
PaletteNeRF: Palette-based Appearance Editing of Neural Radiance Fields

Zhengfei Kuang1*, Fujun Luan2, Sai Bi2, Zhixin Shu2, Gordon Wetzstein1, Kalyan Sunkavalli2

1Stanford University 2Adobe Research
{zhengfei,gordonwz}@stanford.edu {fluan,sbi,zshu,sunkaval}@adobe.com

(a) Training Images (b) Palette-Based Bases

View #1 Style Transfer

(c) Recoloring

Illumination Editing

(d) Applications

View #2

View #1 View #2

Figure 1. We propose PaletteNeRF, a novel method for efficient appearance editing of neural radiance fields (NeRF). Taking (a) multi-view
photos as training input, our approach reconstructs a NeRF and decomposes its appearance into a set of (b) 3D palette-based color bases.
This enables (c) intuitive and photorealistic recoloring of the scene with 3D consistency across arbitrary views. Further, we show that (d)
our method supports various palette-based editing applications such as illumination modification and 3D photorealistic style transfer.

Abstract

Recent advances in neural radiance fields have enabled
the high-fidelity 3D reconstruction of complex scenes for
novel view synthesis. However, it remains underexplored
how the appearance of such representations can be effi-
ciently edited while maintaining photorealism. In this work,
we present PaletteNeRF, a novel method for photorealis-
tic appearance editing of neural radiance fields (NeRF)
based on 3D color decomposition. Our method decom-
poses the appearance of each 3D point into a linear com-
bination of palette-based bases (i.e., 3D segmentations de-
fined by a group of NeRF-type functions) that are shared
across the scene. While our palette-based bases are view-
independent, we also predict a view-dependent function to
capture the color residual (e.g., specular shading). Dur-
ing training, we jointly optimize the basis functions and
the color palettes, and we also introduce novel regulariz-
ers to encourage the spatial coherence of the decomposi-

*Parts of this work were done when Zhengfei Kuang was an intern at
Adobe Research.

tion. Our method allows users to efficiently edit the appear-
ance of the 3D scene by modifying the color palettes. We
also extend our framework with compressed semantic fea-
tures for semantic-aware appearance editing. We demon-
strate that our technique is superior to baseline methods
both quantitatively and qualitatively for appearance edit-
ing of complex real-world scenes. Our project page is
https://palettenerf.github.io.

1. Introduction

Neural Radiance Fields (NeRF) [23] and its variants
[8, 25, 27, 39] have received increasing attention in recent
years for their ability to robustly reconstruct real-world 3D
scenes from 2D images and enable high-quality, photoreal-
istic novel view synthesis. However, such volumetric repre-
sentations are challenging to edit due to the fact that scene
appearance is implicitly encoded in neural features and net-
work weights that do not support local manipulation or in-
tuitive modification.

Multiple approaches have been proposed to support edit-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20691

ing of NeRF. One category of methods [4, 18, 41, 45] re-
cover the material properties of the scene so that they
can re-render them under novel lighting conditions or ad-
just the material properties such as surface roughness.
Such methods rely on accurate estimation of the scene
reflectance, which is typically challenging for real-world
complex scenes captured under unconstrained environment.
Another category of methods [21,35] learns a latent code on
which NeRF can be conditioned to produce the desired ap-
pearance. However, these methods often suffer from limited
capacity and flexibility and do not support fine-grained edit-
ing. In addition, some other methods [40] learn to transfer
the appearance of NeRF to match a given style image, but
sometimes fail to maintain the same level of photorealism
in the original scene.

In this paper, we propose PaletteNeRF, a novel method
to support flexible and intuitive editing of NeRF. Our
method is inspired by previous image-editing methods
based on color palettes [7, 31], where a small set of col-
ors are used to represent the full range of colors in the im-
age. We model the radiance of each point using a combi-
nation of specular and diffuse components, and we further
decompose the diffuse component into a linear combina-
tion of view-independent color bases that are shared across
the scene. During training, we jointly optimize the per-
point specular component, the global color bases and the
per-point linear weights to minimize the difference between
the rendered images and the ground truth images. We also
introduce novel regularizers on the weights to encourage
the sparseness and spatially coherence of the decomposition
and achieve more meaningful grouping. With the proposed
framework, we can intuitively edit the appearance of NeRF
by freely modifying the learned color bases (Fig. 1). We
further show that our framework can be combined with se-
mantic features to support semantic-aware editing. Unlike
previous palette-based image [1, 31] or video [10] editing
methods, our method produces more globally coherent and
3D consistent recoloring results of the scene across arbi-
trary views. We demonstrate that our method can enable
more fine-grained local color editing while faithfully main-
taining the photorealism of the 3D scene, and achieves bet-
ter performance than baseline methods both quantitatively
and qualitatively. In summary, our contributions include:

• We propose a novel framework to facilitate the edit-
ing of NeRF by decomposing the radiance field into a
weighted combination of learned color bases.

