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Abstract

We study the problem of inferring scene affordances by
presenting a method for realistically inserting people into
scenes. Given a scene image with a marked region and an
image of a person, we insert the person into the scene while
respecting the scene affordances. Our model can infer the
set of realistic poses given the scene context, re-pose the
reference person, and harmonize the composition. We set
up the task in a self-supervised fashion by learning to re-
pose humans in video clips. We train a large-scale diffusion
model on a dataset of 2.4M video clips that produces diverse
plausible poses while respecting the scene context. Given the
learned human-scene composition, our model can also hal-
lucinate realistic people and scenes when prompted without
conditioning and also enables interactive editing. A quan-
titative evaluation shows that our method synthesizes more
realistic human appearance and more natural human-scene
interactions than prior work.

1. Introduction
A hundred years ago, Jakob von Uexküll pointed out the

crucial, even defining, role that the perceived environment
(umwelt) plays in an organism’s life [64]. At a high level,
he argued that an organism is only aware of the parts of
the environment that it can affect or be affected by. In a
sense, our perception of the world is defined by what kinds
of interactions we can perform. Related ideas of functional
visual understanding (what actions does a given scene afford
an agent?) were discussed in the 1930s by the Gestalt psy-
chologists [35] and later described by J.J. Gibson [21] as
affordances. Although this direction inspired many efforts
in vision and psychology research, a comprehensive com-
putational model of affordance perception remains elusive.
The value of such a computational model is undeniable for
future work in vision and robotics research.

The past decade has seen a renewed interest in such
computational models for data-driven affordance percep-
tion [15, 20, 24, 25, 67]. Early works in this space deployed a
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mediated approach by inferring or using intermediate seman-
tic or 3D information to aid in affordance perception [24],
while more recent methods focus on direct perception of
affordances [15, 20, 67], more in line with Gibson’s fram-
ing [21]. However, these methods are severely constrained
by the specific requirements of the datasets, which reduce
their generalizability.

To facilitate a more general setting, we draw inspiration
from the recent advances in large-scale generative models,
such as text-to-image systems [49,50,54]. The samples from
these models demonstrate impressive object-scene compo-
sitionality. However, these compositions are implicit, and
the affordances are limited to what is typically captured in
still images and described by captions. We make the task
of affordance prediction explicit by putting people “into the
picture” [24] and training on videos of human activities.

We pose our problem as a conditional inpainting task
(Fig. 1). Given a masked scene image (first row) and a ref-
erence person (first column), we learn to inpaint the person
into the masked region with correct affordances. At training
time, we borrow two random frames from a video clip, mask
one frame, and try to inpaint using the person from the sec-
ond frame as the condition. This forces the model to learn
both the possible scene affordances given the context and
the necessary re-posing and harmonization needed for a co-
herent image. At inference time, the model can be prompted
with different combinations of scene and person images. We
train a large-scale model on a dataset of 2.4M video clips of
humans moving in a wide variety of scenes.

In addition to the conditional task, our model can be
prompted in different ways at inference time. As shown in
the last row Fig. 1, when prompted without a person, our
model can hallucinate a realistic person. Similarly, when
prompted without a scene, it can also hallucinate a realistic
scene. One can also perform partial human completion tasks
such as changing the pose or swapping clothes. We show
that training on videos is crucial for predicting affordances
and present ablations and baseline comparisons in Sec. 4.

To summarize, our contributions are:
• We present a fully self-supervised task formulation for

learning affordances by learning to inpaint humans in
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Figure 1. Given a masked scene image (first row) and a reference person (first column), our model can successfully insert the person into the
scene image. The model infers the possible pose (affordance) given the scene context, reposes the person appropriately, and harmonizes the
insertion. We can also partially complete a person (last column) and hallucinate a person (last row) when no reference is given.

masked scenes.
• We present a large-scale generative model for human

insertion trained on 2.4M video clips and demonstrate
improved performance both qualitatively and quantita-
tively compared to the baselines.

• In addition to conditional generation, our model can be
prompted in multiple ways to support person hallucina-
tion, scene hallucination, and interactive editing.

