
Renderable Neural Radiance Map for Visual Navigation

Obin Kwon Jeongho Park Songhwai Oh *

Department of Electrical and Computer Engineering, ASRI, Seoul National University
obin.kwon@rllab.snu.ac.kr, jeongho.park@rllab.snu.ac.kr, songhwai@snu.ac.kr

Abstract

We propose a novel type of map for visual navigation,
a renderable neural radiance map (RNR-Map), which is
designed to contain the overall visual information of a 3D
environment. The RNR-Map has a grid form and consists
of latent codes at each pixel. These latent codes are embed-
ded from image observations, and can be converted to the
neural radiance field which enables image rendering given
a camera pose. The recorded latent codes implicitly contain
visual information about the environment, which makes the
RNR-Map visually descriptive. This visual information in
RNR-Map can be a useful guideline for visual localization
and navigation. We develop localization and navigation
frameworks that can effectively utilize the RNR-Map. We
evaluate the proposed frameworks on camera tracking, vi-
sual localization, and image-goal navigation. Experimental
results show that the RNR-Map-based localization frame-
work can find the target location based on a single query
image with fast speed and competitive accuracy compared to
other baselines. Also, this localization framework is robust to
environmental changes, and even finds the most visually sim-
ilar places when a query image from a different environment
is given. The proposed navigation framework outperforms
the existing image-goal navigation methods in difficult sce-
narios, under odometry and actuation noises. The navigation
framework shows 65.7% success rate in curved scenarios of
the NRNS [21] dataset, which is an improvement of 18.6%
over the current state-of-the-art. Project page: https:
//rllab-snu.github.io/projects/RNR-Map/

1. Introduction
In this paper, we address how to explicitly embed the vi-

sual information from a 3D environment into a grid form and
how to use it for visual navigation. We present renderable
neural radiance map (RNR-Map), a novel type of a grid map
for navigation.We point out three main properties of RNR-
Map which make RNR-Map navigation-friendly. First, it is

*This work was supported by Institute of Information & Communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2019-0-01190, [SW Star Lab] Robot Learning:
Efficient, Safe, and Socially-Acceptable Machine Learning). (Correspond-
ing author: Songhwai Oh)

visually descriptive. Commonly used grid-based maps such
as occupancy maps [10,11,17] and semantic maps [9,19,36],
record obstacle information or object information into grids.
In contrast, RNR-Map converts image observations to latent
codes which are then embedded in grid cells. Each latent
code in a grid cell can be converted to a neural radiance
field, which can render the corresponding region. We can
utilize the implicit visual information of these latent codes
to understand and reason about the observed environment.
For example, we can locate places based on an image or
determine which region is the most related to a given im-
age. RNR-Map enables image-based localization only with
a simple forward pass in a neural network, by directly uti-
lizing the latent codes without rendering images. We build
a navigation framework with RNR-Map, to navigate to the
most plausible place given a query image. Through exten-
sive experiments, we validate that the latent codes can serve
as important visual clues for both image-based localization
and image-goal navigation. More importantly, a user has an
option to utilize the renderable property of RNR-Map for
more fine-level of localization such as camera tracking.

RNR-Map is generalizable. There have been a number
of studies that leverage neural radiance fields (NeRF) for
various applications other than novel view synthesis. The
robotic applications of NeRF are also now beginning to
emerge [1, 15, 28, 35, 42]. However, many of the approaches
require pretrained neural radiance fields about a specific
scene and are not generalizable to various scenes. This can
be a serious problem when it comes to visual navigation
tasks, which typically assume that an agent performs the
given task in an unseen environment [16]. In contrast, RNR-
Map is applicable in arbitrary scenes without additional opti-
mization. Even with the unseen environment, the RNR-Map
can still embed the useful information from images to the
map and render images. The neural radiance fields of RNR-
Map are conditioned on the latent codes. A pair of encoder
and decoder is trained to make these latent codes from im-
ages of arbitrary scenes and reconstruct images using neural
radiance fields. These pretrained encoder and decoder enable
the generalization to unseen environments.

