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Abstract

Learning compact image embeddings that yield seman-
tic similarities between images and that generalize to un-
seen test classes, is at the core of deep metric learning
(DML). Finding a mapping from a rich, localized image
feature map onto a compact embedding vector is challeng-
ing: Although similarity emerges between tuples of images,
DML approaches marginalize out information in an individ-
ual image before considering another image to which simi-
larity is to be computed.

Instead, we propose during training to condition the em-
bedding of an image on the image we want to compare it to.
Rather than embedding by a simple pooling as in standard
DML, we use cross-attention so that one image can iden-
tify relevant features in the other image. Consequently, the
attention mechanism establishes a hierarchy of conditional
embeddings that gradually incorporates information about
the tuple to steer the representation of an individual image.
The cross-attention layers bridge the gap between the origi-
nal unconditional embedding and the final similarity and al-
low backpropagtion to update encodings more directly than
through a lossy pooling layer. At test time we use the re-
sulting improved unconditional embeddings, thus requiring
no additional parameters or computational overhead. Ex-
periments on established DML benchmarks show that our
cross-attention conditional embedding during training im-
proves the underlying standard DML pipeline significantly
so that it outperforms the state-of-the-art.

1. Introduction

Deep metric learning (DML) seeks embeddings that al-
low a predefined distance metric to not only express se-
mantic similarities between training samples, but to also
transfers to unseen classes. The ability to learn compact
image representations that generalize well and transfer in
zero-shot manner to unseen test data distributions is crucial
for a wide range of visual perception tasks such as visual
retrieval [51, 63], image classification [44, 80, 88], cluster-
ing [7,28], or person (re-)identification [1 1,27, 69].

DML research has investigated important questions like

the effective mining of training samples [4, 54,57, 65, 68],
the training loss function [51,53,68,77,81,82], and ensem-
ble strategies [18,22,55,63, 86]. However, learning pow-
erful embeddings is by definition a challenging problem:
we seek a mapping from a rich local feature encoding that
projects this tensor with all its comprehensive spatial in-
formation and local details onto a compact vector that acts
as a holistic embedding for an entire image. Local details
have to be aggregated and all the important spatial interre-
lations in an image, e.g., the spatial composition of a scene
or the relative configuration of different body parts to an-
other, have to be summed up in a mere vector. However,
image similarity is multi-modal in nature—two images can
be similar with respect to one characteristic but different
in light of another. The challenge is consequently to learn
which local details to marginalize out and which to preserve
when the embedding function only sees one image and not
also the one we want to compute its similarity to. However,
during training we have access to all images and power-
ful loss functions such as multi-similarity loss [82] already
compare all image tuples. Thus, we could significantly sim-
plify learning the embedding by conditioning it on another
image that we then compute the similarity to.

Contributions: During training we therefore compute
similarities using conditional embeddings of the image we
want to represent conditioned on another image we want to
compare against. Thus, the second image focuses the atten-
tion of the embedding function on characteristics that are
meaningful for a subsequent comparison. Rather then ap-
plying a mere pooling operation, we utilize cross-attention
to project standard image feature encodings (such as a
ResNet convolutional feature map [26]) onto an embedding
vector while conditioning it on an embedding of the other
image. Repeating these cross-attention blocks then cre-
ates a hierarchy of conditional embeddings by successively
adding the conditioning information and gradually transi-
tioning from the challenging unconditional embedding to
the more accessible conditional one. The hierarchy there-
fore divides the difficult problem of learning an embedding
into several smaller steps. Moreover, due to cross-attention
error backpropagation from the similarity measure can now
directly update the image encoding and the embeddings
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rather than having to optimize the encoding only through
the pooling operation of the embedding, which risks atten-
uated gradients. Consequently the encodings and uncondi-
tional embeddings improve over their counterparts in clas-
sical DML training. During inference, we therefore employ
these unconditional representations so that the approach af-
ter training works just like standard DML with no addi-
tional parameters and no extra computational costs, sim-
ply encoding individual images using a ResNet feature en-
coder followed by a standard embedding network that out-
puts the usual pooled feature vector. Our experimental eval-
uation shows that through cross-attention, our conditional
as well as the underlying unconditional embeddings signif-
icantly improve over the embeddings obtained by DML so
far. Moreover, the computational overhead during training
is negligible compared to the costs of current DML training.

