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Figure 1. Given a few images of a new concept, our method augments a pre-trained text-to-image diffusion model, enabling new generations
of the concept in unseen contexts. Example concepts include personal objects, animals, e.g., a pet dog, and classes not well generated by the
model, e.g., moongate (a circular gate [76]). Furthermore, we propose a method for composing multiple new concepts together, for example,
V* dog wearing sunglasses in front of a moongate. We denote personal categories with a new modifier token V*.

Abstract

While generative models produce high-quality images of
concepts learned from a large-scale database, a user often
wishes to synthesize instantiations of their own concepts (for
example, their family, pets, or items). Can we teach a model
to quickly acquire a new concept, given a few examples? Fur-
thermore, can we compose multiple new concepts together?
We propose Custom Diffusion, an efficient method for aug-
menting existing text-to-image models. We find that only op-
timizing a few parameters in the text-to-image conditioning
mechanism is sufficiently powerful to represent new concepts
while enabling fast tuning (~ 6 minutes). Additionally, we
can jointly train for multiple concepts or combine multi-
ple fine-tuned models into one via closed-form constrained
optimization. Our fine-tuned model generates variations of
multiple new concepts and seamlessly composes them with
existing concepts in novel settings. Our method outperforms
or performs on par with several baselines and concurrent
works in both qualitative and quantitative evaluations, while
being memory and computationally efficient.

1. Introduction

Recently released text-to-image models [53,57, 60, 79]
have represented a watershed year in image generation. By
simply querying a text prompt, users are able to generate
images of unprecedented quality. Such systems can generate
a wide variety of objects, styles, and scenes — seemingly
“anything and everything”.

However, despite the diverse, general capability of such
models, users often wish to synthesize specific concepts from
their own personal lives. For example, loved ones such as
family, friends, pets, or personal objects and places, such as
a new sofa or a recently visited garden, make for intriguing
concepts. As these concepts are by nature personal, they are
unseen during large-scale model training. Describing these
concepts after the fact, through text, is unwieldy and unable
to produce the personal concept with sufficient fidelity.

This motivates a need for model customization. Given the
few user-provided images, can we augment existing text-to-
image diffusion models with the new concept (for example,
their pet dog or a “moongate” as shown in Figure 1)? The
fine-tuned model should be able to generalize and compose
them with existing concepts to generate new variations. This
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poses a few challenges — first, the model tends to forget [12,
,52] or change [34,41] the meanings of existing concepts:
e.g., the meaning of “moon” being lost when adding the
“moongate” concept. Secondly, the model is prone to overfit
the few training samples and reduce sampling variations.

Moreover, we study a more challenging problem, compo-
sitional fine-tuning — the ability to extend beyond tuning for
a single, individual concept and compose multiple concepts
together, e.g., pet dog in front of moongate (Figure 1).
Improving compositional generation has been studied in re-
cent works [40]. But composing multiple new concepts poses
additional challenges, such as mixing unseen concepts.

In this work, we propose a fine-tuning technique, Custom
Diffusion for text-to-image diffusion models. Our method
is computationally and memory efficient. To overcome the
above-mentioned challenges, we identify a small subset of
model weights, namely the key and value mapping from
text to latent features in the cross-attention layers [5, 70].
Fine-tuning these is sufficient to update the model with the
new concept. To prevent model forgetting, we use a small
set of real images with similar captions as the target images.
We also introduce augmentation during fine-tuning, which
leads to faster convergence and improved results. To inject
multiple concepts, our method supports training on both
simultaneously or training them separately and then merging.

We build our method on Stable Diffusion [1] and experi-
ment on various datasets with as few as four training images.
For adding single concepts, our method shows better text
alignment and visual similarity to the target images than con-
current works and baselines. More importantly, our method
can compose multiple new concepts efficiently, whereas con-
current methods struggle and often omit one. Finally, our
method only requires storing a small subset of parameters
(3% of the model weights) and reduces the fine-tuning time
(6 minutes on 2 A100 GPUs, 2 — 4x faster compared to
concurrent works). Full version of the paper is available at
https://arxiv.org/abs/2212.04488.