2. Related Work
Scene and object affordances. Inspired by the work of
J.J. Gibson [21], a long line of papers have looked into

operationalizing affordance prediction [9,14,15,19,20,23,24,
33,38,67]. Prior works have also looked at modeling human-
object affordance [12,22,36,69,76] and synthesizing human
pose (and motion) conditioned on an input scene [10,37,65].
Several methods have used videos of humans interacting
with scenes to learn about scene affordances [15, 19, 67].
For example, Wang et al. [67] employed a large-scale video
dataset to directly predict affordances. They generated a
dataset of possible human poses in sitcom scenes. However,
their model relies on having plausible ground-truth poses for
scenes and hence only performs well on a small number of
scenes and poses. On the other hand, we work with a much
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larger dataset and learn affordances in a fully self-supervised
generative manner. We also go beyond synthesizing pose
alone and generate realistic humans conditioned on the scene.
By virtue of scale, our work generalizes better to diverse
scenes and poses and could be scaled further [60].
Inpainting and hole-filling. Early works attempted to use
the information within a single image to inpaint masked
regions by either diffusing local appearance [5, 8, 46] or
matching patches [7, 17]. More recent works use larger
datasets to match features [26, 47]. Pathak et al. [47]
showed a learning-based approach for image inpainting for
large masks, followed up by several recent works that use
CNNs [32,40,68,71,72,74,75] and Transformers [6,18,73].
The most relevant works to ours are diffusion-based inpaint-
ing models [41, 50, 53]. Rombach et al. [50] used text to
guide the diffusion models to perform inpainting tasks. Our
task can also be considered as guided inpainting, but our con-
ditioning is an image of a person to be inserted in the scene
instead of text. The masking strategy we use is inspired
by [72, 74].
Conditional human synthesis. Several works have at-
tempted synthesizing human images (and videos) from con-
ditional information such as keypoints [1,4,13,39,42,56,63],
segmentation masks or densepose [2, 43, 66, 70], and driv-
ing videos [55, 62]. Prior reposing works do not consider
scene context to infer the pose, since the target pose is ex-
plicitly given. Moreover, most of the reposing happens in
simple backgrounds without semantic content. In contrast,
our model conditions on the input scene context and infers
the right pose (affordance) prior to reposing. Additionally,
our model is trained on unconstrained real-world scenes in
an end-to-end manner with no explicit intermediate repre-
sentation, such as keypoints or 3D.
Diffusion models. Introduced as an expressive and powerful
generative model [58], diffusion models have been shown to
outperform GANs [16,30,45] in generating more photorealis-
tic and diverse images unconditionally or conditioned by text.
With a straightforward architecture, they achieve promis-
ing performance in several text-to-image [44, 49, 50, 54],
video [29, 57], and 3D synthesis [48] tasks. We leverage
ideas presented by Rombach et al. [50] which first encodes
images into a latent space and then performs diffusion train-
ing in the latent space. We also use classifier-free guidance,
introduced by Ho et al. [31], which improves sample quality
by trading off against diversity.

3. Methods
In this section, we present details of our learning frame-

work. Given an input scene image, a masked region, and
a reference person to be inserted, our model inpaints the
masked region with a photo-realistic human that follows the
appearance of the reference person, but is re-posed to fit the
context in the input scene. We use the latent diffusion model

as our base architecture, described in Sec. 3.1. We present
details on our problem formulation in Sec. 3.2, our training
data in Sec. 3.3, and our model in Sec. 3.4.

3.1. Background - Diffusion Models
Diffusion models [30, 58] are generative models that

model data distribution p(x) as a sequence of denoising au-
toencoders. For a fixed time step T , the forward process of
diffusion models gradually adds noise in T steps to destroy
the data signal. At time T the samples are approximately
uniform Gaussian noise. The reverse process then learns to
denoise into samples in T steps. These models effectively
predict ϵθ(xt, t) for t = 1 . . . T , the noise-level at time-step
t given the xt, a noisy version of input x. The corresponding
simplified training objective [50] is

LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t, c)∥22

]
, (1)

where t is uniformly sampled from {1, . . . , T} and c are
the conditioning variables: the masked scene image and the
reference person.
Latent diffusion models. As shown in Rombach et al. [50],
we use an autoencoder to do perceptual compression and let
the diffusion model focus on the semantic content, which
makes the training more computationally efficient. Given
an autoencoder with encoder E and decoder D, the forward
process uses E to encode the image, and samples from the
model are decoded using D back to the pixel space.
Classifier-free guidance. Ho et al. [31] proposed classifier-
free guidance (CFG) for trading off sample quality with
diversity. The idea is to amplify the difference between
conditional and unconditional prediction during sampling
for the same noisy image. The updated noise prediction is

ϵ̂ = w · ϵθ(xt, t, c)− (w − 1) · ϵθ(xt, t), (2)

3.2. Formulation
The inputs to our model contain a masked scene image

and a reference person, and the output image contains the
reference person re-posed in the scene’s context.