2. Related Work

Deep Metric Learning: Deep Metric Learning
(DML) [49, 52, 62] is one of the leading lines of research
on similarity learning and related applications, such as im-
age retrieval and search [30, 59, 68, 84] or face recogni-
tion [10,29,43,65], and even influenced the advance of self-
supervised, contrastive representation learning [8, 25, 50].
With the goal of optimizing individual image projections
into an expressive embedding space such that similarity re-
lations between the images are reflected by a given distance
metric, a multitude of different approaches for learning have
been proposed. The main problem formulation of DML
are surrogate ranking tasks over tuples of images, ranging
from simple pairs [23] and triplets [65, 84] to higher-order
quadruplets [9] and more generic n-tuples [27, 54, 68, 82].
These ranking tasks sometimes include geometrical con-
straints [10, 81]. To make learning feasible despite the ex-
ponential complexity of tuple combinations, such methods
are often combined with tuple sampling strategies follow-
ing either manually defined [65, 84, 85] or learned heuris-
tics [19,24,60]. Often, this issue is also successfully al-
leviated by class proxies representing entire sets of train-
ing images such as NCA formulations [20, 37,51,57, 74]
or classification-based approaches [10, 87]. Finally, exten-
sions of these basic formulations further improved the out-
of-distribution generalization capabilities of the learned em-
bedding spaces, e.g by leveraging multi-task and ensemble

learning [38,48,55,56,59,63], generating synthetic training
samples [13,21,40,42,91], diverse, complementary feature
semantics [47,48], self-distillation [61] or sample memory
banks [83].

The works above follow the predominant paradigm of
determining image similarity by comparing mutually inde-
pendent, holistic image projections in the embedding space.
Thereby, the correspondence between images and spatial
structures of them are missing. In our work, we break with

this paradigm and learn a cross-attention module [32] that
explicitly identifies and links holistic embeddings and local
features for estimating similarity during training and refin-
ing the final embeddings.

Transformers and Attention Mechanisms: The atten-
tion mechanism allows neural networks to explicitly focus
on dedicated parts of the model input [31], feature repre-
sentations [78] and even output [32]. Introduced as hard
attention, Spatial Transformers [31] proposed a differen-
tiable input sampler. The powerful formulation of soft (self-
)attention was pioneered by transformers [78] which revo-
lutionized the field of natural language processing and also
has been gaining much more influence in the vision do-
main [12]. Recently, cross-attention has been shown to be
a flexible concept for relating two arbitrary data represen-
tations [32, 33], e.g. for effectively scaling Vision Trans-
formers [12] to large input images. Models purely based on
transformer layers have shown competitive performance on
the tasks of classification and image retrieval ( [15,76]). In
particular, [15,36] proposed to train a Vision Transformer
(ViT) with deep metric learning objectives and gained sig-
nificant improvement over other architectures using con-
ventional backbones as feature extractors. ViT layers are
also deployed to perform extra tasks in DML. In [66], a
message-passing network (essentially a ViT) was proposed
to exchange information between holistic image represen-
tations. Despite the lack of spatial information on individ-
ual instances due to the holistic view, this process incor-
porates the global structure in a mini-batch of samples and
refines the final embedding vectors. Similar work [14] uti-
lizes second-order attention blocks to jointly enhance fea-
tures from different layers of the backbone for individual
images. Whereas in our work, we propose a framework to
incorporate the information across different images and the
spatial structure at the same time.

Local Feature Matching: Establishing correspon-
dences between local image features is a long-standing
problem in Computer Vision [17,58,67]. Generally, it en-
tails the detection of local interest points in the images and a
dedicated stage of "Local feature matching’ [3,5,64,71,89]
based on a collection of local descriptors. To address the
problem of image search on a large scale, VLAD [35] pro-
posed a way of aggregating local descriptors into a lim-
ited dimensional vector. Follow-up work NetVLAD [!] de-
signed a trainable generalized VLAD layer to replace pool-
ing operation and to maintain more local information for
later vectors comparison. Another common paradigm is to
split this process into two stages, first indexing candidates
with global descriptors (holistic embedding) and then re-
ranking them with local descriptors [6,73,75].

Similar to above mentioned works, DIML [90] proposed
a structural matching strategy to explicitly align the richer
spatial feature maps by solving an expensive optimal trans-
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port between pairs of images. However, solving this for
each pair of images imposes costly computation overhead.
In contrast, we cross attend the global and local features
solely during training. As this is trained in an end-to-end
fashion with the backbone network, the feature maps and
holistic embeddings are all refined together. Hence, the con-
ventional holistic embeddings are sufficient for similarity
computation during inference time (see 4.1.1).