Third, RNR-Map is real-time capable. The majority of
the present NeRF-based navigation methods require a sig-
nificant time for inference because of required computation-
heavy image rendering and rendering-based optimization

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9099

https://rllab-snu.github.io/projects/RNR-Map/
https://rllab-snu.github.io/projects/RNR-Map/

steps. The RNR-Map is designed to operate fast enough not
to hinder the navigation system. By directly utilizing the
latent codes, we can eliminate the rendering step in mapping
and localization. The mapping and image-based localization
frameworks operate at 91.9Hz and 56.8Hz, respectively. The
only function which needs rendering-based optimization is
camera tracking, which can localize under odometry noises,
and it operates at 5Hz.

To the best of our knowledge, the RNR-Map is the first
method having all three of the aforementioned characteris-
tics as a navigation map. The RNR-Map and its localization
and navigation frameworks are evaluated in various visual
navigation tasks, including camera tracking, image-based lo-
calization, and image-goal navigation. Experimental results
show that the proposed RNR-Map serves as an informative
map for visual navigation. Our localization framework ex-
hibits competitive localization accuracy and inference speed
when compared to existing approaches. On the image-goal
navigation task, the navigation framework displays 65.7%
success rate in curved scenarios of the NRNS [21] dataset,
where the current state-of-the-art method [37] shows a suc-
cess rate of 55.4%.

As RNR-Map finds a place based on the visual informa-
tion of the map and the query image, we also consider a
variant version of image-based localization. In real-world
scenarios, there can be partial changes in the target place
(changes in furniture placement, lighting conditions, ...).
Also, the user might only have images from similar but
different environments. We test the proposed localization
framework in both cases. We find that the RNR-Map is ro-
bust to environmental changes and is able to find the most
visually similar places even when a novel query image from
a different environment is provided.

The contributions of this paper can be summarized as
follows:

• We present RNR-Map, a novel type of renderable grid
map for navigation, utilizing neural radiance fields for
embedding the visual appearance of the environment.

• We demonstrate efficient and effective methods for uti-
lizing the visual information in RNR-Map for searching
an image goal by developing RNR-Map-based localiza-
tion and navigation framework.

• Extensive experiments show that the proposed method
shows the state-of-the-art performance in both localiza-
tion and image-goal navigation.

2. Related Work
Embodied AI with spatial memories. One of the central
issues in recent embodied AI research is how to construct a
useful memory for the embodied agent [16]. A memory that
contains the navigation history, as well as information about
the observed environment, is required for successful task
execution. There is a large body of works using occupancy

maps for visual navigation [10, 11, 17, 34]. An occupancy
map expresses the environment in a grid form, and each grid
cell has obstacle information about the corresponding region.
An occupancy map represents the overall structure of the en-
vironment and can guide a robot to navigate the environment
safely. There have been various kinds of research about build-
ing a spatial memory which contains additional information
more than obstacles. The additional information can be ob-
ject classes of the observed objects [7,9,19,36], or implicitly
learned useful information for a specific task [20, 22, 32, 33].
MapNet [22], SMNet [7] and ISS [33] have a similar map-
ping architecture with our method. Like our approach, they
learn how to convert RGBD observations into useful latent
information, and record it in the spatial memories using 3D
inverse camera projection. Using the recorded latent infor-
mation, MapNet [22] learns to localize the agent pose, and
SMNet learns to generate a semantic map. ISS [33] is more
related to ours since this method addresses scene genera-
tion and novel view image synthesis from a grid map. Our
research is focused on how we can utilize such latent infor-
mation for visual navigation. We develop localization and
navigation frameworks which actively utilize the embedded
visual information in RNR-Map.