2. Related Work

Deep generative models Generative models aim to synthe-
size samples from a data distribution, given a set of training
examples. These include GANs [9,20,29], VAEs [31], auto-
regressive [15,55,69], flow-based [13, 14], and diffusion
models [11,25,65]. To improve controllability, these models
can be conditioned on a class [9, 62], image [27,43,73,86],
or text prompt [45,67,87]. Our work mainly relates to text-
conditioned synthesis [42]. While earlier works [26,56,67,

, 80, 87] were limited to a few classes [38, 71], recent
text-to-image models [11,45,53,54,57,60,79], trained on
extremely large-scale data, have demonstrated remarkable
generalization ability. However, such models are by nature
generalists and struggle to generate specific instances like
personal toys or rare categories, e.g., “moongate”. We aim

to adapt these models to become specialists in new concepts.
Image and model editing. While generative models can
sample random images, a user often wishes to edit a single,
specific image. Several works aim at leveraging the capabil-
ities of generative models, such as GANs [2—4, 49, 85] or
diffusion models [10,22,30,45] towards editing. A challenge
is representing the specific image in the pre-trained model,
and such methods employ per-image or per-edit optimiza-
tion. A closely related line of work edits a generative model
directly [0, 18,72]. Whereas these methods aim to customize
GAN:S, our focus is on text-to-image models.
Transfer learning. A method of efficiently producing a
whole distribution of images is leveraging a pretrained model
and then using transfer learning [18,21,36,39,44,46-48,74,
, 82]. For example, one can adapt photorealistic faces into
cartoons [18,36,44,47,48]. To adapt with just a few training
images, efficient training techniques [28,33,61,68,83, 84]
are often useful. Different from these works, which focus
on tuning whole models to single domains, we wish to ac-
quire multiple new concepts without catastrophic forget-
ting [16,32,35,37,52]. By preserving the millions of con-
cepts captured in large-scale pretraining, we can synthesize
the new concepts in composition with these existing con-
cepts. Relatedly, several methods [19,50,64] propose to train
adapter modules for large-scale models in the discriminative
setting. In contrast, we adapt a small number of existing
parameters and do not require additional parameters.
Adapting text-to-image models. Similar to our goals,
two concurrent works, DreamBooth [59] and Textual Inver-
sion [17], adopt transfer learning to text-to-image diffusion
models [57,60] via either fine-tuning all the parameters [59]
or introducing and optimizing a word vector [17] for the new
concept. Our work differs in several aspects. First, our work
tackles a challenging setting: compositional fine-tuning of
multiple concepts, where concurrent works struggle. Second,
we only fine-tune a subset of cross-attention layer param-
eters, which significantly reduces the fine-tuning time. We
find these design choices lead to better results, validated by
automatic metrics and human preference studies.

3. Method

Our proposed method for model fine-tuning, as shown
in Figure 2, only updates a small subset of weights in the
cross-attention layers of the model. In addition, we use a
regularization set of real images to prevent overfitting on the
few training samples of the target concepts. In this section,
we explain our design choices and final algorithm in detail.

3.1. Single-Concept Fine-tuning

Given a pretrained text-to-image diffusion model, we aim
to embed a new concept in the model given as few as four
images and the corresponding text description. The fine-
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Figure 2. Custom Diffusion. Given images of new concepts, we retrieve real images with similar captions as the given concepts and
create the training dataset for fine-tuning, as shown on the left. To represent personal concepts of a general category, we introduce a new
modifier token V*, used in front of the category name. During training, we optimize key and value projection matrices in the diffusion model
cross-attention layers along with the modifier token. The retrieved real images are used as a regularization dataset during fine-tuning.

tuned model should retain its prior knowledge, allowing for
novel generations with the new concept, based on the text
prompt. This can be challenging as the updated text-to-image
mapping might easily overfit the few available images.