Explainability in Deep Learning: Deep Metric Learn-
ing methods typically are difficult to interpret due to the
holistic nature of the optimized latent embedding spaces.
ABE [38] uses a self-attention mechanism for learning an
ensemble of global learners to implicitly focus on differ-
ent parts of the input image. However, (i) attention is
not performed between images, thus only masked image
regions that are captured by a particular learner can be
visualized and (ii) those image regions are only consis-
tent for very attention channels. In contrast, our approach
explicitly establishes local correspondences between im-
ages, which are used to determine individual similarities
between object parts. These correspondences naturally al-
low to visualize fine-grained relations between objects that
the model considers crucial for similarity assessment. Sim-
ilarly, DIML [90] aims at finding local object correspon-
dences, which, however, are limited to coarse object parts
only, due to computational restrictions limiting the number
of independent image regions to be represented. A widely
used visualization in DML are UMAP [46] or tSNE [45]
projections of the holistic image embeddings. While such
visualizations help to show which images are overall simi-
lar and dissimilar, they only implicitly provide insights into
why a model puts two images next to each other on the em-
bedding manifold.

3. Approach

Typically, DML approaches have two stages. First an
encoder function E maps an image I € R¥*Wx3 (o a
tensor E(I) € R"*%*¢ with lower spatial dimensionality
h x w but with ¢ channels, thus aggregating different vi-
sual patterns in different channels. Thereafter, this encoding
is mapped on a d-dimensional embedding ¢(FE(I)) € R,
such that some similarity measure s(¢(-), ¢(-)) in the em-
bedding space, e.g. scalar product, corresponds to semantic
similarities in the image space. Therefore, the embedding
function ¢ typically marginalizes out the spatial dimensions
(usually by simple average pooling across spatial dimen-
sions) and projects onto a higher dimensional unit sphere.

The challenge is consequently to marginalize out only
irrelevant local details and to retain all meaningful charac-
teristics. Computing such a mapping is aggravated by the
fact that we have to compute ¢(F(I;)) only based the image
I; without knowing what other image I; we are comparing
to. In contrast, having some information about I; such as

its encoding E(I;) or its final embedding ¢(£(I;)) would
significantly simplify estimating ¢(E(I;)|¢(E(I;))), since
the conditioning helps to focus on meaningful characteris-
tics for a subsequent comparison s(¢(1;|1;)); ¢(1;]1;)). We
have dropped the image representations here to shorten no-
tation. Our experimental evaluation in Sec.4 shows that
conditioning on ¢(E(I;)) during training significantly im-
proves upon representations learned unconditionally with
a negligible computational overhead during training com-
pared to conditioning on E(I;) and no overhead during in-
ference with the trained model.

Let us now use the embedding of I; to attend to mean-
ingful sites in F(I;) € R"®w>¢ and compute the relevance
of individual local encodings. Please note that for the sake
of simplicity of notation we flatten first two dimensions of
the representation to have E(I;) € RM*¢. After applying
linear layers [32] Q : R — R% and K,V : R® — RY, we
can measure similarities Q(¢(E(I;))) K " (E(I;)) to obtain
weights for a subsequent weighting of the local encodings.
Since only the relative similarity matters, we additionally
utilize a softmax normalization.

Attn(gb(E(I])),E([z)) =
Q(e(E(1)))) KT (E(1:)) 1w (D
( Vd ) R

Using Eq. 1 to weight a linear layer output V (E(I;)) of the
encodings then yields a cross-attention block [32],

Q) KT (k)
Vd

softmax

CA(q, k,v) := softmax ( > V(v), (2

so that

CA($(E(1)), E(L), B(I;)) € B! N
Eq. 2 maps E(I;) to the embedding space by focusing on
those local features that also occur in I; and that are there-
fore relevant for computing similarities afterwards.
To amplify meaningful local characteristics more, we ap-
ply the cross-attention in Eq. 3 repeatedly,

¢°(L;|-) = ¢(E(L)), n=0
CA(p" (1|1, E(L;), E(I})), n >0

“)
After some N update steps, final similarities between im-
ages I; and I; become

" (Ll 1) = {

T

_ oNUl) (6N (4 11))
1N (Ll L) [N (L 1L:) |

Both E and ¢ can then be trained in end-to-end fashion

by backpropagating the error between the predicted simi-
larities sV (I;,I;) and the ground-truth. We here employ

SN(Ii,Ij) :

®)
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Figure 1. Approach overview. Our method proceeds differently in the inference and training stage. During inference, input images I, are
first processed by the encoder E yielding feature maps E(I;). Then E(I;) is mapped into a d-dimensional embedding space using the

projection function ¢(E;) = ¢°(E;|—) to represent the image I;.

