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Abstract

In Weakly Supervised Semantic Segmentation (WSSS),
Class Activation Maps (CAMs) usually 1) do not cover
the whole object and 2) be activated on irrelevant regions.
To address the issues, we propose a novel WSSS frame-
work via adversarial learning of a classifier and an im-
age reconstructor. When an image is perfectly decomposed
into class-wise segments, information (i.e., color or tex-
ture) of a single segment could not be inferred from the
other segments. Therefore, inferability between the seg-
ments can represent the preciseness of segmentation. We
quantify the inferability as a reconstruction quality of one
segment from the other segments. If one segment could
be reconstructed from the others, then the segment would
be imprecise. To bring this idea into WSSS, we simulta-
neously train two models: a classifier generating CAMs
that decompose an image into segments and a reconstruc-
tor that measures the inferability between the segments.
As in GANs, while being alternatively trained in an ad-
versarial manner, two networks provide positive feedback
to each other. We verify the superiority of the proposed
framework with extensive ablation studies. Our method
achieves new state-of-the-art performances on both PAS-
CAL VOC 2012 and MS COCO 2014. The code is available
at https://github.com/sangrockEG/ACR.

1. Introduction
Over the past decade, learning-based semantic segmen-

tation has made significant advancements. However, the
high labeling cost remains a major challenge when applying
existing methods to real cases. In response to this challenge,
without relying on pixel-wise supervision, Weakly Super-
vised Semantic Segmentation (WSSS) has been proposed
to learn semantic segmentation with weak labels only.

The field of WSSS has studied several types of weak la-
bels such as scribbles [29, 36], bounding boxes [16, 23, 31],
and image-level classification labels [1–3, 7, 12, 19, 21, 28,
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Figure 1. Demonstration of our method. We are motivated by
the relation between semantic segmentation and inferability. We
realize it as adversarial learning of a classifier and a reconstructor.

37, 42, 46, 47, 49, 52], which are relatively inexpensive to
acquire. Among them, using image-level labels is the most
widely studied setting due to its high accessibility and effi-
ciency. Different from the other supervisions that roughly
notify the locations of the things in the image, image-level
labels only contain categorical information. Therefore, the
main challenge in WSSS using image-level labels is local-
izing the regions of each class.

To dispel this challenge, most of the existing literature
employs Class Activation Maps (CAMs) [51] that highlight
the regions highly contributing to the prediction of a classi-
fier. Intuitively, the classifier learns shared patterns among
the images including the same class, and thereby the CAM
of each class is activated on the image regions correspond-
ing to the class. However, the CAMs usually show a ten-
dency to focus on the most discriminative regions of each
class (e.g. face for the cat class), which leads to incomplete
segmentation. Also, due to the absence of pixel-wise su-
pervision, the CAMs are rather imprecise at the boundary,
which is a critical issue from the perspective of segmenta-
tion. Technically, the goal of WSSS can be summarized as
obtaining better CAMs, which can serve as precise pseudo-
labels for learning semantic segmentation.
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In this paper, we propose a novel method inspired by
simple but meaningful intuition as in Fig. 1. If semantic
segmentation is perfectly accomplished, each of the objects
in the image is perfectly segmented into mutually indepen-
dent segments in terms of color and texture. In this case,
each of the segments does not include any clue about the
rest of the image. Therefore, if segmentation of the image
is perfectly performed, no single segment can “infer” colors
or textures about the other segments. As a contra-positive
statement, if any information such as color or textures about
a segment could be inferred from the other segments, the
semantic segmentation could be regarded as imperfect. Ac-
cordingly, it might be possible to measure the quality of se-
mantic segmentation based on the inferability between the
segments. However, how could we quantify the degree of
“inferability”? To this end, we propose to employ the image
reconstruction task, which reconstructs one image segment
from the other segments. Then, the quality of reconstruc-
tion could be regarded as a measure of inferability. Here,
note that the image reconstruction task does not introduce
any additional supervision.