• We introduced a robust optimization scheme with
novel regularizers to achieve intuitive decompositions.

• Our approach enables practical palette-based appear-
ance editing, making it possible for novice users to in-
teractively edit NeRF in an intuitive and controllable
manner on commodity hardware.

2. Related Work

Neural radiance fields. Neural radiance fields in the form
of MLPs have been extensively used for neural rendering
tasks such as novel view synthesis. Typically, these meth-
ods [20, 23, 28, 37] encode the geometry and appearance of
the scene into network weights of the MLPs. Many recent
works [8, 25, 36, 39, 44] propose to speed up the training
and improve the performance of the models by applying a
combination of light-weight MLPs and neural feature maps
or volumes. However, different from traditional graphics
primitives such as triangle meshes, both the neural features
and the network weights represent scene appearance in an
implicit manner and do not support intuitive editing or con-
trols such as recoloring, thereby greatly limiting their appli-
cations in existing graphics pipelines.

Appearance editing with NeRF. Many methods have
been proposed to support appearance editing of NeRF.
Some methods [4, 5, 29, 45] recover the physical properties
of the scene such as albedo, specular roughness, and then
they can support rendering the scene under novel lighting
conditions or changing its material properties. Some other
works [15, 21, 35] learn a latent code jointly with the NeRF
reconstruction so as to control its appearance such as chang-
ing the illuminations or colors by taking new latent codes
as input, which can be mapped from user input or inter-
polated from existing latent codes. Moreover, there are also
approaches [9,13,40] that try to optimize the NeRF to match
its appearance against the provided style images. All these
methods do not support fine-grained intuitive color editing
of NeRF as ours. Concurrently, Ye et al. [38] introduces a
NeRF-based intrinsic decomposition model which enables
3D intuitive recoloring, but it does not support palette-based
editing.

Palette-based editing. Color palette-based methods [7,
12, 31, 32, 42, 46] have been previously used in 2D image
editing tasks such as recoloring. However, it is non-trivial
to adapt such methods for NeRF editing and naively per-
forming the editing on each rendered frame cannot guaran-
tee view-consistent results. Instead, we integrate the learn-
ing of the color bases and the spatially varying weights
into the NeRF optimization process, thereby enabling view-
consistent and 3D-aware editing. A recent work [33] pro-
poses a palette-based recoloring method on NeRF. How-
ever, it is based on posterization and converts the results
to a flat and non-photorealistic style.

3. Method

Fig. 2 illustrates the overview of our multi-stage
pipeline. Given a set of images with known poses from

20692

NeRF & Images

Convex Hull-Based
Palette Extraction

(b) Rendering & Optimization(a) Preprocessing

Weights

PaletteNeRF

(𝒙, 𝒅)
𝐼(𝒙)𝜔!(𝒙)

Palette-Based
Bases

𝜹!(𝒙))
Color Offsets Radiance

View-Dependent Color

∑

ℒ"#, ℒ"$, ℒ%&'()*

ℒ"

ℒ+,,"&*
× ×(𝓟! +

Palettes

ℒ$-.&**&

s(𝒙, 𝒅) c(𝒓)

ℒ/&0+1

Ray Marching
Rendered Image

Figure 2. The overview of our pipeline. Given a set of training images, we first (a) reconstruct the scene geometry and build the color
palettes with existing methods. Then, our PaletteNeRF (b) decomposes the scene appearance into multiple palette-based bases and the
view-dependent color. We deploy a series of losses on the palette-based base’s functions, the view-dependent color, and the final output.

a scene, we first optimize a NeRF-based model to recon-
struct the geometry of the scene. Then, we extract Np color
palettes with the input images and the learned scene geom-
etry. Finally, we train a segmentation model to decompose
the scene appearance into multiple bases based on the ex-
tracted palettes. Our decomposition result is able to drive
various downstream applications, such as recoloring, pho-
torealistic style transfer and illuminance modification.