In our experiments, we use Stable Diffusion [1] as our
backbone model, which is built on the Latent Diffusion
Model (LDM) [57]. LDM first encodes images into a latent
representation, using hybrid objectives of VAE [31], Patch-
GAN [27], and LPIPS [81], such that running an encoder-
decoder can recover an input image. They then train a diffu-
sion model [25] on the latent representation with text condi-
tion injected in the model using cross-attention.

Learning objective of diffusion models. Diffusion mod-
els [25,65] are a class of generative models that aim to ap-
proximate the original data distribution ¢(x¢) with pg(xo):

potxo) = [ [poter) [T pitoxisfxo)| s, (1)

where x; to xp are latent variables of a forward Markov
chain s.t. x; = /ayXo + /1 — a;e. The model is trained
to learn the reverse process of a fixed-length (usually 1000)
Markov chain. Given noisy image x; at timestep ¢, the model
learns to denoise the input image to obtain x;_1. The training
objective of the diffusion model can be simplified to:

IEE,X,C,t[th6 — eg(x¢, ¢, t)]]], 2)

where €y is the model prediction and w; is a time-dependent
weight on the loss. The model is conditioned on timestep ¢
and can be further conditioned on any other modality c, e.g.,
text. During inference, a random Gaussian image (or latent)
x is denoised for fixed timesteps using the model [66].

A naive baseline for the goal of fine-tuning is to update all
layers to minimize the loss in Eqn. 2 for the given text-image
pairs. This can be computationally inefficient for large-scale
models and can easily lead to overfitting when training on a
few images. Therefore, we aim to identify a minimal set of
weights that is sufficient for the task of fine-tuning.
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Figure 3. Analysis of change in weights on updating all network

weights during fine-tuning. The mean change in the cross-attention
layers is significantly higher than other layers, even though they

only make up 5% of the total parameter count._
Rate of change of weights. Following Li et al. [36], we

analyze the change in parameters for each layer in the fine-
tuned model on the target dataset with the loss in Eqn. 2,
ie., Ay =1|0] — 6|/]|6:], where 6] and 6; are the updated
and pretrained model parameters of layer [. These param-
eters come from three types of layers — (1) cross-attention
(between the text and image), (2) self-attention (within the
image itself), and (3) the rest of the parameters, including
convolutional blocks and normalization layers in the diffu-
sion model U-Net. Figure 3 shows the mean A, for the three
categories when the model is fine-tuned on “moongate” im-
ages. We observe similar plots for other datasets. As we see,
the cross-attention layer parameters have relatively higher
A compared to the rest of the parameters. Moreover, cross-
attention layers are only 5% of the total parameter count in
the model. This suggests it plays a significant role during
fine-tuning, and we leverage that in our method.

Model fine-tuning. Cross-attention block modifies the
latent features of the network according to the condition
features, i.e., text features in the case of text-to-image diffu-
sion models. Given text features ¢ € R**“ and latent image
features f € R("*w)xL 3 single-head cross-attention [70]
operation consists of Q = Wif, K = Wke, V =Wvc,
and a weighted sum over value features as:

T

Attention(Q, K, V) = Softmax(QK 3)

=)y,
V)
where W7, W*_and W map the inputs to a query, key, and
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Figure 4. Single-head Cross-Attention. Latent image feature f
and text feature c are projected into query @, key K, and value
V. Output is a weighted sum of values, weighted by the similarity
between the query and key features. We highlight the updated
parameters W* and W in our method.