We formulate the aforementioned intuition as an adver-
sarial learning of a classifier and a reconstructor. In spe-
cific, according to the CAMs obtained by the classifier, we
decompose an image into two segments: a segment of the
target class and a segment of the non-target class (the other
classes). The reconstructor is trained to reconstruct one seg-
ment by using the other segment as the only input. On the
other hand, we promote the CAMs to decompose an im-
age into segments that reduce the inferability of the recon-
structor. In other words, the classifier is trained to not only
classify the image but also generate CAMs correctly seg-
menting the image, while competing with the reconstructor.
Ultimately, we improve the quality of the CAMs by jointly
training the two competitors (i.e., the classifier and the re-
constructor) in an adversarial manner.

The adversarial learning strategy of our framework is
similar to Generative Adversarial Networks (GANs) [14].
Like the discriminator in GANs is specialized to discrimi-
nate the real/fake samples, the reconstructor in our frame-
work is trained to fully exploit the remnant contained in the
given segment for reconstructing the other segment. Simi-
larly, the classifier in our framework learns to generate pre-
cise CAMs, using the reconstructor as a measure of the in-
ferability between the segments, like the generator getting
feedback from the discriminator in GANs. Consequently,
our adversarial learning framework can achieve WSSS us-
ing only the supervision that comes from the image-level
classification labels and the input images themselves.

The proposed method has methodological similarity to
the existing Adversarial Erasing (AE) methods of WSSS in
that it erases (or spatially decomposes) the image according
to CAMs. However, the insights behind our method and the

AE methods are far different. AE methods mask the highly
activated regions of the CAMs from the image and impose
classification loss on the remained image. Therefore, due to
the lack of regularization for the erasing process, the CAMs
usually suffer from undesirable expansion. On the other
hand, the proposed method is inspired by the relation be-
tween segmentation and reconstruction. And we formulate
it as adversarial learning between two networks performing
each task. This realization not only provides reliable guid-
ance for CAMs from the perspective of segmentation, but
also enables each network to improve while training pro-
ceeds, based on the positive feedback from its counterpart.

To verify the superiority of our method, we conduct
extensive ablation studies and comparisons with the other
state-of-the-art (SoTA) WSSS methods. Further, on both
PASCAL VOC 2012 [11] and MS COCO [30] datasets, the
proposed framework achieves a new SoTA.

The contribution of this paper is threefold:

• We formulate the problem of WSSS as minimizing infer-
ability between the segments decomposed by the CAMs.

• We propose a novel WSSS framework based on adversar-
ial learning of the classifier and reconstructor.

• We achieve state-of-the-art performance on both the
PASCAL VOC 2012 val/test set and MS COCO val set.

2. Related Works
With their localization capability, Class Activation Maps

(CAMs) have been widely employed in WSSS to generate
pixel-level pseudo-labels. However, the original CAMs do
not fully cover the whole object and have imprecise bound-
aries. To relieve these, WSSS studies have focused on 1)
improving the CAMs (seeds) or 2) post-processing the ac-
quired CAMs into more reliable pseudo-labels (masks).

2.1. CAMs Improvements

To explicitly expand the CAMs, various WSSS studies
have been conducted while exploring the sub-category clas-
sification [3], cross-image relationships [13, 26, 34], infor-
mation bottleneck [20], intra-class boundaries [12], mutu-
ally exclusive patches [49], and attention mechanisms [32,
37,39]. Along them, the others have tried to relieve the issue
from the perspective of data, using hard Out-of-Distribution
(OoD) data [22] or specialized augmentation for foreground
and background [33]. Recently, studies based on contrastive
learning [7,42,52] proposed to learn the feature while min-
imizing/maximizing the distance to the prototypes.

Adversarial Erasing (AE) methods [19,25,35,46,50] ex-
pand the CAMs while exploring the object from the erased
images. The AE methods share a degree of methodological
similarity with the proposed method in that they spatially
decompose the image/feature according to CAMs; how-
ever, our method has a novel and distinct insight. Since AE
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methods impose classification loss on the remained image
and there is no regularization for the erasing phase, it is in-
evitable to suffer from undesirable expansion, well known
as an over-erasing problem. Recently, OC-CSE [19] pro-
poses to handle the problem by using the guidance of a
pre-trained classifier; however, the guidance is fixed, and
thereby the achievable performance is strongly bounded.
On the other hand, in our method, we formulate WSSS as
adversarial learning of the classifier and the reconstructor.
As far as we know, it is the first approach to utilize the re-
construction task for guiding the CAMs. Further, since the
two networks provide positive feedback to each other, the
reconstructor could provide an effective regularization, free
from the over-erasing that has plagued the AE methods.