3.1. Volumetric Rendering

We build our model on the widely used framework
Neural Radiance Fields (NeRF). Typically, a NeRF-based
model optimizes two neural functions: a geometry function
σ(x) and a color function c(x,d). The geometry function
takes a 3D position as input and outputs the density at this
point. The color function takes a 3D position and a viewing
direction as input and output a corresponding RGB color.
To render an image from a given camera pose, NeRF sam-
ples batches of rays from the camera to render the pixels.
For each sampled ray r = (o,d), a group of 3D points are
sampled along the ray path x1..M with depth t1..M , where
xi = o+tid. The color prediction of the ray r is calculated
as:

c(r) =

M∑
i=1

αi(1− wi)c(xi,d), (1)

where wi = exp(−(ti − ti−1)σ(xi)) is the transmittance
of the ray between the i’th sample point and the (i + 1)’th
sample point, and αi =

∏i−1
j=1 wi is the ray attenuation from

the ray’s origin to the i’th sample point.

L2 Norm

L1 Norm

(c) Image Normalization

Extracted Palettes

Random Palettes

(a) Reference (b) Palette Initialization

Figure 3. Left: Reference image; Middle: Comparison between
the recoloring result of our model trained with extracted palettes
and model trained with random initialized palettes; Right: Nor-
malized training image and the extracted palettes from normaliza-
tion of different levels.

3.2. Palette Extraction

Although it is possible to directly train our model with
randomly initialized color palettes, doing this will bring ex-
cessive ambiguity to the problem and may produces irregu-
lar results as shown in Fig. 3(b). Thankfully, the problem of
extracting color palettes from images has been extensively
researched over the past years, thus we use the extraction
method from a state-of-the-art image recoloring work [31]
as our initialization. In general, this method extracts color
palettes from the 3D convex hull of the clustered image col-
ors in the RGB space. In our scenario, we simply select all
training image pixels with valid depth from NeRF’s depth
maps and concatenate their color as input.

We notice that with input from multiple images, the ex-
traction method may produce palettes that are chromatically

20693

𝒙

𝒅

𝒄! ∈ [0,1]"

𝒔 ∈ [0,1]"

𝜔# ∈ [0,1]𝜹# ∈ ℝ" 𝐼 ∈ ℝ$𝓟# ∈ [0,1]"

L1
Normalize

⊕ ⊗

SoftPlus

SoftPlus

∑ 𝒄 ∈ [0,1]"

PalettesView
Dir

Pos

Color Offsets Radiance Weights

View-Dependent Color Output Color∑ Sum
⊗ Multiply

Diffuse Color

Diffuse MLP

View-Dependent
MLP

Palette MLP

Trainable Params
⊕ Add

Si
gm

oi
d

Si
gm

oi
d

Figure 4. Our network structure. As we only show one palette-
based basis in the figure, our network generates Np bases in par-
allel and they are summed up in the final step.

similar (e.g., palettes including a light yellow and a dark
yellow), due to the varying shading of the captured scene.
This may result in unrealistic appearance editing. Inspired
by image illumination decomposition works [6,22], we nor-
malize the input colors of the training images by their in-
tensity, to narrow down the search space of color palettes.
Conventionally, the intensity of a color is represented by
the L1 norm of its RGB value. However, normalizing with
L1 norm projects the colors to a plane, which is a highly ill-
posed edge case for 3D convex hull calculation. These prob-
lems can be addressed by replacing the norm with a higher
order one. Empirically, we find that palettes extracted from
L2 normalized images work well in our next decomposition
stage, and use them in all of our experiments.

In addition to the extracted palettes P̄ , we also keep
the blending weights ω̄ of the input pixel colors, calculated
from the method of the same work. These weights act as an
additional supervision in the next stage.

3.3. Color Decomposition

To introduce our color decomposition model, we first ex-
plain our target outputs, then describe the structure of our
decomposition network.

As shown in Fig. 2, given the color palettes of size Np,
our model aims to reconstruct Np view-independent palette-
based bases and an additional view-dependent color func-
tion representing all view-dependent shading such as spec-
ular reflections. The palette-based bases correspond to the
extracted color palettes, and are defined by two functions
of x: A color offset function δ : R3 → R3, and a weight
function ω : R3 → [0, 1]. Observing that realistic image
captures usually consists of a huge variety of colors, we al-
low the basis color of each point shift from the palette color
with an offset (inspired by image-based soft color segmen-
tation methods [1, 2]). This design increases the capac-
ity of the bases and benefits the segmentation quality on
complex scenes. We also introduce an intensity function
I : R3 → [0, 1] that is shared among all palette-based bases,
due to the normalization of the extracted palettes. While

the aforementioned functions only take position as input,
our model also contains a view-dependent color function
s : R5 → [0, 1]3 that takes viewing direction as input, too.
We compose all of these bases into a color output c ∈ R3

by the following equation:

c(x,d) = s(x,d) + I(x)

Np∑
i=1

ωi(x) (Pi + δi(x)) , (2)

where ωi(x) are normalized by their sum. We clamp the
summed-up color c to [0, 1] as the final output. We also op-
timize the palette color Pi during the training. As shown
in Fig. 4, Our network consists of three MLPs: the Dif-
fuse MLP predicts the diffuse color cd(x), i.e. the sum
of all palette-based bases; the View-Dependent MLP gen-
erates view-dependent color s(x,d); Finally, the Palette
MLP predicts the function values of the palette-based bases:
ωi(x), δi(x) and I(x), where cd is also fed as an input
prior. We compose all of the network outputs to the final
color using Eq. 2.

