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Abstract

We present Iterative Vision-and-Language Naviga-
tion (IVLN), a paradigm for evaluating language-guided
agents navigating in a persistent environment over time. Ex-
isting Vision-and-Language Navigation (VLN) benchmarks
erase the agent’s memory at the beginning of every episode,
testing the ability to perform cold-start navigation with
no prior information. However, deployed robots occupy
the same environment for long periods of time. The IVLN
paradigm addresses this disparity by training and evaluating
VLN agents that maintain memory across tours of scenes
that consist of up to 100 ordered instruction-following Room-
to-Room (R2R) episodes, each defined by an individual lan-
guage instruction and a target path. We present discrete
and continuous Iterative Room-to-Room (IR2R) benchmarks
comprising about 400 tours each in 80 indoor scenes. We
find that extending the implicit memory of high-performing
transformer VLN agents is not sufficient for IVLN, but agents
that build maps can benefit from environment persistence,
motivating a renewed focus on map-building agents in VLN.

1. Introduction

Robots and virtual agents that persistently operate in hu-
man spaces like homes should improve over time. For ex-
ample, a smart vacuum told to clean the living room, which
is down the hall past the guest bedroom should learn about
both the living room and guest bedroom. Likewise, agents
should be able to associate references in past instructions,
such as guest bedroom, with spatial and visual information
from the environment to understand future instructions.

Most work on language-guided, embodied agents per-
forming navigation [3, 25] or household tasks [38] is
episodic in nature—agent memory is erased before issu-
ing each new instruction. In contrast, physical robots build
maps [12,43,49] iteratively from visual observations [32,39]
as an explicit form of long-term memory. Agents trained to
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perform language-guided navigation in simulation that are
deployed on physical robots [2] fail to take advantage of the
mapping-based strategies that facilitate robot navigation.

We propose Iterative Vision-and-Language Navigation
(IVLN), in which an agent follows an ordered sequence of
language instructions that conduct a four of an indoor space.
Each tour is composed of individual episodes of language
instructions with target paths. Agents can utilize memory
to better understand future tour instructions. After just 10
episodes an agent has seen on average over 50% of the target
path associated with the next language instruction in a tour.
While performing an IVLN tour, agents iteratively explore
the environment, meaning regions irrelevant to task instruc-
tions need not ever be visited. By conditioning exploration
on language, IVLN enables rich semantic representations,
e.g., unusual, novel, and scene-specific referents grounded
during one episode can be reasoned about later.

We explore both a discrete VLN setting based on Room-
to-Room [3] episodes and navigation graphs (IR2R) and a
continuous simulation VLN-CE [25] setting (IR2R-CE). The
markedly different action and visual observation spaces of
these settings may require different memory mechanisms.
In the discrete setting, agents move on graph edges and
observe clear, well-framed images. For IR2R, we extend a
state-of-the-art transformer agent [ | 1] that learns an implicit
memory based on path history when interpreting instructions.
In the continuous setting, agents take motion actions while
observing noisy images of a 3D environment reconstructed
from discrete panorama images. For IR2R-CE, we propose
an agent that builds and interprets an explicit semantic map.

In short, we define Iterative Vision-and-Language Navi-
gation (IVLN), a paradigm for persistent VLN, and release
IR2R and IR2R-CE to study discrete and continuous navi-
gation agents in the IVLN setting. We create initial agents
for both benchmarks, including explicit mapping and im-
plicit memory models for continuous navigation. Please see
jacobkrantz.github.io/ivin for code and more details.

2. Related Work

Instruction-guided navigation is a growing area in
grounded language understanding with many task settings

14921



Episode 1/82 Oracle 1/82 Episode 2/82

Episode 6/82 Episode 82/82

Tour Map

Observed Environment Map

Instruction

Travel to the end of the hallway where
there is a vase on the end of the table.
Take a left and go forward until you
reach the open doorway on the left.
Move forward into the open doorway.

[The agent is guided from where it
stopped in episode 1 to the correct
episode 1 goal location, then to the
start location for episode 2. The agent
observes but doesn’t act.]

reach the wood floor.

Initial Observation

Go left down the hallway and turn left.
Go down the hall and stop once you

Exit bathroom and follow hallway
through archway directly in front. Turn
right when hallway ends at pictures and
table. Follow hallway passed piano and
stop in the circle on the hallway floor.