2.2. Mask Refinements

In addition to the method of improving the CAMs them-
selves, several post-processing methods have been pro-
posed to improve the quality of the pseudo-labels, based
on the semantic affinities among adjacent pixels [1, 2],
anti-adversarial manipulation [21], and boundary informa-
tion [5]. The other approaches target the noisy nature of the
CAMs and relieve it while refinement, by using an under-
fitting strategy with reweighting [28] or an uncertainty of
the CAMs [27]. Several studies [12,15,24,26,34,43,45,52]
have employed saliency detection module to provide pre-
cise object boundary information when generating pseudo-
labels. However, such modules require additional dataset
(and labels) for training. Considering the goal of WSSS,
we abstain to use the saliency module in this paper.

3. Motivation

A semantic segmentation task can be regarded as a de-
composition of an image into class-wise segments. For the
given C classes, an image I ∈ [0, 1]3×H×W could be de-
composed into C class-wise segments as follows:

I =
C∑

k=1

I⊙Mk, (1)

where Mk is a H ×W size occupancy mask of the class k
and ⊙ denotes an element-wise multiplication.

In this paper, we interpret WSSS as a task to infer the
masks from an image, by using the image-level classifica-
tion labels only. For this, the most straightforward approach
is directly employing the CAM of a certain class as the mask
of that class. Since the CAMs usually highlight the objects
of the corresponding class from an image, they could serve
as noisy targets (i.e. pseudo-labels) for semantic segmenta-
tion. However, the CAMs not only fail to localize the whole
regions of the corresponding class but also usually invade
the regions of the other classes.

Figure 2. Our motivation. If segmentation is correctly done, no
single segment can infer information about the other segment. On
the other hand, if the segmentation is incorrectly performed, then
the remnants (the incorrectly segmented regions circled by red)
can be the clue for the inference between the segments.

To relieve the issues, we propose a novel WSSS frame-
work inspired by the motivation visualized in Fig. 2. When
an image is correctly segmented (upper branch), each seg-
ment does not include information about the other segment.
Therefore, a segment of a certain class could not be inferred
from the segments of the other class. In other words, cor-
rect segmentation leads to low “inferability” between the
segments. On the other hand, if the segmentation results
are incorrect (lower branch in Fig. 2), the remnants (i.e.,
miss-segmented regions denoted by red circles) could serve
as clues for inferring one segment from the other segment.
Therefore, if the segments have high inferability between
them, then the semantic segmentation would be incorrect. It
implies that the inferability between the segments can role
as a measure of the quality of the semantic segmentation.

In order to incorporate this concept into the learning of
CAMs, it is necessary to quantitatively measure the infer-
ability. To quantify it, we need a reconstructor such that:
(1) when segmentation is imprecise, which means there ex-
ist some miss-segmented regions (i.e., remnants), the recon-
structor should be able to reconstruct one segment from the
other segments using remnants and (2) when the segmenta-
tion is perfect, the reconstructor should fail to reconstruct
one segment from the other segments, due to the lack of
remnants. However, in a weakly-supervised setting, it is
challenging to obtain such an appropriate reconstructor.

As a remedy, we formulate this intuition as an adversar-
ial learning of a classifier and a reconstructor. The goal
of the classifier is not only classifying the image, but also
generating the CAMs that can correctly segment the image.
For this, we first sample a target class among the classes ex-
isting in the image. Then, using the CAM of the target class,
we decompose the image into two segments: the target seg-
ment (the regions activated by the CAM) and the non-target
segment (the regions not activated by the CAM). Here, the
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Figure 3. Visualization of the proposed framework. We input an image I to the Reconstructor Encoder GE and the classifier F to acquire
a feature X and a target CAM At, respectively. Then, according to the target CAM, we decompose the feature into target segment Xt

and non-target segment Xnt. The segments are fed to the Reconstructor-Updating (RU) Phase and Classifier-Updating (CU) Phase, in an
alternative manner. Using the Reconstructor Decoder GD , the RU and CU phases reconstruct images from the segments and compute the
loss between the reconstructed results and the input image. Note that the red and blue dashed lines denote the back-propagation from RU
phase and CU phase, respectively. We omit the classification branch of the classifier and class-specific sampling process for simplicity.

classifier and the reconstructor compete on the quality of
the reconstruction of one segment from the other segment.
The classifier learns to generate CAMs that could correctly
segment the images (i.e., make the segments have low infer-
ability between them), and thereby make the reconstructor
fail to reconstruct. On the contrary, the reconstructor learns
to correctly reconstruct the segments, by exploiting the in-
correctly segmented remnants. As a result, while training
the networks to achieve the opposite goal, we can obtain
CAMs that can precisely segment the image.