3.4. Optimization

Given the fact that separating multiple bases from the
scene appearance is a considerably ill-posed task, a lot
of cautions should be taken in designing the optimization
scheme. Hence, we develop a series of losses to regulate
the optimized parameters and to avoid undesirable results
such as local-minimum.

To begin with, we deploy the image reconstruction loss
defined as:

Lrecon = ∥cref − c(r)∥22 + ∥cref − (cd(r) + s(r))∥22, (3)

where cref is the ground truth color, c(r), cd(r), s(r) are
calculated from the volume rendering equation at Eq. 1. The
second term of this loss can also be considered as the L2
distance between cd(r) and the sum of palette-based bases.
We also add a regularization loss Ls to the view-dependent
color function s(x, r), to prevent the particular situation
where s dominates the appearance and pushes all palette-
based bases to 0. This loss is defined as:

Ls = ∥s(x,d)∥22. (4)

While our model uses color offsets to shift the basis
color, it is necessary to restrict the blending weights and
color offset to avoid extreme solutions. Hence, we adapt
the sparsity loss Lsp and the color offset loss Loffset from the
image soft segmentation method [2] . They are defined as:

Lsp =

∑Np

i=1 ωi(x)∑Np

i=1 ω
2
i (x)

− 1, (5)

Loffset = ∥δ(x)∥22. (6)

20694

The sparsity loss aims to make the blending weights sparser
(e.g., segmenting each point x to fewer bases), which will
eventually increase the capacity of the bases by increasing
the color offset. On the other hand, the color offset loss
directly suppresses the magnitude of color offsets, prevent-
ing them from deviating from the palettes too much. In-
tuitively, these two losses act as two adversarial roles, and
finding a good balance between them will lead to neat seg-
mentation results with reasonable basis color. In our exper-
iments, however, we observe that these two losses may lead
to harsh segmentation results, which will drastically affect
the quality of the following editing (see our qualitative ab-
lation study). Thus we introduce a novel 3D-aware smooth
loss to smooth the weight function based on the NeRF’s out-
put. It is given by:

Lsm = ξ(x,x+ ε)∥ω(x)− ω(x+ ε)∥2, (7)

where ω = ω1...Np , ε is a random position offset sampled
from a Gaussian distribution, and ξ(·) is the similarity be-
tween two points. Here, we adapt the Gaussian kernel used
in the bilateral filter, and define the similarity function as:

ξ(x,y) = exp(−∥x− y∥2

σx
− ∥cd(x)− cd(y)∥2

σc
), (8)

where σx and σc are smoothing parameters. While the dif-
fuse color cd is used in the smooth loss, we cut off their
gradients during the training.

Finally, we add two more losses that incorporate the su-
pervisions from the palette extraction model. They are:

Lpalette = ∥P − P̄∥22, (9)

Lweight = ∥ω − ω̄∥22. (10)

As a summary, the overall loss of our optimization is the
weighted sum defined as:

L = Lrecon + λsLs + λspLsp

+ λoffsetLoffset + λsmLsm

+ λpaletteLpalette + λweightLweight,

(11)

where λs, λsp, λoffset, λsm, λpalette, λweight are all loss weights.

3.5. Appearance Editing

With the bases predicted from the model, we can sim-
ply tune the value of the functions to support appearance
editing, such as recoloring and photorealistic style transfer.
When deployed with recent fast NeRF models, our method
is able to achieve real-time interactive editing.

Since our basis functions are defined on the whole scene,
they do not directly support local editing (e.g., edit a single
object in the scene). To achieve that, we follow one recent
work [17] that learns a 3D feature field from the seman-
tic feature maps predicted from state-of-the-art image-based

segmentation models (e.g., Lang-Seg [19]), and use the fea-
ture field to guide the editing. However, directly adding
high dimensional semantic features to our model may de-
crease its efficiency, making it impractical to edit in real-
time. As the objects captured from a scene are often lim-
ited to a small set (e.g., in an indoor scene, chairs, walls and
floor are the most likely appeared objects), the semantic fea-
tures extracted from the scene are often a limited subset of
the whole feature space. Therefore, we apply PCA to com-
press the extracted features to a lower dimension (16 in our
experiments) before feeding them to the network. Please
find more details in terms of implementation, usage and re-
sults on editing in the supplemental materials.