value feature, respectively, and d’ is the output dimension of
key and query features. The latent feature is then updated
with the attention block output. The task of fine-tuning aims
at updating the mapping from given text to image distribu-
tion, and the text features are only input to W* and W?
projection matrix in the cross-attention block. Therefore, we
propose to only update W* and W parameters of the dif-
fusion model during the fine-tuning process. As shown in
our experiments, this is sufficient to update the model with a
new text-image paired concept. Figure 4 shows an instance
of the cross-attention layer and the trainable parameters.
Text encoding. Given target concept images, we require
a text caption as well. If there exists a text description, e.g.,
moongate, we use that as a text caption. For personalization-
related use-case where the target concept is a unique instance
of a general category, e.g., pet dog, we introduce a new mod-
ifier token embedding, i.e., V* dog. During training, V* is
initialized with a rare occurring token embedding and opti-
mized along with cross-attention parameters. An example
text caption used during training is, photo of a V* dog.
Regularization dataset. Fine-tuning on the target con-
cept and text caption pair can lead to the issue of language
drift [34,41]. For example, training on “moongate” will lead
to the model forgetting the association of “moon” and “gate”
with their previously trained visual concepts, as shown in
Figure 5. Similarly, training on a personalized concept of
V* tortoise plushy can leak, causing all examples with
plushy to produce the specific target images. To prevent
this, we select a set of 200 regularization images from the
LAION-400M [63] dataset with corresponding captions that
have a high similarity with the target text prompt, above
threshold 0.85 in CLIP [51] text encoder feature space.

3.2. Multiple-Concept Compositional Fine-tuning

Joint training on multiple concepts. For fine-tuning with
multiple concepts, we combine the training datasets for each
individual concept and train them jointly with our method.

Pretrained
Model

Ours
(w/o Reg)

Ours

Figure 5. Role of regularization data in mitigating overfitting
behavior during fine-tuning. 1 row: samples from pre-trained
models. In 2™ row, fine-tuning cross-attention key, value projection
matrices without any regularization dataset leads to moongate like
images on the text prompt photo of a moon. We largely mitigate
this issue with the use of regularization datasets as shown in 3™
row. More results can be found in our arxiv version.

To denote the target concepts, we use different modifier to-
kens, V;, initialized with different rarely-occurring tokens
and optimize them along with cross-attention key and value
matrices for each layer. As shown in Figure 8, restricting
the weight update to cross-attention key and value parame-
ters leads to significantly better results for composing two
concepts compared to methods like DreamBooth, which
fine-tune all the weights.

Constrained optimization to merge concepts. As our
method only updates the key and value projection matri-
ces corresponding to the text features, we can subsequently
merge them to allow generation with multiple fine-tuned con-
cepts. Let set {I/VéC 1 Woit L | represent the key and value
matrices for all L cross-attention layers in the pretrained
model and {W},, W }[ represent the corresponding up-
dated matrices for added concept n € {1--- N}. As our
subsequent optimization applies to all layers and key-value
matrices, we will omit superscripts {k, v} and layer [ for
notational clarity. We formulate the composition objective
as the following constrained least squares problem:

W= al‘gMI/niHHWCrIg_WOCrIg”F

st. WCT =V, where C = [c;---cn] " “)

and V = [Wic{ - - Wyen] .

Here, C' € R5*4 is the text features of dimension d. These
are compiled of s target words across all N concepts, with
all captions for each concept flattened out and concatenated.
Similarly, C, € Rsw=X4 consists of text features of ~ 1000
randomly sampled captions for regularization. Intuitively,
the above formulation aims to update the matrices in the
original model, such that the words in target captions in C
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are mapped consistently to the values obtained from fine-
tuned concept matrices. The above objective can be solved in
closed form, assuming Cr, is non-degenerate and the solu-
tion exists, by using the method of Lagrange multipliers [8]:

W =Wy +v'd, whered = C(Crzgcreg)_l

5
andv' = (V —-WoCT)(dCT)™ L. ®

We show full derivation in the our arxiv version. Compared
to joint training, our optimization-based method is faster
(~ 2 seconds) if each individual fine-tuned model exists. Our
proposed methods lead to the coherent generation of two
new concepts in a single scene, as shown in Section 4.2.
Training details. We train the models with our method
for 250 steps in single-concept and 500 steps in two-concept
joint training, on a batch size of 8 and learning rate 8 x 10~°.
During training, we also randomly resize only the target
images from 0.4 —1.4 x and append the prompt “very small”,
“far away” or “zoomed in”, “close up” accordingly to the text
prompt based on resize ratio. We only backpropagate the
loss on valid regions. This leads to faster convergence and
improved results. We provide more training and architecture
details in our arxiv version.