4. Methods
4.1. Overall Framework

In this paper, we propose a novel WSSS frame-
work via Adversarial learning of the Classifier and the
Reconstructor (ACR). As explained in Section 3, the insight
behind our method is independency between the segments
of classes. The overall framework is visualized in Fig. 3.

In the proposed framework, the classifier F and the re-
constructor G are jointly trained. The reconstructor is a
combination of feature encoder GE and decoder GD. We
first obtain CAMs A ∈ RC×h×w and feature X ∈ Rd×h×w

from the classifier and the encoder, respectively, as follows:

A,p = F(I) and X = GE(I), (2)

where p is a class prediction for the image I. Then, similar
to the class-specific erasing [19], we sample one target class
t among the classes existing in the image, and regard the
corresponding CAM as a target CAM (At). Using the target

CAM, we decompose the feature X into a target segment
Xt and a non-target segment Xnt, as follows:

Xt = At ⊙X and Xnt = (1−At)⊙X. (3)

Here, the element-wise multiplication (⊙) is differentiable,
and thereby either the target CAM or feature can be trained
with gradients back-propagated through Xt or Xnt. As
aforementioned, if the target CAM is precise, then the infer-
ability between the target segment and the non-target seg-
ment would be low. In other words, if one segment can be
reconstructed from the other segment, then the CAM could
be regarded as imprecise. Therefore, the reconstructor is
trained to correctly reconstruct one segment by using the
other segment, while the classifier is trained to generate the
target CAM that makes the reconstructor fail to reconstruct.
For this, similar to the generator and the discriminator in
GANs [14], the classifier and the reconstructor are compet-
itively trained in every iteration.

In this paper, we devise the alternative training scheme
with Reconstructor-Updating (RU) Phase and Classifier-
Updating (CU) Phase, as in Fig. 3. In RU Phase, the re-
constructor is trained to correctly reconstruct one segment
by using the other segment only. The goal is achieved by
minimizing the loss between the reconstructed image seg-
ment and the original image segment. This loss is back-
propagated to the reconstructor (GE and GD) only, and the
classifier is not updated. During the RU Phase, we ex-
pect that the reconstructor learns to reconstruct one segment
from the other, using the remnants that are miss-segmented
due to the imprecise CAMs.
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Figure 4. Visualization of Reconstructor-Updating (RU) Phase and
Classifier-Updating (CU) Phase. In RU phase, with the proposed
Stochastic Remnant Feeding (SRF), we prevent the memorization
of the training dataset. Note that the Reconstructor is updated in
RU phase only and the classifier is updated in CU Phase.

On the other hand, in CU Phase, the classifier is trained
to generate the target CAM which makes the reconstructor
fail. For this, opposite to the RU phase, we maximize the
difference between the reconstructed image and the original
image within a certain segment. In this phase, the loss only
penalizes the classifier, while the reconstructor is frozen.
To achieve the goal of spoiling the reconstruction result, the
classifier learns to generate the target CAM more precisely
without remaining any miss-segmented remnants.

4.2. Reconstructor-Updating Phase

4.2.1 Basic Formulation

We visualize the RU Phase as the red box in Fig. 4. The
RU phase originally includes Stochastic Remnant Feeding
(SRF) strategy which will be explained in Sec. 4.2.2. How-
ever, for better understanding, we first explain the basic for-
mulation without SRF in this subsection.

