4)

We use the mean-field approximation for the variational
distribution qπ(z) =

∏K
k=1 qπ(zk) defined by parameters

{πk}Kk=1. Once again, we choose a Categorical distribution
for independent factors of qπ(z),

qπ(zk) = Cat(zk;πk) =
∏
b∈B

π
I(zk=zk,b)
k,b . (5)

The KL-divergence in (2) is calculated as

KL(qπ(z)||pω(z)) =
K∑

k=1

KL(qπ(zk)||pω(zk)), (6)

where

KL(qπ(zk)||pω(zk)) = Ezk∼qπ(zk) [log qπ(zk)− log pω(zk)]

= Ezk∼qπ(zk)

[∑
b∈B

I(zk = zk,b) log πk,b

−
∑
b∈B

I(zk = zk,b) log pk,b

]
=

∑
b∈B

Ezk∼qπ(zk) [I(zk = zk,b)] log πk,b

−
∑
b∈B

Ezk∼qπ(zk) [I(zk = zk,b)] log pk,b

= −H(πk)−
∑
b∈B

πk,b log pk,b. (7)

By putting everything together, we obtain the novel Vari-
ational Inference Mixed-Precision Search (VIMPS) method

F(ω, π) = Ez∼qπ(z) [log pω(D|z)]

+

K∑
k=1

∑
b∈B

πk,b log pk,b +H(π),
(8)

where H(π) =
∑K

k=1 H(πk) for simplicity. VIMPS is used
further to derive DNAS, EdMIPS, and One-Shot MPS.

3.2. DNAS and EdMIPS loss functions

We would like to maximize (8) with respect to the model
parameters ω and variational parameters π. However, it
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is problematic to propagate gradients through the expected
conditional distribution Ez∼qπ(z) [log pω(D|z)] to update π.

The first approach is to approximate the posterior qπ(z)
using a differentiable Concrete distribution [20, 29],

Ez∼qπ(z) [log pω(D|z)]
≜ Eg∼Gumbel(0,1) [log pω(D|zg)] , (9)

where zg = Softmax ((l + g)/τ) is a sample from the Con-
crete distribution, l is trainable architecture parameters, g is
a Gumbel sample, and τ is a temperature. This approach
leads to the DNAS bit width searching method [44].

Another approach is to discard sampling and simply use
a Softmax function as a proxy for the gate probabilities,

Ez∼qπ(z) [log pω(D|z)] ≜ log pω(D|Softmax(l)) (10)
= log pω̃(D), (11)

where the convoluted weights and activations are cal-
culated as ω̃ =

∑
b∈Bω Softmax(lωb )Q

ω
b (ω) and x̃ =∑

b∈Bx Softmax(lxb )Q
x
b (x). This approximation is crude,

but it works well in practice. This approach results
in EdMIPS [7]. Note that due to the reparametriza-
tions (9) and (11), logits l become the actual trainable pa-
rameters of the variational distribution qπ(z).

Finally, let us write the exact form of (8) that, for ex-
ample, minimizes BOPs. As explained in Section S3.2
of Supplementary Materials, BOPs in layer k depend
on both weight and activation bit width, BOPs(k) =
bωk b

x
k MACs(k). When gate zωk,b (zxk,b) is open, the weight

(activation) tensor in layer k will be quantized in bω (bx)
bits. Therefore, the opening probability should reduce if a
tensor bit width is increasing. This can be formalized as

hk,b = bωk b
x
k MACs(k). (12)

In such a case, (8) now will have the following form:

F(ω, π) = Ez∼qπ(z) [log pω(D|z)]

− η

K∑
k=1

b̃ωk b̃
x
k MACs(k) +H(π), (13)

where b̃∗ =
∑

b∗∈B∗ πb∗b
∗ is the expected bit widths of

weights and activations, and z is sampled from the Concrete
distribution similarly to DNAS. The exact derivation of (13)
is given in Section S1 of Supplementary Materials.

Let us summarize the differences between our theoreti-
cally derived loss (13) and DNAS and EdMIPS losses.

1. Both DNAS and EdMIPS do not use entropy.

2. DNAS uses a multiplicative hardware loss.

3. EdMIPS uses a crude approximation of the expected
conditional distribution.

η π z D

θ ω

Figure 3. The graphical model of the proposed One-Shot MPS
method. Solid lines denote the generative model pω(D|z)pω(z),
dashed line denotes the variational approximation qπ(z), and dot-
ted lines denote the discriminative model fθ(η).