4. Results
4.1. Implementation details

Training. To support real-time appearance editing, we
use Instant-NGP [25] as our backbone. For the geometry
learning stage, we keep all original configurations, except
adding a per-point rgb loss introduced by Sun et al. [30] to
make the density field sparser and avoid floaters. For the
segmentation learning stage, we fix the extracted palettes
for the first 100 epochs. After that, we unleash the palettes
and remove Lweight to fine-tune the model. Moreover, since
our smooth loss Lsm employs the diffuse color cd to calcu-
late the smoothing weight, we do not apply Lsm for the first
30 epoches to avoid unconverged cd as input.

Our training and testing experiments are implemented
using PyTorch [26], and run on a single NVIDIA RTX
3090 GPU. For both stages, we train our model for 300-600
epochs (depending on the number of training images) us-
ing the Adam Optimizer [16] with learning rate set to 0.01,
which takes no more than 2 hours in total.

Datasets. We conduct experiments on scenes from three
sources: Lego, Ficus, Ship and Hotdog from the NeRF
Blender dataset [23], Fern, Horns, Flower, Orchids from the
the forward-facing LLFF dataset [24] and Bonsai, Kitchen
and Room from the 360-degree Mip-NeRF360 dataset [3].

4.2. Comparisons

Recoloring. We use the HSV color space for recoloring
in all experiments. Given a group of modified color palettes
P ′, we calculate the difference between the original palettes
P and P ′ in HSV, then directly apply the change to all
points’ soft color, i.e. P + δ(x).

We compare our model with the state-of-the-art NeRF-
based recoloring method PosterNeRF [34] on the Blender
Dataset in Fig. 5. Compared to PosterNeRF, our model
achieves better reconstruction quality, and produces more
photorealistic results with fewer artifacts, and requires
fewer palette edits.

20695

OursReference (Instant-NGP) Tojo et al.

Sh
ip

 (R
ec

on
st

ru
ct

)
D

ru
m

s (
R

ec
ol

or
)

Figure 5. Qualitative comparison with PosterNeRF [33]. We
show reconstruction results in the first row and recolor results in
the second row.

Reference Ours Du et al. (Edit 1)

Fr
am

e
#4

0
Fr

am
e

#6
7

Du et al. (Edit 2)

Figure 6. Qualitative comparison with video palette-based re-
coloring method [11]. Unlike Du et al. [11] that either only mod-
ifies the lego color (Edit 1) or introduces view-inconsistency when
also modifying the gloves (Edit 2), our method recolors the 3D
scene consistently while maintaining photorealisim across views.

We also compare our model with a state-of-the-art
palette-based video recoloring model [10] in Fig. 6 and im-
age recoloring models [1, 31] in Fig. 7. Since our model
consists of color offsets and radiance functions that extend
the palette color to basis, it requires fewer palettes to recon-
struct the images than other methods, which improves us-
ability and benefits the quality of recoloring results. Also,
with the help of the scene geometry, our results are more
plausible in 3D. Particularly, we show recoloring results on
two different views in the Kitchen scene, where we set the
same recoloring goal for each of them: changing the light
on the excavator to purple. While the image-based meth-
ods failed to keep the other objects looking the same from
the two views, our model is able to produce view-consistent
results for the whole scene.

User-Guided Photorealistic style transfer. We can ap-
ply our decomposition model to achieve photorealistic style
transfer on the captured scenes with sparse user guidance.
Given a style image, users may define a series of correspon-
dences between the image pixels and 3D points, that our
system uses to transform our palette-based bases to align
the point colors to the pixel colors; more details in the sup-
plementary. We compare our model with three state-of-the-
art methods: UPST-NeRF [9], ARF [40] and image-based

stylization with AdaIN [14] (Fig. 9). Our results are more
photorealistic than ARF and AdaIN, and comparable with
UPST-NeRF. However, UPST-NeRF takes much more time
to train (tens of hours) than ours.

User study. To better demonstrate the effectiveness of our
model, we also conduct a user study on these two appli-
cations. The study was taken on the Amazon Mechani-
cal Turk platform, where we dispatched 162 questions 30
times to the crowd (4860 in total), and received 4496 an-
swers. In each question, the user watches images/videos
generated from our model and another randomly selected
baseline and was asked to decide which one is more view-
consistent and/or photorealistic. Fig. 8 summarizes our
study’s results. We outperform image-based recoloring
baselines [1, 31], and are considered more photorealistic
than posterNeRF [34]. For the style transfer task, our model
received better feedback than ARF [40] and AdaIN [14] and
is rated better than UPST-NeRF [9] for view-consistency.
More details are in the supplementary.