Inspired by Humans in Context (HiC) [9], we generate
a large dataset of videos with humans moving in scenes
and use frames of videos as training data in our fully self-
supervised training setup. We pose the problem as a con-
ditional generation problem (shown in Fig. 2). At training
time, we source two random frames containing the same
human from a video. We mask out the person in the first
frame and use it as the input scene. We then crop out and
center the human from the second frame and use it as the
reference person conditioning. We train a conditional latent
diffusion model conditioned on both the masked scene image
and the reference person image. This encourages the model
to infer the right pose given the scene context, hallucinate
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Figure 2. Architecture overview. We source two random frames from a video clip. We mask out the person in the first frame and use the
person from the second frame as conditioning to inpaint the image. We concatenate the latent features of the background image and rescaled
mask along with the noisy image to the denoising UNet. Reference person embeddings (CLIP ViT-L/14) are passed via cross-attention.

the person-scene interactions, and harmonize the re-posed
person into the scene seamlessly in a self-supervised manner.

At test time, the model can support multiple applications,
inserting different reference humans, hallucinating humans
without references, and hallucinating scenes given the hu-
man. We achieve this by randomly dropping conditioning
signals during training. We evaluate the quality of person
conditioned generation, person hallucination and scene hal-
lucination in our experimental section.

3.3. Training data
We generate a dataset of 2.4 million video clips of humans

moving in scenes. We follow the pre-processing pipeline
defined in HiC [9]. We start from around 12M videos, in-
cluding a combination of publicly available computer vision
datasets as in Brooks et al. [9] and proprietary datasets. First,
we resize all videos to a shorter-edge resolution of 256 pixels
and retain 256× 256 cropped segments with a single person
detected by Keypoint R-CNN [27]. We then filter out videos
where OpenPose [11] does not detect a sufficient number
of keypoints. This results in 2.4M videos, of which 50,000
videos are held out as the validation set, and the rest are used
for training. Samples from the dataset are shown in Fig. 3.
Finally, we use Mask R-CNN [27] to detect person masks to
mask out humans in the input scene image and to crop out
humans to create the reference person.

We briefly describe our masking and augmentation strat-
egy and present more details in the supp. materials.
Masking strategy. We apply a combination of different
masks for the input scene image, as shown in Fig. 4. These
contain bounding boxes, segmentation masks and random

Figure 3. Sample videos from our dataset. Each row has five
frames uniformly sampled from a video.

Figure 4. Various masks used during training. We use bounding
boxes of the person, larger boxes around the person, smaller boxes,
segmentation masks, and randomly generated scribbles.

scribbles as done in prior inpainting works [72, 74]. This
masking strategy allows us to insert people at different lev-
els of granularity, i.e., inserting the whole person, partially
completing a person, etc.
Augmentation strategy. We apply data augmentation to
reference person alone (as shown in Fig. 5). We borrow
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Figure 5. Data augmentation used for the reference person. We
first apply color augmentations and image corruptions. We then
mask and center the person, followed by geometric augmentations.

the augmentation suite used in StyleGAN-ADA [34]. We
randomly apply color augmentations. We then mask and
center the reference person. After this, we randomly ap-
ply geometric augmentations (scaling, rotation, and cutout).
Color augmentations are important as, during training, the
frames within the same video would usually have similar
lighting and brightness. However, this may not be the case
during inference, when we want to insert a random person
in a random scene.

3.4. Implementation details
We train all models at 256 × 256 resolution. We en-

code these images using an autoencoder to a latent space of
32 × 32 × 4 (8× downsample) resolution. The denoising
backbone is based on time-conditional UNet [52]. Following
prior diffusion inpainting works [50, 53], we concatenate the
noisy image with the mask and the masked image. We pass
the reference person through an image encoder and use the
resulting features to condition the UNet via cross-attention.
The mask and the masked image are concatenated as they are
spatially aligned with the final output, whereas the reference
person is injected through cross-attention as it would not be
aligned due to having a different pose. We present ablations
of different image encoders in our experiments. We also
initialize our model with weights from Stable Diffusion’s
checkpoint [50].