During training, we want to learn a conditional embedding of I; that

facilitates the subsequent computation of similarity to some other image I;. Therefore, we seek a mapping from E(I;) into the embedding
space, conditioned on the embedding ¢(E(I;)) of I;. We utilize a cross-attention block to aggregate features from E; relevant for I;:

o' (L

I;) = CA(@°(E(Iy)), E(I;), E(I;)). We repeat this process N times to obtain the final conditional embedding ¢™ (I;|1;). This

refined embedding is then used to compute the loss and to train the model weights in E, ¢, and all the cross-attention blocks.

multi-similarity loss [82] for all predictions within a batch:

1< (1 N
' (6)
Lioe lz eXpwsN(u,zk)—A)D _
6 keEN;

Alg.] summarizes the training procedure of our pro-
posed approach.
Observations on Training: The successive cross-attention
blocks of Eq. 4 establish a hierarchy of conditional embed-
dings that gradually feed information from the conditioning
image into the ¢™(I;|I;). After some N update steps, the
successive layers of this hierarchy are bridging the gap be-
tween the challenging unconditional embedding ¢°(I;|—),
which is however generally applicable (for similarities of I;
to arbitrary other images), and the simpler conditional em-
bedding ¢”, which is specific for the tuple 7, ;. So rather
than having to estimate ¢ directly, we can gradually get
there by backpropagating through the hierarchy: end-to-
end training of Eq. 4 updates all ¢" and in particular also
¢(E(I;)). In essence, backpropagation through the sub-
sequent cross-attention blocks, iteratively distributes infor-
mation between image encodings and embeddings. More-
over, the encoder receives gradients directly in the cross-
attention and not attenuated through the pooling layer of ¢,
as is common in DML. More precisely, each cross-attention
block backpropagates the gradient from the loss £ in Eq.
6 through ¢" ™! = CA(¢"(1;|1;), E(I;), E(I;) directly to
the embedding F(I;) and to the weights of E. That way

Algorithm 1 Training

Require: F - pretrained ResNet-50,
X - dataset with images and class labels,
b - batch size
Initialize E
Initialize weights of initial embedding layer ¢ and weight
of the projection heads @, K,V in the cross-attention
blocks
while not converged do
Sample b Images with labels (I;,1;) € X
for Vi € {1,..,b} do
Compute backbone outputs E(I;)
Compute 6°(Li|-) = o(E(I;))
end for
forvn € {1,..,N} do
Vi, j € {1,..,b} compute
¢"(Li|L;) = CA(¢" (1| 1), E(L), E(1;))
end for
Compute s™ (I;, I;) with Eq.5
Compute loss £ specified in Eq.6
Backpropagate gradients of L into weights
04,00,0K,0v.
end while

we bypass the lossy ¢° = ¢ function that involves spatial
pooling inside and obtain significantly improved ¢(E(I))
compared to standard DML training without Eq. 4. Fig. 2
visualizes how conditional embeddings are wired with each
other and the encoder E.

11073



¢n—1 Ii Ij)

HEE

Q

-+

Cross
Attention

E(I;)

LT o5 L)

Q

-+

Cross
Attention

E(I;)

4

[ 1T

™ (L | )

Figure 2. We iteratively refine the conditional embedding of im-
age I; conditioned on an image I;. The main computation block
enabling refinement of features is the cross-attention between the
conditional embedding from the previous step, ¢™ (I;|I;), of im-
age I; conditioned on the I; and the rich image encoding E(I;).

Inference with the Trained Model: Embedding all test
data using ¢V (I;, I;) to subsequently compute similarities
has a quadratic complexity in the size of the test set as op-
posed to the linear complexity of ¢(I;). However, the end-
to-end training of Eq. 4 has updated all ™ and thereby also
¢(FE(I;)), which is now significantly improved compared
to standard DML training. Therefore, we simply employ
s9(1;, I;), which is just the usual DML inference step lead-

- S(E(I)b(E (L)) © i
ing to TaEa NGB according to Eq. 5 and Eq.