4.3. Ablations

We conduct three ablative evaluations on the LLFF
dataset to show the effectiveness of our model design. We
first compare our model with the original vanilla Instant-
NGP with two metrics: the Peak Signal-to-Noise Ratio
(PSNR ↑), the Learned Perceptual Image Patch Similar-
ity [43] (LPIPS↓). Our model achieves the same PSNR
score from the Instant-NGP (24.50), and has a slightly
higher LPIPS score (0.152 compared to 0.145). This shows
our model has little effect on the reconstruction quality.

We then compare the reconstruction results of our model
with two variants on the LPIPS metric: Model without color
offsets and Model without view-dependent function. Both
of the variants get higher LPIPS scores (0.160 for removing
the color offset, and 0.155 for removing the view-dependent
function), showing that adding the color offsets and view-
dependent function increases the capability of our model to
reconstruct real scenes.

We also compare the palette decomposition results of our
model with three variants: Model without color offset (Ours
w/o δ), model without the sparsity loss (Ours w/o Lsp) and
model without the smooth loss (Ours w/o Lsm) both quan-
titatively and qualitatively. Quantitative results are shown
in Tab. 1, and qualitative comparisons are shown in Fig. 10.
Removing the smooth loss will downgrade the smoothness
of the blending weights, and leads to critical artifacts on the
fern; Removing the sparsity loss will decrease the sparse-
ness of the weights, and hence leads to unwanted red-dish
tint in the whole image; Removing the color offset also re-
duces the sparsity of the weights, and leads to unwanted
tint for some area (e.g. the wall behind the fern). This

20696

Tan et al. Akimoto et al. OursReference

H
or

ns
Le

go
Fe

rn
B

on
sa

i
K

itc
he

n

Figure 7. Qualitative comparison with image palette-based recoloring methods. We compare our method with Tan et al. [31] and
Akimoto et al. [1]. For each recolored image, we also show the corresponding palettes editing on its left side, and a zoom-in view on its
right side.

Ours / Tan et al.

Ours / Akimoto et al.

Ours / PosterNeRF

(a) Recoloring

Ours / UPST-NeRF

Ours / ARF

Ours / AdaIN

(b) Stylization

Ph
ot

or
ea

lis
m

Vi
ew

-C
on

sis
te

nc
y

Figure 8. User study results. For each comparison we demon-
strate the percentage of users who prefer our method, users who
prefer the baseline method, and users who do not lean towards
anyone.

shows that our designed components are essential to gen-
erating clean recoloring results.

4.4. More Results

In Fig. 11, we show several results of feature-guided
editing. Although our optimized segmentations are shared

Table 1. Quantitative ablation study results. We compare our
model with variants on two metrics: The sparsity error defined
by Eq. 5 and the total variation of the weight images (TV) which
measures their smoothness.

Methods Sparsity ↓ TV ↓
Ours 0.478 0.303

Ours w/o δ 0.647 0.263
Ours w/o Lsp 1.643 0.123
Ours w/o Lsm 0.554 0.549

across the scene and do not directly support local editing,
adding semantic features effectively resolves this issue.

In Fig. 12, we show two more edits supported by our
decomposition results. By scaling the view-dependent color
function s(x,d) and the color offset functions δi(x), we
can modify the illumination conditions and object textures
of the scene, while keeping the rendering photorealistic.

20697

UPST-NeRFOursReference

H
or

ns
Fe

rn
Fl

ow
er

O
rc

hi
ds

Style Image ARF AdaIN

Figure 9. Qualitative comparison with baseline stylization methods. Our method produces spatially and temporally consistent style
transfer results that faithfully match the style examples while maintaining photorealism.

Reference w/o ℒ!" w/o ℒ!# w/o 𝜹 Ours

Figure 10. Qualitative ablation study results. In this example we change the green palette (primarily representing the plants) to red color.

(b) Recolored (c) Semantic Guided Edits

(a) Original

Figure 11. Semantic guided editing. On the left we show the
unedited image and recolored results w/o feature guidance. On the
right side, we show four guided results where individual objects
(plant, floor, table, carpet) are exclusively edited.

5. Conclusion

We have presented PaletteNeRF, a novel and efficient
palette-based appearance editing framework for neural ra-
diance fields. Our method significantly increases the practi-
cality of palette-based appearance editing and enables in-
tuitive and controllable interactive editing on real-world
scenes. Our experiments illustrate the benefit of our ap-

×0

×0

×1 ×3

V
ie

w
-D

ep
C

ol
or

 O
ffs

et

×1 ×3

Figure 12. Additional appearance editing results. First Row:
Rendered images with scaled view-dependent function; Second
Row: Rendered images with scaled color offset functions.

proach for various editing tasks such as recoloring, photore-
alistic style transfer and illuminance changing. Future work
may include frequency-based decomposition and editing of
specular highlights and extending to dynamic NeRFs.