Facing the toilet, walk through the door
on the left. Make a right and walk
through the doorway across the room.
Make a left and walk down the hallway.
Turn right at the next opening and stop
before the kitchen island on the right.

Figure 1. In IVLN, agents are given language instructions corresponding to a sequence of paths that form a tour around a 3D scene. After
attempting to follow each instruction, the agent is teleoperated by an oracle to the correct goal location, then to the start of the next path
where the next instruction is issued. Unlike conventional episodic paradigms, the agent retains memory between episodes.

developed [3,9, 26, 33,38,42]. Among these, the Vision-
and-Language Navigation (VLN) task setting based on the
Room-to-Room (R2R) dataset [3] has become a popular
benchmark. An agentin VLN must follow a natural language
instruction by navigating along the described path in a never-
before-seen environment. By design, this paradigm does not
consider how persistent agents operating over time might
leverage prior experiences to better follow future instructions
within the same environment. In contrast, accumulating prior
experience within an environment is a staple of robotic de-
ployment — e.g. building semantic maps for localization and
reasoning [35,41]. Our IVLN paradigm is designed to better
align VLN with a realistic robotic deployment scenario.

Benchmarks for VLN in Discrete Settings VLN tasks fre-
quently involve inferring agent actions in a rendered 2D or
3D scene in response to language commands [8,28]. Agent
control is typically limited to changing position and orienta-
tion by discrete amounts or to predefined possible options.
Advances in camera technology have enabled language-
guided navigation in photorealistic indoor scenes [3,7] and
outdoor city spaces [9]. In “Room-to-Room” (R2R) [3]
VLN, an agent interprets a single English instruction to navi-
gate along a short, indoor path. In a survey of VLN modeling
methods, environment exploration and memorization were
identified as frequent strategies for aligning a language in-
struction to a desired goal location in a scene [16]. However,
R2R evaluates policies on single instructions, limiting the

incentive to perform efficient, effective memorization or
mapping. To study longer horizon planning, researchers
have extended R2R by concatenating language-aligned paths
and their associated instructions [21,51], tasking agents not
just with arriving to the goal but with following closely the
described path. Others have collected longer paths with in-
structions in three languages [20] or given as a cooperative
conversation [42]. With IR2R tours, we present the longest
such paths with substantial overlap in areas- covered-before
through time, challenging researchers to utilize information
from prior instructions and experience in the scene.

Benchmarks for VLN in Continuous Settings Moving a
physical robot, such as a quad-copter [5] or a toy car [4],
in response to language instructions requires contending
with the real, continuous world. Existing work has trans-
ferred policies for discrete VLN to the physical world by
manually curating a discrete representation of the world
map as a navigation graph [2] with limited success. VLN-
CE [25] re-introduces Room-to-Room [3] with a continuous,
3D reconstruction of indoor MatterPort3D scenes. However,
VLN-CE evaluates agents on single instructions and asso-
ciated paths in an i.i.d. fashion. In contrast, our IR2R-CE
benchmark incentivizes policies that respect environment
persistence found in the real world. Beyond removing the
abstractions of discrete VLN (VLN-CE), IR2R-CE situates
agents in a scene for long time horizons with many language
instructions; a logical next step towards learning useful world
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representations through visual and linguistic information.
Pre-Exploration in VLN Some approaches in VLN have
embraced a setting where agents can fully explore the en-
vironment before following an instruction, either explicitly
through pretraining (e.g. [40,44,50]) or through beam-search
at inference time (e.g. [14,30]). Pre-exploration methods
outperform standard VLN approaches and serve as a natural
upper bound to IVLN where an agent has fully explored the
environment. In contrast, IVLN studies how environment in-
formation can be collected while performing the task (rather
than a priori) and how this partial, opportunistic information
can be leveraged to perform better over time.

Persistent Environments in Embodied AI Zooming out,
visual navigation tasks in embodied Al have seen significant
progress, fueled by increased scale and quality of 3D scene
datasets (e.g. [7,34]) and high-performance simulation plat-
forms (e.g. [23,31,37,48]). A focus on real-world complexity
has emerged. One recognition is that agents act in, and inter-
act with, persistent environments. Tasks such as multi-object
navigation [45] and visual room rearrangement [46] involve
solving sequences of subtasks that, when approached inde-
pendently, cannot be solved optimally. Instead, reasoning
over persistent semantic and spatial information is required.
The proposed IVLN paradigm enriches this scene perception
problem with natural language and enables the association
of persistent visual semantics with linguistic information.