In the RU phase, note that we only optimize the recon-
structor (i.e., the encoder and the decoder) while the clas-
sifier remains frozen. Therefore, in Eq. 3, the loss is back-
propagated to the reconstructor only, through the feature X.
We input the segments (Xt and Xnt) to the decoder GD and
obtain reconstruction results as:

ÎRU
t = GD(Xt) and ÎRU

nt = GD(Xnt). (4)

The goal of the reconstructor is to correctly reconstruct

the target segment by using the non-target segment only,
and vice versa. For the case of the target segment, we reduce
the difference between the reconstructed result ÎRU

t and the
input image I, within the non-target region. This constraint
can be imposed by minimizing the following loss:

LRU
t = |VRU

t ⊙ (I−ÎRU
t )|1, (5)

where VRU
t = (1−At) is the soft validation mask indicat-

ing the non-target region and |·|1 denotes L1 loss. Similarly,
for the non-target segment, we minimize the following loss:

LRU
nt = |VRU

nt ⊙ (I−ÎRU
nt )|1. (6)

Here, we set VRU
nt = At, since the validation of reconstruc-

tion should be conducted on the target region. To sum up,
the total loss for training the reconstructor is

LRU = λRU
t LRU

t + λRU
nt LRU

nt , (7)

where the lambdas are weighting parameters. Please note
that the classifier is not optimized within this phase.

4.2.2 Stochastic Remnant Feeding

With the described process, the reconstructor can learn to
exploit the remnant in one segment for reconstructing the
other segment. However, as training proceeds, we observe
that forcing to minimize the loss of Eq. 7 leads our frame-
work to an undesirable local minimum. When the CAMs
become more precise, the regional features (Xt, Xnt) are
more perfectly decomposed, and thereby each segment con-
tains smaller remnants of the other segment. In this case, the
reconstructor tends to minimize the loss of Eq. 7 by memo-
rizing the training dataset and “generating” the original im-
age, rather than reconstructing the segments based on the
remnants, unlike our design intention. When this happens,
the reconstruction can be correctly done even when the clas-
sifier achieves precise CAMs, and thereby the condition (2)
in Section 3 is violated.

To relieve this, we devise a strategy named Stochas-
tic Remnant Feeding (SRF), visualized as a grey box in
Fig. 4. Instead of perfectly decomposing the features into
the target and non-target features as in Eq. 3, we make syn-
thetic remnants of each segment and feed them to the feature
of the other segment. Then, the reconstructor could always
exploit the remnants for reconstructing segments. There-
fore, with the proposed SRF strategy, we can regularize the
undesirable memorization of the reconstructor, while keep-
ing the capability to exploit the remnants for reconstruction.
For this, we define a random binary grid g ∈ [0, 1]h×w com-
posed of s×s patches. Each h

s ×
w
s size cell has a value of 0

or 1, sampled from independent Bernoulli distribution with
a probability of q. With this grid, we define a target feature
for RU phase (XRU

t ) as follows:

XRU
t = Xt + g ⊙Xnt. (8)
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Here, the term g ⊙ Xnt represents the synthetic remnants
sampled by SRF. Similarly, the non-taget feature for RU
phase (XRU

nt ) is as

XRU
nt = Xnt + g ⊙Xt. (9)

With the processes described above, we update the features
as Xt,Xnt

SRF−−−→XRU
t ,XRU

nt . Therefore, Eq. 4 is modified
into ÎRU

t = GD(X
RU
t ) and ÎRU

nt = GD(X
RU
nt ). Accordingly,

we also update the validation masks VRU
t and VRU

nt as

VRU
t = (1−At)⊙(1−g) and VRU

nt = At⊙(1−g). (10)

Note that Eq. 5-7 are remained the same. We use the SRF
strategy by default of our setting, and conduct an ablation
study on it, which will be explained in Section 5.3.

4.3. Classifer-Updating Phase

The visualization of the CU Phase is shown in the blue
box of Fig. 4. Here, in contrast to the RU Phase, only the
classifier is trained while the reconstructor is not updated.
Therefore, in Eq. 3, the loss is back-propagated to the clas-
sifier only, through the target CAM At. Similar to the RU
phase, we first obtain the reconstructed images as follows:

ÎCU
t = GD(Xt) and ÎCU

nt = GD(Xnt). (11)

Here, note that we do not use the SRF strategy, which is
devised only for the RU phase. As described in Section 3,
in CU phase, the goal of the classifier is to generate a tar-
get CAM that prevents the reconstructor from restoring the
original image. This strategy is similar to optimizing the
generator to fool the discriminator in GANs [14]. For the
target segment, we train the classifier to maximize the dif-
ference between the reconstruction result ÎCU

t and the im-
age I on the non-target region, while fixing the reconstruc-
tor. We impose this by minimizing the following equation:

LCU
t = −|VCU

t ⊙ (I− ÎCU
t )|1, (12)

where VCU
t = (1−At) indicates non-target region. Please

note the minus sign, which means that minimizing the loss
leads the framework to maximize the difference between the
ÎCU
t and I. Similarly, we minimize the following loss also

for the non-target (·nt).