4. Experiments

In this section, we show the results of our method on
multiple datasets in both single concept fine-tuning and com-
position of two concepts on the Stable Diffusion model [1].
Datasets. We perform experiments on ten target datasets
spanning a variety of categories and varying training sam-
ples. It consists of two scene categories, two pets, and six
objects, as shown in Figure 7. We show that the pretrained
model cannot generate these concepts even with long text
descriptions in our arxiv version.

Evaluation metrics. We evaluate our method on (1) Image-
alignment, i.e., the visual similarity of generated images with
the target concept, using similarity in CLIP image feature
space [17], (2) Text-alignment of the generated images with
given prompts, using text-image similarity in CLIP feature
space [23], and (3) KID [7] on a validation set of 500 real
images of a similar concept retrieved from LAION-400M to
measure overfitting on the target concept (e.g., V* dog)and
forgetting of existing related concepts (e.g., dog). (4) We
also perform a human preference study of our method with
baselines. Unless mentioned otherwise, we use 200 steps
of DDPM sampler with a scale 6. The prompts used for
quantitative and human evaluation are shown on our website.
Baselines. We compare our method with the two concurrent
works, DreamBooth [59] (third-party implementation [77])
and Textual Inversion [17]. DreamBooth fine-tunes all the
parameters in the diffusion model, keeping the text trans-
former frozen, and uses generated images as the regulariza-

tion dataset. Each target concept is represented by a unique
identifier, followed by its category name, i.e., “[V] cate-
gory”, where [V] is a rarely occurring token in the text token
space and not optimized during fine-tuning. Textual Inver-
sion optimizes a new V* token for each new concept. We also
compare with the competitive baseline of Custom Diffusion
(w/ fine-tune all), where we fine-tune all the parameters in
the U-Net [58] diffusion model, along with the V* token em-
bedding in our method. We provide implementation details
for all baselines in our arxiv version.

4.1. Single-Concept Fine-tuning Results

Qualitative evaluation. We test each fine-tuned model on
a set of challenging prompts. This includes generating the
target concept in a new scene, in a known art style, com-
posing it with another known object, and changing certain
properties of the target concept: e.g., color, shape, or ex-
pression. Figure 6 shows the sample generations with our
method, DreamBooth, and Textual Inversion. Our method,
Custom Diffusion, has higher text-image alignment while
capturing the visual details of the target object. It performs
better than Textual Inversion and is on par with DreamBooth
while having a lower training time and model storage (~ 5 x
faster and 75MB vs 3GB storage).

Quantitative evaluation. We evaluate on 20 text prompts
and 50 samples per prompt for each dataset, resulting in a
total of 1000 generated images. We use DDPM sampling
with 50 steps and a classifier-free guidance scale of 6 across
all methods. As shown in Figure 7, our method outperforms
the concurrent methods [17, 59]. Also, Custom Diffusion
works on par with our proposed baseline of fine-tuning all
the weights in the diffusion model, while being more compu-
tationally and time efficient. Table 1 also shows the KID of
generated images by each fine-tuned model on a reference
dataset, with captions similar to the fine-tuned concept. As
we observe, our method has lower KID than most baselines,
which suggests less overfitting to the target concept. We
show in our arxiv version that the updated matrices can be
compressed to further reduce model storage.
Computational requirements Training time of our method
is ~ 6 minutes (2 A100 GPUs), compared to 20 minutes
for Ours (w/ fine-tune all) (4 A100s), 20 minutes for Tex-
tual Inversion (2 A100s), and ~ 1 hour for DreamBooth
(4 A100s). Also, since we update only 75MB of weights,
our method has low memory requirements for storing each
concept model. We keep the batch size fixed at 8 across all.