3. Iterative Vision-and-Language Navigation

We facilitate the study of agents given sequential naviga-
tion instructions in natural language. We extend the Room-
to-Room (R2R) [3] dataset of independent episodes—natural
language instructions and associated target paths in a particu-
lar scene—to tours—sequences of many episodes that cover
large swaths of the scene and include backtracking. The re-
sulting Iterative Room-to-Room tours contain substantially
longer paths and navigation instruction context than prior
discrete (IR2R) or continuous (IR2R-CE) VLN benchmarks.
The Iterative Paradigm We define a four to be an ordered
sequence of episodes within a scene. Tours alternate between
two phases. In the agent navigation phase, the agent is
given a language instruction and infers navigation actions,
equivalent to a VLN episode. The phase ends when the
agent emits the STOP signal or takes a maximum number of
actions. The oracle navigation phase immediately follows in
two parts. First, if the agent has not successfully navigated to
within 0.5m of the episode goal, it is guided without language
to that goal by an oracle that forces its actions, analogous
to a human teaching the robot where the path should have
ended. Second, the agent is oracle-guided to the starting
point of the next episode in the tour, analogous to following
a human and waiting to receive the next instruction. The
agent passively observes the environment during this phase.
Generating Tours from VLN Data We generate tours that

Tours/ Tour Length (Episodes)

Dataset Split Scenes Episodes Tours Scene

Mean Min Max SD

Train 61 14025 183 3.0 76.6 2 99 284
IR2R Val-Seen 53 1011 159 30 64 2 11 21
Val-Unseen 11 2349 33 3.0 712 6 100 34.0
Train 60 10668 222 3.7 481 3 93 305
IR2R-CE Val-Seen 50 747 156 3.1 4.8 2 10 21
Val-Unseen 11 1824 36 33 507 3 100 31.3

Table 1. We construct sequences of episodes—tours—from the
Room-to-Room dataset [3] to create the discrete IR2R and continu-
ous IR2R-CE benchmarks. Here we detail characteristics of these
benchmarks, including the average number of episodes per tour.

minimize the distance between end and start points of se-
quential episodes. We also maximize the number of included
episodes as path finding between poses can fail in IR2R-CE.

Each R2R split contains a set of scenes, which each con-
tain a set of episodes E. For each E, we seek to derive a set
of disjoint tours 7 where each tour 7' € 7T is a sequence of
episodes that can be inter-navigated. That is, for episode ¢
and 7+1 in 7', navigation from the end of ¢ to the start of 141
is possible. Letting X be the set of unique paths in an episode
set F, we first partition P(X) such that the paths in each
subset p are inter-navigable; closed doors or obstacles can
create disjoint regions in the scene. To determine P(X), we
compute the navigable geodesic distance between each path
pair where a finite distance implies connectivity. In IR2R,
this distance is computed on a navigation graph; in IR2R-CE,
it is computed on a 3D navigation mesh and assumes agent
dimensions and actions common to VLN-CE [25]. We then
order the paths in each subset p to define a tour 7". Minimiz-
ing the oracle navigation distance in a tour is equivalent to
an asymmetric traveling salesperson problem (ATSP) which
we approximately solve using the Lin-Kernighan heuristic
(LKH) [17]. Finally, if E contains n instructions per path
and n > 1, we duplicate each tour n times, sampling an
instruction for each path without replacement.

Dataset Characteristics We generate tours in the Train,
Validation-Seen, and Validation-Unseen splits of discrete
R2R to form IR2R and continuous R2R to form IR2R-CE
(Tab. 1). Validation-Seen (Val-Seen) contains episodes from
scenes seen during training, while Validation-Unseen (Val-
Unseen) contains episodes from scenes not seen during train-
ing. In total, IR2R contains 375 tours and IR2R-CE contains
414. There are fewer discrete tours, which are longer on av-
erage than continuous tours (Fig. 2a), due to discontinuities
in the navigable area of continuous environments. In discrete
VLN, a path exists from each node to every other node in a
scene, but in continuous environments navigation between
episode endpoints can fail, resulting in disjoint spaces within
a scene that have shorter tours. The distribution of episodes
per tour has a high variance for both benchmarks, a reflection
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Figure 2. (a) We compare the distributions of tour lengths between the IR2R and IR2R-CE Train splits. (b) We consider an oracle agent
following the target paths of each tour in IR2ZR-CE Train. Before starting each episode, we measure the percentage of that episode’s target

path observed earlier in the tour (

). To do this, we compute what percentage of an episodic coverage map is accounted for

in a map iteratively constructed by the oracle agent. We also measure what percentage of the entire tour has been observed (Complete Tour).

of path sampling in R2R and a diversity of scene sizes.