At training time, to encourage better quality for the human
hallucination task, we drop the person-conditioning 10% of
the time. We also drop both masked image and person-
conditioning 10% of the time to learn the full unconditional
distribution and support classifier-free guidance. At test
time, we use the DDIM sampler [59] for 200 steps for all
our results.

4. Experiments
We present evaluations on a few different tasks. First,

we show results on conditional generation with a reference
person in Sec. 4.1. We also present ablations of data, archi-
tecture, and CFG in this section. We then present results on
person hallucinations in Sec. 4.2 and scene hallucinations in
Sec. 4.3 and compare with Stable Diffusion [50] and DALL-

Table 1. Comparison of metrics for different ablations. First set are
on data used for training, second set are on encoders and the final
set are on model scaling and effects of pretraining. Metrics used
are FID (lower is better) and PCKh (higher is better).

Method FID ↓ PCKh ↑

Image (w/o aug) 13.174 8.321
Image (w/ aug) 13.008 10.660
Video (w/o aug) 12.103 15.797

VAE KL-8x (concat) 14.956 13.020

Small (400M, scratch) 12.366 15.095
Large (scratch) 11.232 15.873
Large (fine-tune) 10.078 17.602

E 2 [49] as baselines. We present additional results in the
supp. material along with a discussion of failure cases.
Metrics. We primarily use two quantitative metrics. First
is FID (Fréchet Inception Distance) [28], which measures
realism by comparing the distributions of Inception [61] net-
work features of generated images with real images. We
measure FID on 50K images, unless specified as FID-10K,
wherein we use 10K images. Second is PCKh [3], which
measures accurate human positioning by computing the per-
centage of correct pose keypoints (within a radius relative to
the head size). We use OpenPose [11] to detect keypoints of
generated and real images.

4.1. Conditional generation
We evaluate the conditional task of generating a target

image given a masked scene image and a reference person.
All our models were trained on 32 A100s for 100K steps

with a batch size of 1024. We compute the metrics on the
held-out set of 50K videos, by trying to inpaint the first
masked frame for each video. We choose a reference person
from a different video to make the task challenging and use
the same mapping for all evaluations.

We present three sets of ablations. Data. We experiment
with using different training data. We simulate image-only
supervision by taking the masked scene image and the ref-
erence person from the same frame. We also ablate with
data augmentations turned on and off. Encoders. We exper-
iment with using the first-stage VAE features, passed in as
concatenation instead of CLIP ViT-L/14 embeddings. UNet.
We experiment with a smaller UNet (430M) compared to
ours (860M). We also study the effects of initializing with a
pre-trained checkpoint.

Quantitative results are shown in Tab. 1. We observe that
image-only models (with or without augmentations) always
underperform models trained on video data. This shows
that videos provide richer training signal of the same per-
son in different poses which cannot be replicated by simple
augmentations. Augmentations, however, do help improve
our results. CLIP ViT-L/14 features perform better than the
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Figure 6. Qualitative results of conditional generation. In the top 4 rows, we show a reference person in the first column, followed by four
pairs of masked scene image and corresponding result. In the bottom 4 rows, we show a masked scene image in the first column, followed by
four pairs of reference person and corresponding result. Our results have the reference person re-posed correctly according to the scene.
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(b) Person hallucination

Figure 7. Classifier-free guidance. Effect of increasing CFG
guidance scale. Evaluated at [1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0].

VAE features passed through concatenation. We also note
that using a larger 860M UNet and initializing with Stable
Diffusion checkpoints help with our model performance.

We present qualitative results for our best-performing
model in Fig. 6. In the top four rows, we show how our
model can infer candidate poses given scene context and flex-
ibly re-pose the same reference person into various different
scenes. In the bottom four rows, we also show how different
people can coherently be inserted into the same scene. The
generated images show the complex human-scene composi-
tion learned by our model. Our model also harmonizes the
insertion by accounting for lighting and shadows.
Effect of CFG. We present the metric trend with varying
CFG [31] guidance scales in Fig. 7a. In line with observa-
tions from text-to-image models [50,54], our FID and PCKh
both initially improve with CFG. At high values, the image
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Figure 8. Qualitative results of person hallucination. From left
to right, groundtruth image, masked scene image, 3 hallucinated
persons in the scene. Our method can hallucinate plausible pose
and appearance.

quality (FID) suffers. We perform CFG by dropping both the
masked scene image and reference person to learn a true un-
conditional distribution. We observed that dropping only the
reference person was detrimental to our model performance.