Note that the provided derivation is generic in that it ap-
plies to any differentiable NAS methods where branch prob-
abilities sum up to one.

4. One-Shot Mixed-Precision Search
4.1. The bit width probability model

To discover the range of models subject to various com-
pression rates at once (in O(1) time), we propose to ex-
pand the supernet block from Figure 2 with a discriminative
model π(η) = Softmax(fθ(η)) parametrized by weights θ.
We call it the bit width probability model because, given the
hardware penalty η, the model outputs the opening proba-
bility of each gate in the supernet. The graphical model
of the proposed supernet modification is shown in Figure 3.
After training, one can select Pareto front architectures sim-
ply by sweeping the hardware penalty through the model
linearly. ELBO can now be written as

F(ω, θ) = Eη∼p(η)

[
Ez∼qπ(η)(z) [log pω(D|z)]

+

K∑
k=1

∑
b∈B

πk,b(η) log pk,b(η) +H(π(η))

]
, (14)

where the penalty η is sampled from some distribution p(η).

4.2. One-Shot MPS loss function

Although the original EdMIPS or DNAS models do not
use the entropy term, we have found that using this term
is beneficial for One-Shot MPS. The intuition of its useful-
ness is the following. The Softmax function used in the bit
width model fails to learn when logits become large, caus-
ing gradients to vanish. The entropy prevents Softmax sat-
uration, and therefore it facilitates gradient flow. However,
too strong entropy regularization leads to a discrepancy be-
tween a supernet and its child. Experimentally, we have
found that weighting the entropy by some small and con-
stant value λ works the best. Also, note that the effect of
the temperature τ in (9) is different from the entropy loss.
While the former works approximately as a gradient multi-
plier, the latter works as an additive regularizer that prevents
Softmax saturation.
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The One-Shot model is expected to work at different bit
width options within the same layer. For this reason, the
model has an independent set of weights for each layer, cf .
Figure 2. Experimentally, independent weights may result
in One-Shot model collapse because of a positive feedback
loop in early training: 8-bit weights perform much better
than 2-bit weights due to a smaller quantization error after
initialization. The positive feedback loop reinforces 8-bit
gate opening, and the model is not trained well. Our solu-
tion is to add an extra term called kernel similarity that helps
a quicker 2-bit weights adjustment at the start of training.

This leads us to the One-Shot MPS loss function,

L(D;ω, θ) = −Eη∼p(η)

[
Ez∼qπ(η)(z) [log pω(D|z)]

+

K∑
k=1

∑
b∈B

πk,b(η) log pk,b(η) + λH(π(η))

]
+ µ

∑
i∈Bω

∑
j∈Bω

j>i

∥ωi − ωj∥2, (15)

where the last term is the kernel similarity weighted by
some penalty µ. We reduce µ to 0 during training using a
cosine decay. Throughout our experiments, we use the same
constant entropy λ and initial kernel similarity µ0 penalties.

Loss (15) is differentiable with respect to model weights
ω due to the Straight-Through Estimator (STE) [2]. It is also
differentiable with respect to bit width model parameters
θ by the supernet construction. We update both ω and θ
simultaneously, using a training dataset.

Finally, what distribution should we choose for p(η)?
Since the scales of terms in (15) are not known in ad-
vance, the proposed method requires the upper η1 and lower
η0 bounds on the hardware penalty. Given the bounds,
we draw samples exponentially from the interval [η0, η1].
Such a procedure is often used for hyperparameter opti-
mization [3]. For η1/η0 ≫ 1, which is the case in all One-
Shot MPS experiments, the samples approximately follow
the exponential distribution. This distribution is a maxi-
mum entropy distribution on [0,+∞), which means that we
make the fewest assumptions about the true distribution of
η. In practice, we sample η̂ ∼ Uniform(ln η0, ln η1), and
use a normalized value of η̂ as input to the bit width model,
l = fθ((η̂ − ln η0)/(ln η1 − ln η0)). The hardware penalty
in (15) is then computed as η = eη̂ .