Since episodes are chained together in IVLN, locations
along the target path for the current episode may have been
observed earlier in the tour. In Fig. 2b, we visualize how
much of a tour’s scene region has been observed relative to
the number of episodes performed. We find that following
target paths quickly observes a majority of the region; after
just 10 episodes, on average, over 50% of the next target path
and over 70% of the entire tour region have been observed.
Metrics for Iterative Evaluation Agents should be success-
ful and efficient from the start of a tour and improve as the
tour progresses. For iterative (tour-based) evaluation, we
adapt the normalized dynamic time warping (nDTW [29])
metric. We select nDTW over success-based metrics for
unification across IVLN benchmarks: IR2R and IR2R-CE
contain shortest-path priors (all instructions describe the
shortest path to the goal), but other datasets that can be con-
verted to IVLN do not, such as RxR [26]. In episodic VLN,
the nDTW metric is computed per-episode and averaged
across all episodes. However, in IVLN, episodes within a
tour need collective evaluation. Otherwise, an agent could
exploit per-episode averaging by using the first episode to
explore the entire environment, improving subsequent per-
formance at the cost of poor performance in just a single
episode—when the number of episodes in a scene is large,
this would have minimal impact on averaged metrics.

Formally, given a candidate path () and a target path R,
each consisting of a sequence of 3D points, nDTW computes
the dynamic time warping (DTW) cost between ) and R
normalized by the number of points in the reference path
(|R|) and a distance threshold of success (dy):

DTH(R, Q)
As in tour generation, we use navigation graph distance in

- )
R - den
IR2R and geodesic distance in IR2R-CE.

nDTW(R, Q) = exp <

To extend this definition to tours, we make two changes
to the episodic nDTW calculation. First, we compute nDTW
over tour paths Q7 and R” instead of episode paths @) and
R. The candidate path Q7" includes the points visited during
agent navigation phases of tour 7', and the target path R” is
the concatenation of the target paths for each episode in 7.
Oracle navigation is excluded from both Q7 and R”'. Sec-
ond, to ensure that episode boundaries are respected when
aligning candidate and target points in the DTW calculation,
candidate and target points from Q7 and R” are assigned in-
finite distance unless they belong to the same episode in the
tour. This penalty ensures that an agent can’t receive credit
for completing a path while following a different instruction.

To compute performance for a dataset split, we aggregate
nDTW weighted by episode count in each tour 7}, avoiding
inflated scores from performing well only on short tours:

T;| - nDTW(RT:, QT
t—nDTW:Z' |- nDTW(R Q)
- > |51

The tour nDTW score (t —nDTW) is bounded between 0 and
1, with 1 indicating perfect alignment of the agent’s path and
the target path for every episode of every tour in the split.
In the following experiments, we report t —nDTW scaled
between 0 and 100 as is common practice for episodic nDTW.
t-nDTW functions in discrete and continuous environments
and serves as the primary metric in IR2R and IR2R-CE.
Fig. 3 contains example t—nDTW evaluations of an IR2R-
CE agent to illustrate the relationship between t —nDTW and
path alignment. We include more examples in the appendix.

2)

4. Methods

We demonstrate how VLN and VLN-CE baseline models
generalize to our iterative task and explore whether adding
persistent tour memory (either unstructured latent memory
or a spatial semantic map) improves performance.
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Figure 3. Evaluations in IR2R-CE using t-nDTW for example 2-episode tours. We visualize the DTW alignment of the agent’s inferred
path by its match to the target path. Between episodes, an oracle conveys the agent from inferred episode stop point to true stop,
. In Fig. 3c, poor performance in episode 1 (E1) drops the overall t-nDTW score significantly.