Acknowledgement This project was in part supported by
Samsung, the Stanford Institute for Human-Centered AI
(HAI), and a PECASE from the ARO. We also thank Jia-
man Li for helping conducting our user study.

20698

References
[1] Naofumi Akimoto, Huachun Zhu, Yanghua Jin, and Yoshim-

itsu Aoki. Fast soft color segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8277–8286, 2020. 2, 4, 6, 7

[2] Yağiz Aksoy, Tunç Ozan Aydin, Aljoša Smolić, and Marc
Pollefeys. Unmixing-based soft color segmentation for im-
age manipulation. ACM Transactions on Graphics (TOG),
36(2):1–19, 2017. 4

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 5

[4] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Bar-
ron, Ce Liu, and Hendrik P. A. Lensch. Nerd: Neural re-
flectance decomposition from image collections. In 2021
IEEE/CVF International Conference on Computer Vision,
ICCV 2021, Montreal, QC, Canada, October 10-17, 2021,
pages 12664–12674. IEEE, 2021. 2

[5] Mark Boss, Varun Jampani, Raphael Braun, Ce Liu,
Jonathan T. Barron, and Hendrik P.A. Lensch. Neural-
pil: Neural pre-integrated lighting for reflectance decompo-
sition. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. 2

[6] Robert Carroll, Ravi Ramamoorthi, and Maneesh Agrawala.
Illumination decomposition for material recoloring with con-
sistent interreflections. In ACM SIGGRAPH 2011 papers,
pages 1–10. 2011. 4

[7] Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi,
and Adam Finkelstein. Palette-based photo recoloring. ACM
Trans. Graph., 34(4):139–1, 2015. 2

[8] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. arXiv preprint
arXiv:2203.09517, 2022. 1, 2

[9] Yaosen Chen, Qi Yuan, Zhiqiang Li, Yuegen Liu, Wei Wang,
Chaoping Xie, Xuming Wen, and Qien Yu. Upst-nerf: Uni-
versal photorealistic style transfer of neural radiance fields
for 3d scene. CoRR, abs/2208.07059, 2022. 2, 6

[10] Zheng-Jun Du, Kai-Xiang Lei, Kun Xu, Jianchao Tan, and
Yotam Gingold. Video recoloring via spatial-temporal ge-
ometric palettes. ACM Transactions on Graphics (TOG),
40(4):1–16, 2021. 2, 6

[11] Zheng-Jun Du, Kai-Xiang Lei, Kun Xu, Jianchao Tan, and
Yotam Gingold. Video recoloring via spatial-temporal ge-
ometric palettes. ACM Transactions on Graphics (TOG),
40(4), Aug. 2021. 6

[12] Chie Furusawa, Kazuyuki Hiroshiba, Keisuke Ogaki, and
Yuri Odagiri. Comicolorization: semi-automatic manga col-
orization. In Diego Gutierrez and Hui Huang, editors, SIG-
GRAPH Asia 2017 Technical Briefs, Bangkok, Thailand,
November 27 - 30, 2017, pages 12:1–12:4. ACM, 2017. 2

[13] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d aware generator for high-
resolution image synthesis. In The Tenth International Con-
ference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net, 2022. 2

[14] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
2017. 6

[15] Mira Kim, Jaehoon Ko, Kyusun Cho, Junmyeong Choi, Dae-
won Choi, and Seungryong Kim. Ae-nerf: Auto-encoding
neural radiance fields for 3d-aware object manipulation.
CoRR, abs/2204.13426, 2022. 2

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 5

[17] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. CoRR, abs/2205.15585, 2022. 5

[18] Zhengfei Kuang, Kyle Olszewski, Menglei Chai, Zeng
Huang, Panos Achlioptas, and Sergey Tulyakov. Neroic:
neural rendering of objects from online image collections.
ACM Trans. Graph., 41(4):56:1–56:12, 2022. 2

[19] Boyi Li, Kilian Q. Weinberger, Serge J. Belongie, Vladlen
Koltun, and René Ranftl. Language-driven semantic seg-
mentation. In The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022. 5

[20] José Marı́a López-Villegas, Neus Vidal, and Arnau Salas
Barenys. 3d-printed broadband power divider based on
helical-microstrip transmission line segments. IEEE Access,
10:63375–63382, 2022. 2