4.2. Person Hallucination
We evaluate the person hallucination task by dropping the

person conditioning and compare with baselines Stable Dif-
fusion [51] and DALL-E 2 [49]. We evaluate our model by
passing an empty conditioning person. We evaluate quantita-
tively with Stable Diffusion (SD) with the following prompt:
“natural coherent image of a person in a scene”. For qualita-
tive evaluation, we generate SD and DALL-E 2 results with
the same prompt.

Figure 9. Baseline comparisons for person hallucination. From
left to right, ground-truth, masked scene image, DALL-E 2 result,
Stable Diffusion result and our result. Our model does the best job
in hallucinating humans consistent with the context.

Figure 10. Baseline comparisons for scene hallucination. From
left to right, ground-truth, reference person, DALL-E 2 result,
Stable Diffusion result, and our result. Our model does the best job
of hallucinating the scene consistent with the reference person.

We present qualitative results in Fig. 8 where our model
can successfully hallucinate diverse people given a masked
scene image. The hallucinated people have poses consistent
with the input scene affordances. We also present quantita-
tive results in Tab. 2. While Stable Diffusion does produce
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Figure 11. Constrained scene hallucination. From left to right,
ground-truth, reference person, 3 hallucinated scene samples where
the pose and location of the person is constrained. Our hallucinated
scene has consistent affordances with the reference person and the
reference person stays unchanged.

Figure 12. Qualitative results of unconstrained scene hallucina-
tion. Similar to Fig. 11 but the person here is not constrained on
location and pose, hence they can change according to the hallu-
cinated scene. As a result, we are able to generate our reference
person in diverse poses while hallucinating different scenes.

high-quality results in some cases, it sometimes fails catas-
trophically such as hallucinating a person in incorrect poses,
or completely ignoring the text conditioning. This is ex-
pected as Stable Diffusion’s inpainting is trained to inpaint
random crops with generic captions rather than inpainting
with a consistent human, which is our objective.

We present qualitative baseline comparisons in Fig. 9, we
observe that baseline models sometimes ignore the scene
context while our model does better at hallucinating humans

Table 2. Comparison of metrics with Stable Diffusion for person
and scene hallucination. For Stable Diffusion. we use the following
prompt: "a natural coherent image of a person in a scene.".

Method
Person hall. Scene hall.

FID ↓ PCKh ↑ FID ↓

Stable Diffusion 19.651 0.023 44.687
Ours 8.390 23.213 20.268

consistent with the scene.
Effect of CFG. The metric trend with varying CFG scales
for person hallucination follows closely with the person
conditioning trend, as shown in Fig. 7b. Both FID and PCKh
initially improve, after which FID worsens.

4.3. Scene Hallucination
We evaluate two kinds of scene hallucination tasks. Con-

strained: For the constrained setup, we pass the reference
person as the scene image. The model then retains the lo-
cation and pose of the person and hallucinates a consistent
scene around the person. Unconstrained: For the uncon-
strained setup, we pass an empty scene conditioning. Given
a reference person, the model then simultaneously hallu-
cinates a scene and places the person in the right location
and pose. We evaluate the constrained setup quantitatively
with SD with the same prompt as before. We also present
qualitative samples from SD and DALL-E 2.

We present qualitative results of the constrained case in
Fig. 11 and unconstrained case in Fig. 12. Quantitative
comparisons are in Tab. 2. As hallucinating scenes is a
harder task with large portions of the image to be synthesized,
FID scores are generally higher with our model performing
better. Some qualitative baseline comparisons are presented
in Fig. 10. Compared to the baselines, our model synthesizes
more realistic scenes while maintaining coherence with the
input reference person.

5. Conclusion
In this work, we propose a novel task of affordance-aware

human insertion into scenes and we solve it by learning a
conditional diffusion model in a self-supervised way using
video data. We show various qualitative results to demon-
strate the effectiveness of our approach. We also perform
detailed ablation studies to analyze the impacts of various
design choices. We hope this work will inspire other re-
searchers to pursue this new research direction.
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