4.1. VLN Baseline Agents

HAMT We adopt the History-Aware Multimodal Trans-
former (HAMT) [1 1] agent. Like many recent methods,
HAMT is a transformer-based agent pretrained on proxy
tasks and finetuned on VLN. HAMT has three transformer-
based encoders: an instruction encoder, a visual encoder for
the current observation, and a history encoder for previous
state-action pairs. A cross-modal transformer fuses these to
predict the next action. The history embedding at time step
t is represented as {hcrs, 1, ..., hi—1}, where h; is the fea-
tures of the state-action pair at step ¢ and hcyg is the features
of the CLS token used to gather sequence-level information.
TourHAMT We enable tour-level reasoning by including
state-action pairs from previous episodes in the history
embedding. For episode ¢, we denote the total number of
steps as [;, including the oracle navigation after termination.
We denote the state-action embedding at step ¢ for episode
i as hi. At step t in i, we set the history embedding as
{herev, hi, oy bl BTN B Chers B Ry

where PREV is a token delineating episode boundaries. We
limit to the latest 50 steps. Unlike the original HAMT, we
unfreeze the history encoder to learn this modified history
encoding. We train via teacher-forcing with inflection
weighting [47] and update gradients per episode in a tour.

4.2. VLN-CE Baseline Agents

The Cross-Modal Attention (CMA) agent defined in
VLN-CE [25] is a common baseline in recent works
[10,15,18=20,24]. CMA is an end-to-end recurrent model
that observes RGBD, the instruction, and the previous ac-
tion to predict an action from TURN-LEFT, TURN-RIGHT,
MOVE-FORWARD, and STOP. CMA has a two-GRU struc-
ture to track episodic history; one tracks vision and the other
tracks general state from which the action is predicted.

4.2.1 Agents with Unstructured Latent Memory

CMA We consider adaptations of the CMA agent’s unstruc-
tured latent memory to tours. Against these, the original

CMA agent is included as a baseline with no cross-episode
reasoning ability; that is, hidden states are reset each episode.
TourCMA We reset the hidden state of the vision GRU only
at the start of each tour, thereby extending the temporal re-
ceptive field to all tour steps. We reset the state GRU episod-
ically. This model provides structure for reasoning over both
scene-level vision and episode-specific visuo-linguistics.
PoolCMA We enable both tour and episodic memory within
the vision GRU. We reset the hidden state each episode but
temporally max-pool the hidden state into a tour-persistent
vector reset each tour. This vector is input to the vision GRU.
PoolEndCMA Observations from previous episodes provide
utility if they are relevant for planning, e.g., when consid-
ering a previously-traversed hallway. Agents may learn to
ignore this signal in favor of episode-specific alignments.
We encourage this signal by coupling tour memory to action
prediction; we concatenate the Poo1CMA tour memory with
the final state vector and use the result to predict an action.
Training Method We train the above models in IR2R-CE
using teacher forcing and update parameters following each
episode rollout. For tour-persistent memory structures, we
disable gradients from steps prior to the current episode. This
equates to an adaptive truncated backpropagation through
time (TBPTT) where the time step is episode length.

4.2.2 MAP-CMA: Agents with Semantic Maps

We experiment with providing agent-centric, metrically ac-
curate local crops of maps of an agent’s surroundings to our
models to evaluate the impact of structured memory.
MAP-CMA We build occupancy maps [13] where cells
are either 0 (empty) or 1 (occupied), and semantic maps
contain one-hot vectors of thirteen common labels in R2R
environments [6]. Following [6], we use the inverse pinhole
camera projection model to unproject depth measurements
to 3D pointclouds. We also unproject egocentric semantics—
both ground-truth [7] and from a fine-tuned Rednet feature
encoder [0,22]—to form a semantic pointcloud. We collapse
these pointclouds along the height dimension to generate 2D
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Figure 4. In addition to the encoders for language instructions and depth frames, MAP-CMA model learns an encoding of an egocentric crop
of a top-down semantic map of the environment constructed by the agent during navigation in order to predict the next navigation action.