4.3. Conditional Batch Normalization and biases

Conditional Batch Normalization (CBN) is another fea-
ture we propose to use in One-Shot MPS. Several au-
thors have noticed that changing model architecture or bit
width while training results in serious performance degra-
dation if a network contains Batch Normalization (BN) lay-
ers [47, 21, 6]. This degradation is attributed to a shift in

feature statistics. Note that the feature distribution in DNAS
or EdMIPS is stationary because η is fixed.

To cope with the changing statistics, we expand BN lay-
ers by the factor of |B| and use the incurred tensor product
c = πx ⊗ πω , combined with a moving average momentum
m, to “softly” update the BN layers,

xk+1 = CBN(xk, π
x, πω) =

∑
ci∈{πx⊗πω}

ci BNi(xk, cim),

(16)
where BN statistics depend on input and weight precision
probabilities ci used in a previous matrix multiplication op-
eration. Note that

∑
i ci = 1.

Similarly, we expand biases whenever they are used in an
FP32 model. The described expansion results in a negligi-
ble number of extra parameters, and can be fused with con-
volutional and fully-connected layers at inference [47, 31].

5. Experiments
5.1. Experiment setup

We consider searching for hardware-friendly architec-
tures with power-of-two bit width options. For the conve-
nience of comparison with Bayesian Bits, we consider 2, 4,
or 8 bit quantizers for all layers in a model, including the
first and last layer. We set the lower range value for input
x to zero if it follows a ReLU activation function. Residual
connections are not quantized [18, 15].

The proposed method is evaluated on ResNet-18 [17]
and MobileNet-v2 [32], two widely-used classification
models, and on two super-resolution (SR) models. The
ESPCN [33] network is a real-time SR network with three
convolutional layers. We use it to fine-tune all 36 = 729
bit width combinations and demonstrate the optimal One-
Shot MPS performance. Quantizing the second SR model,
SRResNet [23], is known to be a challenging task [40, 18].

For ResNet-18 (MobileNet-v2) training, we use the
ImageNet [11] dataset with a standard augmentation
pipeline [17] and 512 (256) batch size. The top-1 accuracy
is calculated on a validation dataset. Proxy ImageNet is
prepared according to [41]. For SR models, we use 32× 32
pixel low-resolution images from DIV2K [36] dataset with
augmentations from [40]. Images are upscaled 4 times.
Models are tested on Set5 [4] and Set14 [48] datasets.

For all experiments with the One-Shot model, we use
initial kernel similarity µ0 = 1 with cosine annealing, a
constant entropy weight λ = 10−3, and a constant tem-
perature τ = 1. For modeling the bit width probability π,
we use a densely-connected n-layered neural network fθ(η)
with 128 hidden layers and a swish activation function. For
ESPCN, we set n = 1, while for other networks, we use
n = 2. Please refer to Section S3 of Supplementary Mate-
rials for extra details about the experiments and Section S4
for extra results.

7943



5.2. Evaluation criteria

We evaluate the performance of the One-Shot MPS
method using three criteria.

1. The primary evaluation criterion is the time required
for searching the Pareto front models.

2. The second criterion is the correlation plots and the
corresponding Kendall’s Tau correlation values be-
tween child and standalone models [1, 16]. The val-
ues range from −1 to 1. The higher value indicates
that child models sampled from a supernet can better
predict the relative performance of standalone models
without fine-tuning.

3. Finally, we evaluate the quality of architectures by
fine-tuning the models found by One-Shot MPS,
EdMIPS, DNAS, and Bayesian Bits [38]. The plots
show the trade-off between the compression rate and
the quantized model performance. We use BOPs to
compare our results with Bayesian Bits. However,
BOPs cannot directly reflect the latency due to many
factors, including memory costs [41, 43]. Thus, we ad-
ditionally use the total random-access memory (RAM)
metric to compare SR Pareto fronts. Two versions
of the One-Shot MPS method are compared. The
“One-Shot (Lloyd)” version uses a Lloyd quantizer for
searching and fine-tuning. The “One-Shot (Trainable
Lloyd)” version uses a Lloyd quantizer for searching
and a Trainable Lloyd quantizer for fine-tuning.

5.3. Searching costs analysis

The Pareto searching time of all methods is shown in
Figure 1. The One-Shot MPS method is run only once. For
large models, ResNet-18 and MobileNet-v2, the searching
time is 5 times smaller than existing methods.