LCU
nt = −|VCU

nt ⊙ (I− ÎCU
nt )|1. (13)

Here, we set VCU
nt = At to indicate target region. Finally,

the total loss for training the classifier is as follows:

LCU = LCU
cls + λCU

t LCU
t + λCU

nt LCU
nt , (14)

where LCU
cls denotes the binary cross-entropy loss between

the class prediction (p in Eq. 2) and image-level classifica-
tion labels. Note that only the classifier is trained in this
phase, and the reconstructor is not optimized.

Table 1. Ablation study on the learning strategy. We evaluate
mIoU performance on the PASCAL VOC 2012 train set. Bold
numbers represent the best results.

Learning strategy for
reconstructor SRF mIoU (%)

Baseline 48.4
Pre-trained 52.9
Pre-trained ✓ 54.6
Adversarial 55.8
Adversarial ✓ 60.3

5. Experimental Results

5.1. Dataset and Evaluation Metric

As conventional WSSS works, we evaluate our method
on two benchmarks: PASCAL VOC 2012 dataset [11]
and MS-COCO dataset [30]. VOC 2012 and MS-COCO
datasets contain 21 and 81 categories including background,
respectively. We follow the official train/val/test split for
WSSS on both datasets. As an evaluation metric, we use
the mean Intersection over Union (mIoU) between the pre-
diction and the GT semantic map. Note that, for training,
we only use image-level class labels.

5.2. Implementation Details

Architectures In our framework, we use ResNet38 [40] as
the backbone of the classifier. We attach a 1×1 convo-
lution layer as the classification head to generate CAMs,
as in [50]. For the image reconstruction, UNet-based net-
work is used. In the Encoder, we aggregate the multi-
scale features from multiple different layers. This enables
the reconstructor to use primitive details (which come from
low-level features) more easily. For the segmentation net-
work, we use Deeplab [4] with ResNet38 backbone as
in [2, 19, 28, 35, 44, 46, 49]. More details on the architec-
ture can be found in the Supp. Materials.

Data Augmentation Random cropping, resizing, and hori-
zontal flipping are applied to the input. The crop size is set
to 256 with [0.5, 1.3] resizing range. Color jittering [18]
is widely used for augmentation; however, we do not use it
due to the unstable convergence of reconstructor.

Training Policy As in [6], we use a poly learning rate that
multiplies (1− iter

max iter )
0.9 to the initial learning rate (0.01

for our framework and 0.001 for Deeplab). The whole
framework is trained for 40 epochs, which took around 12
hours with a single RTX 3090 ti. For the weighting param-
eters in Eq. 7, λRU

t and λRU
nt are set equally to 0.5. For the

λCU
t and λCU

nt in Eq. 14, we set the values to 0.8 and 0.3
respectively to balance the magnitude of each term. Addi-
tional details (including COCO) are in the Supp. Material.
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Table 2. Ablation study on the loss function in Eq. 14. We evaluate
precision, recall, and mIoU performance on the PASCAL VOC
2012 train set. Bold numbers represent the best results.

Loss function Metrics
LCU
cls LCU

t LCU
nt Precision Recall mIoU (%)

✓ 0.61 0.72 48.4
(a) ✓ ✓ 0.73 (+0.12) 0.68 (-0.04) 53.4 (+5.0)
(b) ✓ ✓ 0.58 (-0.03) 0.77 (+0.05) 51.5 (+3.1)
(c) ✓ ✓ ✓ 0.75 (+0.14) 0.76 (+0.04) 60.3 (+13.6)

Figure 5. Qualitative comparison between the ablated settings and
ours. The change of CAMs as training proceeds is shown for each
case (a), (b), and (c) of Table 2.