maps. When more than one semantic label exists in a height
column, we choose the highest semantic label available to
project. Agents may traverse between floors. As such, we
constrain pointclouds to project only features lying between
the floor and ceiling planes relative to the agent’s 3D pose.
We augment the existing CMA architecture with seman-
tic and occupancy maps by replacing the RGB input with
maps. Specifically, we channel-wise concatenate the seman-
tic and occupancy maps, encode them through a learned
convolutional encoder, and produce a spatial embedding that
propagates through CMA in place of RGB features. The map
input is 14 x64 x 64, representing a 64x64 spatial grid with
13 one-hot semantic channels and one occupancy channel.
Four convolutional blocks each consisting of a Convolution,
Batch normalization, ReL.U activation, and Average pool
(CoBRA in Fig. 4) encode the map to a 128 x4 x4 output.
These semantic spatial features are used as a drop-in replace-
ment of visual features in CMA as depicted in Fig. 4.
Training Method We train this model in IR2R-CE follow-
ing the two-step method presented in [25] used to train the
CMA model. We initially train using teacher forcing on
the augmented EnvDrop [40] ported to IR2R-CE, then fine-
tune the best-performing EnvDrop Val-Unseen checkpoint
using DAgger [36] on IR2R-CE Train. The best performing
checkpoint on Val-Unseen is accepted as the final model. We
use the Progress Monitor [27] auxiliary loss in both training
steps. We train with episodic maps (reset each episode), iter-
ative maps (reset each tour), and known maps (pre-computed
for each scene). For each temporal construction method, we
train one model on ground-truth semantic labels and one
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model with predicted semantics, resulting in 6 total trained
models capable of evaluating the impacts of temporal map
construction and semantic segmentation in IR2R-CE.

5. Experiments and Results

We present results on IR2R and IR2R-CE below and
center our discussion on key observations.
Evaluation Metrics We use t—nDTW (Sec. 3) as our pri-
mary metric and report as a percentage. We also include
metrics standard to VLN and VLN-CE [1, 29] to describe
average single-episode (episodic) performance: trajectory
length (TL), navigation error (NE), oracle success (0S), nor-
malized dynamic time warping (nDTW), success rate (SR),
and success weighted by inverse path length (SPL).

5.1. Unstructured Memory in IR2R and IR2R-CE

Naive extensions of unstructured memory fail to exploit
tour information. Across both IR2R and IR2R-CE, we find
that the simple extensions of unstructured memory explored
in this work fail to improve (and often hurt) tour performance
compared to purely episodic agents.

IR2R. Tab. 2 shows results of HAMT and TourHAMT
variations in the discrete IR2R setting. We find the episodic
HAMT model to be a strong baseline even without any tour
memory; our attempts to add tour memory significantly de-
graded performance. Simply extending the memory reduces
t-NDTW by a factor of two from HAMT (row 1 vs. 5). Fine-
tuning the history encoding for this extended memory setting
(row 4), adding a PREV token to separate memory from prior
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Val-Seen

Val-Unseen

# Model PH TH PHI IW TL NE | OoST nDTWT SRT SPLT t-nDTW?T TL NE | OoST nDTWT SRT SPLT t-nDTW?T
1 HAMT 10.1 0.1 4.2 401 70 +1 71 +1 63 +1 61 +1 58 +1 9.4 +01 4.7 00 64 +1 66 +t0 56 0 54 0 50 +o
2 TourHAMT v v VvV V 9.4 +04 5.8 0.1 56 £1 59 +0 45 +1 43 +1 45 +o0 10.0 £02 6.2 +0.1 52 +2 52 40 39 +1 36 +0 32 +1
3 v v v 10.5 403 6.0 £02 60 £1 58 +1 45 +2 43 +2 42 +1 10.9 402 6.8 +02 54 +1 51 +1 38 +1 34 +1 31 +1
4 v v 10.6 03 6.0 0.1 61 +1 58 +1 45 +1 42 +1 42 +1 10.3 +03 6.7 02 52 +1 50 +1 38 +£1 34 +1 29 +1
5 v 10.9 +03 6.1 0.1 60 +2 58 +1 45 +1 42 +1 41 +o 11.0 £06 6.7 0.1 52 +2 51 +0 38 +0 34 +0 28 +1

Table 2. TourHAMT falls short of HAMT on IR2R. Simple changes to an episodic model are not enough to leverage tours. PH: previous
episodes’ history; TH: trainable history encoder; PHI: previous history identifier; IW: inflection weighting. Metrics are T 4= oz over 3 runs.