4. Hence, computing similarities for all pairs of images
during image retrieval boils down to a conventional near-
est neighbour computation as it is done in the usual DML
settings. We further discuss and analyze the effects of using
s™(I;,I;)|n > 0 on the retrieval performance in Sec. 4.4.

4. Experiments

Subsequently, we first discuss the experimental setup, in-
cluding the implementation details and the used benchmark
datasets. Then we compare our model to the current state-
of-the-art approaches in DML and ablate certain parts of
our model. Finally, we conduct additional experiments to

investigate and visually explain attention maps of different
cross-attention blocks.

Implementation details We follow the common training
protocol [59, 63, 84] for DML and utilize a ResNet50 [26]
encoder pretrained on the ImageNet dataset. The model is
implemented in the Tensorflow2 framework. All the experi-
ments are conducted on a single RTX 8000 or a single RTX
6000 GPU.

For training, we use the Adam [39] optimizer with a fixed
learning rate of 10~° and default 3;, 3, parameters with no
learning rate scheduling being applied. A default batch size
of 128 is used unless stated otherwise. We choose the pop-
ular multi-similarity loss [82] as our DML objective func-
tion using default parameters stated in the original paper.
For all the experiments we resize input images to the size
256 x 256px following standard practice [52,60]. At train-
ing we crop a random patch, resize it to 224 x 224px and
randomly flip image horizontally. At inference time, to fur-
ther follow standarad protocol, we apply center cropping to
size 224 x 224px after the initial resize to 256 x 256px and
feed it to the network. Our embeddings lie in the d = 512-
dimensional space, thus the output of ¢, ¢™(-,-)Vn is in
512-dimensional space. We use N = 6 cross-attention
blocks for all our experiments and for all datasets. Below
we discuss how the number of blocks affects the retrieval
performance. In every cross-attention block, keys and val-
ues are first processed with layer norm [2] and queries are
also normalized to have a unit norm.

Datasets. We evaluate the performance on three standard
DML benchmark datasets using the default train-test splits:

e CARS196 [41], which contains 16,185 images from
196 car classes. The first 98 classes containing 8054
images are used for training, while the remaining 98
classes with 8131 images are used for testing.

e CUB200-2011 [79] with 11,788 bird images from 200
classes. Training/test sets contain the first/last 100
classes with 5864/5924 images respectively.

e Stanford Online Products (SOP) [54] provides 120,053
images divided in 22,634 product classes. 11318
classes with 59551 images are used for training, while
the remaining 11316 classes with 60502 images are
used for testing.

4.1. Ablations
4.1.1 Cross-Attention Blocks

We observe an improvement when using multiple C'A at-
tention blocks and using later conditional embeddings ¢ .
This indicates that having more steps to refine the condi-
tional embedding computation is beneficial for the perfor-
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Figure 3. Retrieval performance depends on the number of cross-
attention blocks in the model architecture. Moreover for a model
with N cross-attention blocks we obtain similarities s™ at different
levels n < N and each of those can be used to compute retrieval
scores at testing phase. This figure summarizes R@1 scores on
the test sets of the Cars196 and CUB200 datasets. We observe
improvements in performance when using multiple C' A blocks (in
rows) but this improvement saturates around 6 — 8 blocks. We
also see that using higher similarities s” (in rows) for inference de-
grades the performance thus indicating that during the test phase
it is reasonable to use s°. That means that unconditional embed-
dings ¢°(-|—) already outperform other state-of-the-art models.

mance. In Fig. 3 we summarize the effect of different num-
bers of cross-attention blocks on the R@1 scores for two
different datasets. The optimal number of attention blocks
required for computation is N = 6. We additionally visu-
alize how RQ@]1 scores change when we use different condi-
tional embeddings ¢™ at different cross-attention blocks. As
it has been specified above we only use s°(I;, I;) to com-
pute the similarities in Tab. 1. We do not need to compute
all pairs of embeddings ¢™(I;|1;). However, using the later
similarities s™(I;, I;) for n > 0 we get a slight improve-
ment in performance.