4.2. Multiple-Concept Fine-tuning Results

We show the results of generating two new concepts in
the same scene on the following five pairs: (1) Moongate +
Dog, (2) Cat + Chair, (3) Wooden Pot + Cat, (4) Wooden
Pot + flower, and (5) Table + Chair. We compare our method
with DreamBooth training on the two datasets together, using
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Figure 6. Single-concept fine-tuning results. Given images of a new concept (target images shown on the left), our method can generate
images with the concept in unseen contexts and art styles. First row: representing the concept in an artistic style of watercolor paintings.
Our method can also generate the mountains in the background, which DreamBooth and Textual Inversion omit. Second row: changing the
background scene. Our method and DreamBooth perform similarly and better than Textual Inversion. Third row: adding another object, e.g.,
an orange sofa with the target table. Our method successfully adds the other object. We show more samples on our website.

two different [V7] and [V2] tokens for each concept. For Tex-
tual Inversion, we perform inference using the individually
fine-tuned tokens for each concept in the same sentence. We
compare our method with the baselines on a set of 400 im-
ages generated with 8 prompts for each composition setting
in Figure 7 and Table 1. We also compare with our baseline
of sequential training on the two concepts or fine-tuning all
weights in our method. Our method performs better on all
except the “Table+Chair” composition, where all methods
perform comparably except Textual Inversion, which doesn’t
perform well at composition, as also shown qualitatively in
the appendix of our arxiv version. This shows the impor-
tance of fine-tuning only the cross-attention parameters for
composition. In the case of sequential training, we observe
forgetting of the first concept. Figure 8 shows sample images
of our proposed two methods and DreamBooth. As we can
see, our method is able to generate the two objects in the
same scene in a coherent manner while having high align-
ment with the input text prompt. We show more samples on
our website.

Method Text-ali Imag KID (validation)
Textual Inversion 0.670 0.827 2227
Single-  DreamBooth 0.781 0.776 32.53
Concept Ours (W/ fine-tune all) ~~  0.795 0748 1927
Ours 0.795 0.775 20.96
Textual Inversion 0.544 0.630
DreamBooth 0.783 0.695
Multi-  Ours (w/ fine-tune all) 0787 0601 7
Concept  Qurs (Sequential) 0.797 0.700 -
Ours (Optimization) 0.800 0.695
Ours (Joint) 0.801 0.706

Table 1. Quantitative comparisons. Top row: single-concept fine-
tuning evaluation averaged across datasets. The last column shows
the KID (x 10%) between real validation set images and generated
images with the same caption. Since our method uses a regular-
ization set of real images, it achieves lower KID and even im-
proves slightly over the pretrained model. Textual Inversion has
the same KID as the pretrained model, as it does not update the
model. Bottom row: evaluation on multi-concept averaged across
the five composition pairs. We show individual scores for all in our
arxiv version. We also evaluate single-concept fine-tuned models
on FID [24] (MS-COCO [38]) and show the trend of image-, text-
alignment with training steps in our arxiv version.
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Figure 7. Text- and image-alignment for single-concept (left) and multi-concept (right) fine-tuning. Compared to others, our method lies
further along the upper right corner (with less variance). Keeping in consideration the trade-off between image-alignment vs. text-alignment

on new prompts, our method is on-par or better than the baselines.

DreamBooth
=

Target Images Ours (joint training)

Ours (optimization)

V,* chair with the V,* cat sitting on it near a beach

AN

L ©)

. J
)l %.‘M \Jr v p
The V;* cat is sitting inside a V,*

0

V,* flower in the Vz* wooden pot on

Photo of a V;* table and a V,* chair in the garden
Figure 8. Multi-concept fine-tuning results. First row: our method has higher visual similarity with the personal cat and chair while
following the text condition. Second row: DreamBooth omits the cat sometimes, whereas our method generates both the cat and the wooden
pot. Third row: our method better maintains the visual similarity to the target images. Fourth row: target table and chair together in a garden.
For all settings, our methods perform better than DreamBooth, and joint training performs better than the optimization-based method.
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Ours Textual Inversion DreamBooth Ours (w/ fine-tune all)
Text Image Text Image Text Image
Alignment Alignment Alignment Ali Ali Ali

Singl 72.62 51.62 53.50 56.62 55.17 53.99
ingle-concept 5 33, £2.62%  £2.64%  £244%  £255%  +244%