5.3. Ablation Studies

We conduct an ablation study to demonstrate the benefit
of adversarial learning of the classifier and the reconstruc-
tion, which is our main idea. We first solely train a classi-
fier with a mere classification loss. The performance of the
CAMs of this baseline is shown in the first row of Table 1.

Then, with the baseline CAMs, a reconstructor is trained
as in our framework. Note that, unlike the proposed frame-
work, we freeze the baseline classifier and optimize the re-
constructor only. After that, we train a new classifier with
the pre-trained reconstructor. In this phase, we freeze the
reconstructor and train the classifier only. Compared with
ours, the reconstructor and the classifier are always solely
trained in this ablated setting. Therefore, unlike the pro-
posed adversarial framework that is alternatively trained in
every iteration, they have no chance to give and take posi-
tive feedback from competitors.

We provide the quantitative result of the ablation study in
Table 1. We can observe that the proposed adversarial learn-
ing outperforms the ablated setting (denoted as pre-trained)
by a large margin. Also, the proposed SRF strategy pro-
vides great gains while preventing undesirable over-fitting
in both settings. These results imply two insights: 1) our
motivation still works even when we use the pre-trained re-
constructor while freezing it, 2) and adversarial learning can
even further exploit the potential of our motivation.

Table 3. Comparisons between our method and the other WSSS
methods. We evaluate mIoU (%) on the PASCAL VOC 2012 train
set at three levels: CAM, w/ CRF, and Mask. For a fair compar-
ison, we split the methods into two groups upon the backbones
(ResNet and ViT [9]). (W)RN denotes (wide)ResNet. Bold and
underlined numbers represent the best and the second best results.

Methods Backbone seed w/ CRF Mask
CONTA [48] NeurIPS20 WRN38 56.2 65.4 66.1
EDAM [39] CV PR21 WRN38 52.8 58.2 68.1
AdvCAM [21] CV PR21 RN50 55.6 62.1 68.0
ECS [35] ICCV 21 WRN38 56.6 58.6 -
OC-CSE [19]ICCV 21 WRN38 56.0 62.8 66.9
CDA [33] ICCV 21 WRN38 58.4 - 66.4
PMM [28] ICCV 21 WRN38 58.2 61.5 61.0
RIB [20] NeurIPS RN50 56.5 62.9 70.6
AMR [32] AAAI22 RN50 56.8 - 69.7
ReCAM [8]CV PR22 RN50 54.8 - 70.5
SIPE [7]CV PR22 RN50 58.6 64.7 -
CLIMS [41]CV PR22 WRN38 56.6 - 70.5
W-OoD [22]CV PR22 RN50 53.3 58.4
PPC [10]CV PR22 WRN38 61.5 64.0 70.1
AEFT [46] ECCV 22 WRN38 56.0 63.5 71.0
Ours (ACR) WRN38 60.3 65.9 72.3
MCT [44] CV PR22 ViT 61.7 - 69.1
Ours (ACR + ViT [9]) ViT 65.5 - 70.9

We also ablate the loss function for training the classifier
(Eq. 14). In specific, while keeping the classification loss,
we ablate each term and observe the change in mIoU per-
formance. The precision and recall achieved by each setting
are also provided in Table 2. If we ablate the non-target term
as in (a), the target term could be minimized by overly re-
ducing the target CAM (high precision and low recall). On
the contrary, when we ablate the target term as in (b), then
the classifier tends to overly expand the target CAM (low
precision and high recall) to minimize the non-target term.
Finally, in (c), our method using all terms outperforms the
other settings by a large margin. The qualitative compari-
son visualized in Fig. 5 further clarifies the main insight of
this ablation study.

5.4. Comparisons to State-of-The-Arts

For training the semantic segmentation model, we refine
the CAMs generated by our method to the pseudo-labels
using IRN [1] as previous WSSS methods. In Table 3, we
compare the mIoU performance of the proposed method
with the other WSSS methods on three levels: CAMs,
CAMs refined by denseCRF [17], and the pseudo-labels
(Mask). The result implies not only that the proposed
framework generates high-quality CAMs, but also that the
achieved gain is not overlapped with the gain of refinement
techniques widely used in WSSS. Note that, since the use of
refinement techniques is common in WSSS, it is important
to obtain CAM that largely benefits from them.
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Figure 6. Our semantic segmentation results on VOC 2012 (left) and COCO 2014 (right). From top to bottom: Image, Ours, GT.