4.1.2 Number of Network Parameters

In order to verify that our improvements in recall perfor-
mance R@1 come from better matching local regions of one
image to the holistic conditional embedding of another im-
age and not from simply adding extra parameters, we run
our model with a larger ResNet-101 backbone encoder
and without cross-attention similarity learning, i.e. a multi-
similarity loss [82] baseline model. While our model based
on the conventional ResNet-50 backbone and with 6 cross-
attention similarity blocks only has 27.7M parameters, the
baseline ResNet-101 has 45.3M. Nevertheless, our model
reaches 74.6% and 91.2% R@1 on CUB200 and Cars196
respectively, compared to the ResNet-101 baseline reaching
only scores 67.4% and 83.7% respectively.

4.2. Comparison to State-of-the-Art

In this section, we evaluate our approach on the standard
benchmark sets in DML, i.e. CUB200 [79], CARS196 [41]
and SOP [54], and compare it to the state-of-the-art meth-
ods with the widely used Recall@Fk score [34], measuring
image retrieval performance. Tab. 1 demonstrates that our
framework significantly outperforms all approaches, espe-
cially when increasing the spatial resolution of the spatial
feature map output of the encoder F, and thus the num-
ber of image regions that can be individually and indepen-
dently represented. Our approach improves over holistic
embedding-based state-of-the-art performance up to 4.3%
on the CUB200 dataset, 1.7% on CARS196 and 0.9% on
SOP. This clearly demonstrates the importance of empha-
sizing local features conditioned on the holistic representa-
tion of another image. To ensure the fairness and coherence
of the comparison we do not specify methods utilizing big-
ger backbones, e.g. ViT-16 [12] pretrained on much bigger
internal JFT [70] dataset.

4.3. Emerging properties of Cross-Attention
4.3.1 Cross-Attention Maps

Let us now check the attention matrix Attn(¢(E;), ¢(E;))
for different cross-attention blocks and interpret the results.
We visualize our results in Fig. 4. The figure shows that
deeper layers tend to focus on fewer details compared to
the attention maps of the earlier cross-attention blocks.
Moreover, we see that attention for the same image changes
depending on which embedding we use as a query. We ob-
serve from the Fig. 4 that though attention maps look sim-
ilar they still have different activations as visualized in the
middle row.

4.3.2 Local Parts Discovery

Our approach is based on computing the attention between
the holistic representation of one image ¢™(I;|I;) and the
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CUB200-2011 [79] CARS196 [41] SOP [54]

Method |[BBJR@1 R@2 NMI [R@1 R@2 NMIR@1 R@10 NMI
Margin'2® [84] R50|63.6 744 69.0 |79.6 86.5 69.1]72.7 86.2 90.7
Multi-Sim®2 [82] |BNI|65.7 77.0 - |84.1 904 - [782 905 -
MIC28 [59] R50(/66.1 76.8 69.7 |82.6 89.1 68.4|77.2 89.4 90.0
HORDE?®!2 [30] BNI|66.3 767 - (839 90.3 - [80.1 913 -
Softtriple®'? [57]  |BNI|65.4 76.4 69.3 |84.5 90.7 70.1/78.3 90.3 92.0
XBM128 [83] BNI|65.8 759 - (820 887 - |80.6 91.6 -
PADS!28 [60] R50[/67.3 78.0 69.9 |83.5 89.7 68.8/76.5 89.0 89.9
GroupLoss'??4 [16] [BNI|65.5 77.0 69.0 |85.6 91.2 72.7|75.1 87.5 90.8
DIML512 [90] R50(67.9 - - 870 - - |785 - -
ProxyAnchor®'? [37]|BNI|68.4 79.2 - [86.1 91.7 - |79.1 90.8 -
D&C?12 [63] R50/682 - 695 |878 - 70.7/79.8 - 897
SynProxy®'2 [21]  |R50[69.2 79.5 - [869 924 - |798 909 -
DiVA®!2 [47] R50(69.2 793 71.4 |87.6 929 72.2[79.6 912 90.6
S2D2512 [61] R50(70.1 79.7 71.6 |89.5 93.9 72.9/80.0 91.4 90.8
Intra-Batch®'2 [66] |R50(70.3 80.3 74.0 |88.1 93.3 74.8|81.4 91.3 92.6
MH-DML%2 [14] |R50|/70.6 80.9 - |90.1 942 - [81.7 920 -
Ours”'? R50(74.6 83.7 76.9 [91.2 94.4 77.3(82.3 92.2 93.1
Table 1. Comparison to the state-of-the-art methods on CUB200-2011 [79], CARS196 [41] and SOP [54]. BB’ denote the backbone