Multi-concept 86.65 81.89 56.39 61.80 59.00 59.12
(Joint) +225% +2.09 % +246 % +2.59% +261% +2.72%

Multi-concept ~ 8122~ ¢ 8311 5700 " 6L75 5760 5349

(Optimization) =+ 2.72% +2.18% +2.62% +2.68% +243% +271%

Table 2. Human preference study. For each paired comparison,
our method is preferred (over > 50%) over the baseline in both
image- and text-alignment. Textual Inversion seems to overfit to
target images and thus has a similar image-alignment as ours but
performs worse on text-alignment in the single-concept setting.

Method Text-alignment Image-alignment KID (validation)
Ours 0.795 0.775 20.96
Ours w/o Aug 0.800 0.736 20.67
Ours w/o Reg 0.799 0.756 32.64
Ours w/ Gen 0.791 0.768 34.70

Table 3. Ablation Study. No augmentation during training leads to
lower image-alignment. No regularization dataset or using gener-
ated images as regularization produces much worse KID.

4.3. Human Preference Study

We perform the human preference study using Amazon
Mechanical Turk. We do a paired test of our method with
DreamBooth, Textual Inversion, and Ours (w/ fine-tune all).
As shown in Table 2, our method is preferred over baselines
in both single-concept and multi-concept, even compared to
Ours (w/ fine-tune all) method, which shows the importance
of only updating cross-attention parameters. More details of
the setup are provided in our arxiv version.

4.4. Ablation and Applications

In this section, we ablate various components of our
method to show its contribution. We evaluate each experi-
ment on the same setup as in Section 4.1. Sample generations
for ablation experiments are shown on our website. We also
show more analysis and applications in our arxiv version.

Generated images as regularization (Ours w/ Gen). As
detailed in Section 3.1, we retrieve similar category real im-
ages and captions to use as regularization during fine-tuning.
Another way of creating the regularization dataset is to gen-
erate images from the pretrained model [59]. We compare
our method with this setup, i.e., for the target concept of a
“category” generate images using the prompt, photo of a
{category}, and show results in Table 3. Using generated
images results in a similar performance on the target concept.
However, this shows signs of overfitting, as measured by
KID on a validation set of similar category real images.

Without regularization dataset (Ours w/o Reg). We show
results when no regularization dataset is used. We train the
model for half the number of iterations (the same number
of target images seen during training). Table 3 shows that
the model has slightly lower image-alignment and tends to
forget existing concepts, as evident from high KID on the

Pretained model

urs joint training)

dog and a cat
playing together

P

A tortoise plushy and a
teddybear on a table

Vi* tortoise plushy and V»*
teddybear on a table
Figure 9. Failure cases on multi-concept fine-tuning. Our method
fails at difficult compositions like a cat and dog together in a scene
or similar category objects like teddybear and tortoise plushy as
shown on the right. Though as shown on the left, the pretrained

model also struggles with similar compositions.

validation set.

Without data augmentation (Ours w/o Aug). As men-
tioned in Section 3.2, we augment by randomly resizing
the target images during training and append size-related
prompts (e.g., “very small”) to the text. Here, we show the
effect of not using these augmentations. The model is trained
for the same number of steps. Table 3 shows that no augmen-
tation leads to lower visual similarity with target images.

5. Discussion and Limitations

In conclusion, we have proposed a method for fine-tuning
large-scale text-to-image diffusion models on new concepts,
categories, personal objects, or artistic styles, using just a
few image examples. Our computationally efficient method
can generate novel variations of the fine-tuned concept in
new contexts while preserving the visual similarity with the
target images. Moreover, we only need to save a small subset
of model weights. Furthermore, our method can coherently
compose multiple new concepts in the same scene.

As shown in Figure 9, difficult compositions, e.g., a pet
dog and a pet cat, remain challenging. In this case, the pre-
trained model also faces a similar difficulty, and our model
inherits these limitations. Additionally, composing increas-
ing three or more concepts together is also challenging. We
show more analysis and visualization in our arxiv version.
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