One-Shot MPS does not share weights within a layer.
Therefore, DNAS and One-Shot MPS consume approxi-
mately |Bx| more RAM than EdMIPS and Bayesian Bits.

5.4. Correlation analysis

Kendall’s Tau correlation results are presented in Ta-
ble 1. Child models sampled from One-Shot MPS in all
experiments have correlation scores above or equal 0.93,
and the result is always significant. In particular, the scores
are much higher than those in literature, e.g. [16] attains
a maximum score of 0.55 on ImageNet. On the other
hand, EdMIPS in most cases has smaller and often non-
significant correlation values. We explain this by the crude
cost function approximation that does not use architecture
sub-sampling. Contrary to EdMIPS, DNAS uses architec-
ture sub-sampling by the means of a Concrete distribution.
We observe that DNAS attains higher correlation scores, al-
though they are still smaller than for One-Shot MPS.

Table 1. The Kendall’s Tau correlation score is calculated between
the child and standalone models’ performance. The child model
is derived from a supernet, where the branch with the highest π
is taken. The standalone model is a fine-tuned model of the same
bit width. The Lloyd quanitzer is used in these experiments. The
boldface marks the statistically significant result (p-value ≤ 0.05).

Network Method Kendall’s Tau correlation measured
for Set14 PSNR for Set5 PSNR

ESPCN
One-Shot 0.97 0.97
EdMIPS 0.71 0.52
DNAS 0.86 0.93

SRResNet
One-Shot 0.93 0.93
EdMIPS 0.07 0.14
DNAS 0.91 0.91

for ImageNet Top-1 accuracy

ResNet-18
One-Shot 0.97
EdMIPS 0.29
DNAS 0.52

MobileNet-v2
One-Shot 0.96
EdMIPS 0.93
DNAS 0.29
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Figure 4. The plots visualize the correlation between the child
and standalone models in terms of top-1 accuracies for ResNet-18.
Brighter colors depict models of higher BOPs. The standalone
model is trained and evaluated on a full ImageNet, while the child
model is taken from a One-Shot supernet that is trained and eval-
uated on a proxy ImageNet. Note the difference in axis ranges.

Figure 4 depicts the correlation between the child and
standalone models in terms of top-1 accuracies. It can be
seen that One-Shot MPS finds child architectures that cor-
relate well with standalone architectures.

5.5. The quality of found architectures

The architecture quality found by One-Shot MPS is stud-
ied in Figure 5, where the performance of fine-tuned mod-
els is compared. ESPCN plot shows that One-Shot MPS
finds the optimal architectures with respect to performance
vs RAM trade-off. In most cases, One-Shot MPS attains
performance that is similar to or higher than existing meth-
ods. Thus, training the bit width model does not hamper the
quality of found architectures. Furthermore, found architec-
tures are generic w.r.t. a fine-tuning quantizer, cf . “Lloyd”
and “Trainable Lloyd”. Finally, note that One-Shot MPS
finds a richer set of models compared to Bayesian Bits.
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Figure 5. The verification of architecture qualities found by One-Shot MPS. For a cleaner visualization, we removed models which
rest inside Pareto fronts. The notation “wXaY” indicates a fixed bit width architecture with 8-bit model input, X-bit weights, and Y-
bit activations. The FP32 ESPCN and SRResNet models’ RAM is 1.28MB and 26.75MB, respectively. The FP32 ResNet-18 and
MobileNet-v2 model’ BOPs are 1857.6GBitOPs and 308.0GBitOPs, respectively. The FQSR result is taken from [40]. The Bayesian
Bits [38] result is taken from the arXiv article. All other results, including HAQ [41] and GMPQ [42], are obtained by the authors.

Fixed bit width architectures attain peak signal-to-noise
ratio (PSNR) or Top-1 accuracy similar to mixed-precision
networks only at 8 bits. For smaller bit widths, One-Shot
MPS and conventional mixed-precision methods typically
find better-performing architectures.

5.6. Ablation studies

Ablation results in Figure 6 are obtained for a shorter
fine-tuning time and a smaller number of architecture sam-
ples. In the left plot, we compare the exponential temper-
ature decay 5.0 → 0.5 suggested in [44] with a faster and
stronger exponential decay of 5.0 → 10−3, and a constant
value. The plot shows that there is no difference in temper-
ature choices. In the middle plot, we see that λ = 10−3

and µ0 = 1 diversify found architectures, but do not al-
ter their performance substantially. Note, how the absence
(λ = 0) of the entropy term in (14) reduces the spectrum of

found models. In the right plot, we see that a child model
with CBN makes a better PSNR prediction than with BN.
Kendall’s Tau scores for One-Shot MPS with the CBN and
BN layers are 0.81 and 0.52, respectively.