Val-Seen Val-Unseen
# Model TL NE | oSt nDTW? SR?T SPLT t-nDTW 1 TL NE | oSt nDTW? SR?T SPLT t-nDTW 1
1 CMA 7.8 04 8.8 +06 27 +3 42 +3 1843 17 +3 39 +1 7.5 403 8.8 +02 26 +1 44 +1 19 +1 18 +1 38 +2
2 TourCMA 8.0+04 82+09 30 +2 44 +2 20+3 19+2 40 +1 7.8 +01 9.0402 26 +1 42 +1 1840 17 +1 36 +1
3 PoolCMA 7.2 405 9.1 +04 24 +4 41 +2 1744 16 +2 37 +2 7.3 +02 9.0+03 23 +1 42+1 1641 1540 36 +2
4 PoolEndCMA 7.6 +08 8.9 409 27 43 42 +3 18 +4 1742 38 42 6.9 +02 8.7 +02 25+2 44 +1 1841 16+1 38 +2

Table 3. Cross-modal attention (CMA) model performance with unstructured memory on IR2R-CE. We compare tour-persistent memory
(rows 2-4) against an episodic-memory baseline (row 1). Persisting in the environment over a tour does not improve performance on scenes
not seen in training (Val-Unseen), unlike the behavior of semantic map models (Tab. 4). Metrics are & & oz over 3 runs.

episodes (row 3), and applying inflection weighting [47] (row
2) collectively regain 4% t —nDTW but still falls short of the
HAMT baseline (row 1 vs. 2). As our experiments start from
a pretrained HAMT model, we speculate these results are
due to the history encoder coping poorly with a distribution
shift in its inputs compared to the pretraining tasks and that
direct finetuning is insufficient to correct for this.

IR2R-CE. Tab. 3 shows results of the CMA-based models
in the continuous IR2R-CE setting. We find that naive ex-
tension of unstructured memory reduces performance (row 1
vs. 2), but pooling versions recover tour performance (rows
3-4). Notably, all models augmented with tour memory yield
reductions in episodic metrics even when tour metrics are
comparable. We draw attention to the TourCMA model per-
formance on Val-Seen (row 2, left) which exhibits stronger
performance than the baseline CMA. This result suggests
tour-memory allows more overfitting than episodic memory.

We find that more sophisticated memory structures or
training methods will be needed to capitalize on IVLN. We
explore one such memory structure.

5.2. Semantic Map Memory in IR2R-CE

Agents in IR2R-CE complete long tours (average of 50
R2R episodes per tour) using low-level actions, resulting in
some tours requiring over two thousand actions. Storing tour
memory as an unstructured vector that is updated per-step
(as in the TourCMA/Pool1CMA/PoolEndCMA agents) does
not effectively remember the environment, and Transformer-
based agents may face adverse scaling. We instead consider a
structured memory in the form of a metric map of semantics

and occupancy. We present results varying: the map source
{Ground Truth, Inferred via RedNet}; mapping procedure
during training {Episodic, Iterative, Known}; and mapping
procedure during evaluation {Episodic, Iterative, Known}
on IR2R-CE in Tab. 4 for a total of 18 settings.'

Map-based memory can leverage prior experience.
Across all map sources and map procedures during train-
ing, we find agents perform better with iteratively-updated
maps persisting across tours (Eval: It.) than with episodic
maps reset between episodes (Eval: Ep.). This difference
confirms that information gathered from previous episodes
in a tour can benefit following novel instructions along novel
paths. This effect is strongest when the agent was trained
with iteratively-updated maps (Train: It.) with t-nDTW im-
proving by 3-4% for ground truth (row 4 vs. 5) and RedNet-
inferred maps (row 13 vs. 14). Models trained on episodic
maps find the least benefit from iteratively-updated maps
(row 1 vs. 2 and 10 vs. 11), suggesting utilizing semantic
map memory beyond the current episode is a learned skill.

Map-structured memories may be better suited to IR2R-
CE. Across all settings, we find map-based agents outper-
form the CMA models from Tab. 3, with best performing
iterative agents achieving +9 t —nDTW (24%). However, dif-
ferences in training procedure may account for some of this
gap. Map-based agents underwent DAgger-based fine-tuning
but CMA agents did not. In prior work in VLN-CE, DAgger

1“Ground-Truth’ agents have access to oracle semantic and occupancy in-
formation and evaluations performed with the ‘Known’ mapping procedure
assume a pre-explored environment. These methods do not constitute valid
submissions to the IR2R-CE leaderboard, but are provided for analysis.
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Map Construction Val-Seen