[21] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June
19-25, 2021, pages 7210–7219. Computer Vision Founda-
tion / IEEE, 2021. 2

[22] Abhimitra Meka, Mohammad Shafiei, Michael Zollhoefer,
Christian Richardt, and Christian Theobalt. Real-time global
illumination decomposition of videos. volume 1, January
2021. 4

[23] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
representing scenes as neural radiance fields for view synthe-
sis. Commun. ACM, 65(1):99–106, 2022. 1, 2, 5

[24] Pooneh Mohaghegh, Rabia Saeed, François Tièche, Alexis
Boegli, and Yves Perriard. Depth camera and electromag-
netic field localization system for iot application: High level,
lightweight data fusion. In ASSE 2021: 2nd Asia Service Sci-
ences and Software Engineering Conference, Macau, 24-26
February, 2021, pages 94–101. ACM, 2021. 5

[25] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 1, 2, 5

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

20699

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 5

[27] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 14315–14325. IEEE,
2021. 1

[28] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances
in Neural Information Processing Systems, 2019. 2

[29] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
Nerv: Neural reflectance and visibility fields for relighting
and view synthesis. In CVPR, 2021. 2

[30] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2022, New Orleans, LA,
USA, June 18-24, 2022, pages 5449–5459. IEEE, 2022. 5

[31] Jianchao Tan, Jose Echevarria, and Yotam Gingold. Effi-
cient palette-based decomposition and recoloring of images
via rgbxy-space geometry. ACM Transactions on Graphics
(TOG), 37(6):262:1–262:10, Dec. 2018. 2, 3, 6, 7

[32] Jianchao Tan, Jyh-Ming Lien, and Yotam I. Gingold. De-
composing images into layers via rgb-space geometry. ACM
Trans. Graph., 36(1):7:1–7:14, 2017. 2

[33] Kenji Tojo and Nobuyuki Umetani. Recolorable posteriza-
tion of volumetric radiance fields using visibility-weighted
palette extraction. Comput. Graph. Forum, 41(4):149–160,
2022. 2, 6

[34] Kenji Tojo and Nobuyuki Umetani. Recolorable posteriza-
tion of volumetric radiance fields using visibility-weighted
palette extraction. Comput. Graph. Forum, 41(4):149–160,
2022. 5, 6

[35] Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manipula-
tion of neural radiance fields. CoRR, abs/2112.05139, 2021.
2

[36] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,
Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-
based neural radiance fields. CoRR, abs/2201.08845, 2022.
2

[37] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman.
Volume rendering of neural implicit surfaces. In Thirty-
Fifth Conference on Neural Information Processing Systems,
2021. 2

[38] Weicai Ye, Shuo Chen, Chong Bao, Hujun Bao, Marc Polle-
feys, Zhaopeng Cui, and Guofeng Zhang. Intrinsicnerf:
Learning intrinsic neural radiance fields for editable novel
view synthesis. arXiv preprint arXiv:2210.00647, 2022. 2

[39] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenox-
els: Radiance fields without neural networks. CoRR,
abs/2112.05131, 2021. 1, 2

[40] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields, 2022. 2, 6

[41] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and
Noah Snavely. Physg: Inverse rendering with spherical gaus-
sians for physics-based material editing and relighting. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2021, virtual, June 19-25, 2021, pages 5453–
5462. Computer Vision Foundation / IEEE, 2021. 2

[42] Qing Zhang, Chunxia Xiao, Hanqiu Sun, and Feng Tang.
Palette-based image recoloring using color decomposition
optimization. IEEE Trans. Image Process., 26(4):1952–
1964, 2017. 2

[43] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

[44] Xiaoshuai Zhang, Sai Bi, Kalyan Sunkavalli, Hao Su, and
Zexiang Xu. Nerfusion: Fusing radiance fields for large-
scale scene reconstruction. CVPR, 2022. 2

[45] Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul E.
Debevec, William T. Freeman, and Jonathan T. Barron. Ner-
factor: neural factorization of shape and reflectance under
an unknown illumination. ACM Trans. Graph., 40(6):237:1–
237:18, 2021. 2

[46] Changqing Zou, Haoran Mo, Chengying Gao, Ruofei Du,
and Hongbo Fu. Language-based colorization of scene
sketches. ACM Trans. Graph., 38(6):233:1–233:16, 2019.
2

20700

	. Introduction
	. Related Work
	. Method
	. Volumetric Rendering
	. Palette Extraction
	. Color Decomposition
	. Optimization
	. Appearance Editing

	. Results
	. Implementation details
	. Comparisons
	. Ablations
	. More Results

	. Conclusion