Figure 7 investigates the bit width model fθ(η). In the
left plot, the deeper (n = 2) bit width model has a higher
confidence of a selected bit width (probabilities closer to
1) and a greater architecture diversity (2, 4, and 8 bits are
selected for different penalty values η). Such behavior ap-
pears because the linear model (n = 1) has less capacity
(high bias) to learn the dependency of a bit width distribu-
tion on penalty η compared to a nonlinear model (n = 2).

The right plot shows the experiment in which the bit
width model was fit to the whole penalty range and its
halves in a log-uniform space. As we see, a wider penalty
range does not hamper the quality of found architectures.
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Figure 6. The influence of temperature τ (left), entropy penalty λ, and initial kernel similarity penalty µ0 (middle) on ESPCN performance.
The notation “X → Y ” in temperature indicates the exponential schedule, with X and Y being the starting and final temperature values.
The right plot studies the influence of CBN vs. BN on child and standalone SRResNet models quantized.
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Figure 7. The left plot depicts the bit width probability π(η) de-
pending on the number of layers in a bit width model. The notation
“(b, n)” denotes the bit width b probability for the bit width model
of n layers. The right plot shows that a wider hardware penalty
range does not hamper the quality of found architectures.

6. Discussion
Our results demonstrate that the proposed One-Shot

MPS method can find good-quality architectures at once.
Compared to the conventional methods, our method

1. allows finding a richer set of bit width combinations,

2. improves a Kendall’s tau correlation which is useful
for predicting the fine-tuned model performance, and

3. does not hamper the quality of found architectures.

Benefits 1 and 2 arise because the bit width model imposes
a structure on the selected architectures, cf . Figure 7 (left).
After searching, one may use an educated guess or a binary
search to select one or several models that satisfy both per-
formance and compression constraints.

One-Shot MPS requires two extra hyperparameters in
loss, i.e. the kernel similarity µ and entropy λ penalties.
However, our results, obtained in four very different model
architectures, show that the default values work well.

During experiments, it was easy to choose the regular-
ization bounds [η0, η1] for all models except SRResNet, i.e.
moderate compression rates were not covered by the se-
lected architectures. We attribute this to the largest residual
connection between the low-level feature extractor and the

up-sampler parts [24]. Using the two-layered perceptron al-
lowed us to obtain more diverse bit width combinations.

Mixed-precision searching methods are sensitive to hy-
perparameters. Although during fine-tuning, we used the
same learning rates for models of different bit widths, we
observed that tuning the learning rates for a particular bit
width may increase model performance. Thus, we would
like to stress the necessity of developing quantizers and op-
timizers that would adapt and perform equally well in vari-
ous mixed-precision configurations.

Limitations. First, the One-Shot MPS approach, similar
to other searching methods considered here, assumes that
hardware metrics can be calculated by an equation, and the
equation itself is differentiable w.r.t. bit width. Modeling
some interesting metrics such as latency or power consump-
tion is usually non-trivial and may pose a difficulty for a
differentiable NAS [39]. Second, the proxy dataset used for
searching the architectures of ResNet-18 and MobileNet-v2
by One-Shot MPS may not match the full dataset well.
Thus, the trained One-Shot model may result in biased pre-
dictions. Finally, the memory grows linearly with the num-
ber of bit width options. This may become a limiting factor
for applications to very large models such as transformers.

Potential negative societal impact. Quantization may
reduce robustness against adversarial attacks [30, 26].

7. Conclusion

We theoretically derived the DNAS and EdMIPS bit
width searching methods using variational inference. Us-
ing our derivation, we proposed and experimentally verified
the novel bit width searching method, One-Shot MPS. The
method uses the Boltzmann distribution for hardware con-
straints modeling and CBN for improving the correlation
scores between the child and standalone models. One-Shot
MPS finds good-quality architectures in O(1) time com-
pared to conventional methods for which the searching time
depends linearly on the number of architectures.
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