architecture being used ("R50’=ResNet50 [

rich spatial representation of another image E(I;). These
two entities are combined together when computing the at-
tention matrix in the cross-attention block evaluation as de-
fined in Eq. 2. For an image I we compute the encoding
E(I) and sample a location z, y, now the element E(I), ,
encodes visual information in the corresponding part of an
image. We compute now the most similar parts from E(I")
for all the other images I’ in the dataset. In Fig. 5 we visu-
alize these by showing cropped out patches corresponding
to the most similar parts. All the retrievals are semantically
similar and also share similar appearance. Thus we observe
that our model has learned semantic parts given only image
level labels. Moreover, we denote with color whether a re-
trieved image region is from an image with the same label
(green) as the query image or not (red).

4.4. Computational Complexity

Our approach has two specific implications on computa-
tional complexity that we subsequently discuss.

First, to obtain attention scores we need to compute the
conditional embeddings ¢"(I;|I;) with queries, keys and
values of size 1 X d, t x d and t x d respectively, where
t = hw denotes the number of tokens and d denotes the
number of feature dimensions. Hence, computation of a
single cross-attention block requires an extra 2 - d - ¢ mul-
tiplications. In our case d > t, thus the computation over-
head is negligible. This would not be the case if we were to
compute the attention between E(I;) and E(I;). Our loss

], ’BNI’=BN-InceptionNet [

D)

is computed given ¢V (I;, I;)Vi, j € 1,..,b for a batch of b
images. This additionally multiplies the number of calcu-
lations by b2, which results in 2 - b? - d - t which depends
quadratically on the batch size only. We train our models
with batches of 128 samples and we observe only 11% in-
crease in computation time per batch compared to the base-
line model without any cross-attention blocks.

Second, computing conditional embeddings ¢* (I;, I;)
would imply high computational cost at inference stage for
large scale image retrieval. The DML setup demands esti-
mating similarities for all pairs of images exhaustively. This
would require M? computations for a dataset of M images.
But from Fig. 3 we see that it is sufficient to use ¢° instead
of ¢™V to obtain high quality retrieval. This proves that we
need the conditional embeddings first and foremost during
training to improve the gradients that update the weights of
E and ¢, which we use during inference.

5. Conclusion

Embedding rich image encodings into compact vectors
is a main challenge in DML. If the embedding function had
access to a tuple that is to be compared rather than only an
individual image, it would be significantly easier to focus
on the meaningful features for this particular comparison.
Therefore, we have utilized conditional embeddings, where
the representation of one image of the tuple is learned con-
ditioned on its partner. Using cross-attention, we have es-
tablished a hierarchy of conditional embeddings that gradu-
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Figure 4. Visualizing the attention maps of different cross-
attention blocks for two exemplary image triples. For the triples in
(a) and (b) we compute the attention Attn(¢(E(1,)), E(I1)) and
Attn(¢(E(1,)), E(I2)) in the top and bottom rows respectively.
Different columns stand for different cross-attention blocks, we vi-
sualize here only layers 2, 4 and 6. In the middle row we show the
difference between the upper and the lower row to amplify loca-
tions with different attention. We observe that later cross-attention
blocks focus less on the background clutter and more on the dis-
tinctive features of a bird. All birds in the first triple share the
same breast color, hence the attention is focused more around the
head area which is helpful to distinguish /, from I;. In the second
triple, attention is concentrated around the head area. This is the
most prominent feature relating images I, and I;.

ally incorporates information about the tuple into the origi-
nal unconditional embedding. Our experimental evaluation
has shown that this hierarchy significantly improves image
encodings and embeddings, particularly also the uncondi-

Nearest Parts

Query Image

Figure 5. The encoder representation £'(I) learns semantic parts
specific to the dataset without any extra labels provided. For each
of the two images on the left we pick two locations (indicated with
orange rectangles). For each of these locations we find the most
similar parts across all the other images in the dataset. With a
green frame we denote a crop from an image having the same label
as the query image and with a red frame a crop from an image with
a different label.

tional embeddings of standard DML that we use during in-
ference. Our approach only augments DML during training
and with only negligible computational overhead. There, is
no change to the DML architecture during inference and no
additional parameters or computational cost.
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