Val-Unseen

# Semantics Train  Eval TL NE| OST nDITWT SRT SPLT t-nDTW?T TL NE| OST nDTWT SRT SPLT t-nDTWT
) Ep. 106 63 51 54 34 32 49 98 69 42 50 29 26 42
. Ep. I 104 63 50 54 34 31 50 94 70 41 50 29 27 = 43
5 Kn. 100 62 50 55 34 32 50 95 69 40 S0 29 26 43
s STound- Ep. 94 68 45 54 36 34 5l 87 71 40 52 32 30 44
5 LI 95 63 52 58 41 39 54 85 67 43 54 36 33 48
6 Kn. 94 62 51 58 42 39 54 86 67 43 54 34 32 49
. Ep. 100 73 43 50 32 29 46 94 77 37 48 29 27 40
5 Kn. It 99 64 49 55 37 34 5l 91 68 45 53 34 31 46
5 Kn. 99 61 54 58 41 39 51 92 67 44 53 34 32 46
10 Ep. 102 66 51 54 35 32 50 98 72 43 50 33 30 43
1 Ep. I 101 66 49 54 36 33 5l 93 75 39 49 29 27 42
12 Kn. 100 69 49 53 34 32 50 93 73 41 50 29 27 43
15 Inferred Ep. 95 69 43 53 34 31 48 88 73 40 51 31 29 44
14 LI 94 64 48 56 39 36 52 85 68 44 54 35 RN 47
15 Kn. 93 64 51 56 38 36 52 86 69 43 54 34 31 46
6 Ep. 102 67 50 53 35 32 50 96 75 39 49 28 25 4l
17 Kn. It 100 61 57 57 40 36 54 94 7.1 44 51 30 27 43
8 Kn. 100 62 55 57 40 37 53 94 72 43 51 31 28 44

Table 4. Performance of MAP—-CMA agents in IR2R-CE. We consider resetting maps each episode (Ep.), constructing maps throughout
tours (/z.), and knowing maps from the start (Kn.). We construct maps from ground-truth semantics in rows 1-9 and infer semantics from

RedNet [

tour maps leads to better performance than using single-episode maps.

training CMA improved episodic nDTW by 1-5 points [25].
Ground truth and inferred semantics perform similarly.
Inferring semantics with RedNet (rows 10-18) leads to a
small, consistent drop in performance when compared to
using ground-truth semantics (rows 1-9). However, the best
performing agent (row 14) sees only a 1 point drop (row 5)
in t—nDTW. This limited sensitivity may be due to agents
not making full use of the semantic labels or that the scope
of labels is not broad enough for highly-performant agents.
Known maps fail to outperform iterative maps. Agents
trained and evaluated with known maps fail to outperform
those trained and evaluated with iterative maps for both
ground-truth (row 9 vs. 5) and inferred (row 18 vs. 14) se-
mantics, yet known maps outperform training on episodic
maps (rows 1, 10). Models trained with iterative maps may
benefit from exposure to the divide between explored and un-
explored regions. The relatively low performance of known
maps points to the open question of how to effectively en-
code and decode scene perception for downstream reasoning.
IR2R-CE can be a fruitful arena for such a study.

6. Conclusions

We define Iterative Vision-and-Language Navigation
(IVLN), a paradigm for studying how language-guided
agents persisting in a scene, like robots in a home, can utilize
past experience to follow instructions. We create the IR2R
and IR2R-CE benchmarks to study discrete and continuous
navigation across fours comprising many single-instruction

149

]in rows 10-18. We use bolding to highlight best scores in ground-truth and inferred semantics separately. Iteratively constructing

episodes. Initial models for both benchmarks show that ex-
tending unstructured latent memory beyond episode scope
is insufficient to generalize to tours, but agents that build
explicit maps benefit from environment persistence.

Limitations Our benchmarks are limited to English instruc-
tions and the indoor spaces are largely lavish, staged homes
and offices. Deployed assistive robots performing navigation
should respond to more than English, and should be able to
navigate cluttered, realistic home environments. Such biases
in a benchmark serve the needs of English-speaking, able-
bodied folks as a “default,” and will hinder such long term
goals in spaces of human-robot interaction and accessibility.

Future Work Even with the benefit of tours, MAP-CMA lags
far behind human performance on independent episodes,
with an episodic SPL of 32 in IR2R-CE Val-Unseen vs.
76 for humans on R2R Test. We anticipate progress may
require improved methods for grounding natural language
into maps and actions; iteratively constructed maps that
are more accurate, flexible and expressive; and improved
methods for transfer learning or generating synthetic data.
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