Further, for a fair comparison with the recent works us-
ing a Vision Transformer (ViT) [9], we incorporate the pro-
posed method with it. For this, we refine the CAMs ob-
tained by adversarial learning, using the patch attention of
ViT as in MCTformer-V2 [44]. The pseudo-labels quality
of Ours(+ViT) is also shown in Table 3. Compared with
the baseline, the proposed framework still provides a mean-
ingful gain, even when we use a different backbone. The
results show that the proposed method was originally de-
signed for CNN, but can be integrated with various back-
bones like ViT. Additional details regarding of Ours(+ViT)
can be found in the Supp. Material.

In Table 4, the performance of the semantic segmenta-
tion model trained by our pseudo-labels is shown. To show
the superiority of the proposed method, we compare our
performance with that of the other SoTA WSSS methods.
The proposed framework achieves a new SoTA in terms of
semantic segmentation. The results strongly support the su-
periority of the proposed framework. Along with the quan-
titative comparison results, qualitative segmentation results
are provided in Fig. 6. Since the semantic segmentation
network is trained with the precise pseudo-labels generated
by the proposed methods, it captures not only fine details
but also the global semantic context. Additional CAMs and
segmentation results can be found in the Supp. Material.

6. Conclusion
Weakly Supervised Semantic Segmentation (WSSS)

studies have utilized Class Activation Maps (CAMs) for
localization; however, the CAMs usually provide impre-
cise activation. To dispel this problem, we draw a sim-
ple but powerful motivation: the high inferability between
the segments implies the low semantic segmentation qual-
ity. We formulate this motivation as adversarial learning of
a classifier and a reconstructor, where the inferability be-
tween the segments is quantified as a reconstruction quality.
Once the classifier decomposes the image into segments ac-
cording to its CAMs, then the reconstructor is trained to
reconstruct a single segment from the other segments cor-
rectly. On the other hand, the classifier is trained to gener-

Table 4. Comparison in mIoU (%) performance between the pro-
posed method and the existing WSSS methods. Evaluation is con-
ducted on the PASCAL VOC 2012 and MS-MOCO 2014. For pair
comparison, we list the methods using image-level classification
labels only in this table. Bold numbers represent the best results.

Methods Backbone VOC val VOC test COCO val
AffinityNet [2]CV PR18 WRN38 61.7 63.7 -
IRNet [1]CV PR19 RN50 63.5 64.8 41.4
SEAM [37]CV PR20 WRN38 64.5 65.7 31.9
OC-CSE [19]ICCV 21 WRN38 68.4 68.2 36.4
CPN [49]ICCV 21 WRN38 67.8 68.5 -
RIB [20]NeurIPS21 RN101 68.3 68.6 43.8
PMM [28]ICCV 21 WRN38 68.5 69.0 36.7
ReCAM [8]CV PR22 RN101 68.5 68.4 42.9
SIPE [7]CV PR22 RN101 68.8 69.7 -
SIPE [7]CV PR22 WRN38 - - 43.6
CLIMS [41]CV PR22 RN50 69.3 68.7
W-OoD [22]CV PR22 WRN38 70.7 70.1
Spatial-BCE [38]ECCV 22 RN101 70.0 71.3 -
Spatial-BCE [38]ECCV 22 VGG16 - - 35.2
AEFT [46]ECCV 22 WRN38 70.9 71.7 44.8
Ours (ACR) WRN38 71.9 71.9 45.3
MCT [44] CV PR22 WRN38 71.9 71.6 42.0
Ours (ACR + ViT [9]) WRN38 72.4 72.4 -

ate high-quality CAMs, which makes the reconstructor fail
to cross-reconstruct the segments. Similar to GANs, the
classifier and the reconstructor provide positive feedback to
each other while being alternatively trained in an adversar-
ial manner. We verify the superiority of our method with
extensive ablation studies. Further, we achieve new SoTA
performances on PASCAL VOC 2012 and MS COCO 2014,
outperforming the other WSSS methods.
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