Robotics with neural radiance fields. The neural radi-
ance field (NeRF) [30] has gained significant popularity in
various AI tasks. Not only in computer vision or graph-
ics tasks, but NeRF is also adopted for robot applications
in recent years. NeRF predicts the RGB color and density
of a point in a scene so that an image from an arbitrary
viewpoint can be rendered. This property enables pose esti-
mation [1, 27, 28, 35] based on the photometric loss between
the observed image and the rendered image, or manipula-
tion of tricky objects [5, 12, 14, 23, 26]. A pretrained NeRF
can also work as a virtual simulator, in which a robot can
plan its trajectory [1] or can be used to train an action pol-
icy for the real-world [6]. Among the existing approaches,
NICE-SLAM [42] is relevant to our work because it per-
forms mapping and localization in arbitrary environments.
NICE-SLAM builds a 3D implicit representation of the en-
vironment from image observations. The camera pose is
inferred from optimizing the photometric loss between the
observation image and the rendered image. Our method, on
the other hand, places less emphasis on mapping quality, and
it is designed for successfully completing navigation tasks.
We focus on how the RNR-Map can be efficiently used for
visual navigation, in terms of both speed and performance.
The mapping and the target-searching function of RNR-Map
are designed to operate fast enough to not hinder the other
parts of the system. Also, the proposed RNR-Map method
is generalizable in various environments without additional
fine-tuning.

3. RNR-Map
A robot agent has an RGB-D camera, and also knows

its odometry information. Here, the odometry means how

9100

Average
Latent Codes 𝑪𝒕

RNR-Map 𝒎𝒕

Image 𝑰𝒕

Query Pose 𝑷𝒒

Inverse Camera Projection

Sampled
Latent Codes

Rendered
Image $𝑰

Ground-truth
Image 𝑰𝒒

L1 loss

1. Registration ℱ𝒓𝒆𝒈 2. Decoding ℱ𝒅𝒆𝒄

Encoder 𝜽
𝒆𝒏𝒄

Volume
Rendering

D
ecoder 𝜽

𝒅𝒆𝒄

(a) Reconstruction Framework

Recon.G.T. Recon.G.T.

Novel
View

Seen
View

(b) Examples of the rendered images

Figure 1. (a) Illustration of the reconstruction framework. Two neural networks, encoder θenc and decoder θdec are used in this
reconstruction framework. (b) Examples of the rendered images. Odd columns are the given observations, and even columns are
reconstructed results. The proposed method can reconstruct the images from the novel view (the last row).

much the agent has moved from its previous position and
we consider 3-DoF pose in this paper. At time t, the robot
observes an RGBD image It and its relative pose ∆pt =
(∆xt,∆yt,∆at) from the previous pose (xy position and
heading angle). By cumulating pose differences, the agent
can determine its relative pose pt from the start pose p0 =
(0, 0, 0).

A pair of the pretrained encoder and decoder is used when
building a RNR-Map. The training process of these encoder
and decoder resembles the autoencoder method. However,
unlike 2D images, autoencoding a 3D environment is not
a trivial problem. We build a reconstruction framework as
shown in Figure 1a. The encoder encodes an image and
embeds the pixel features into the RNR-Map. We denote
each embedded feature in a grid of RNR-Map as a latent code.
A query pose is then provided, and the decoder samples
latent codes along each camera ray corresponding to each
pixel and renders the corresponding images. We present
details of each part in the following section.

Registration Freg,Fmap. When an RGBD image It ∈
RH×W×4 comes in, the encoder encodes the image into a
same-sized feature Ct ∈ RH×W×D, where H and W refers
to height and width of the image, respectively, and D refers
to the channel size. First, each pixel ch,w ∈ RD in Ct is
mapped to its corresponding 3D world position [qx, qy, qz]

T

using the known camera intrinsic K, the extrinsic matrix
[R|t] based on the agent pose, and the depth information
dh,w of the pixel. The world position of each pixel is calcu-
lated using inverse camera projection, as follows:qx(h,w)

qy(h,w)
qz(h,w)

 = dh,wR
−1K−1

h
w
1

− t . (1)

Then we digitize each position by normalizing with the map
resolution s, and get map position (u, v) as shown in (2).
We aggregate the pixel features that belong to the same 2D
map position, and average the aggregated features into a
single feature vector. The pixel features are registered in the

corresponding grid in the RNR-Map m ∈ RU×V×D, where
U and V refer to the height and width of the RNR-Map,
respectively. The number of averaged features at each 2D
map position is also recorded in mask n ∈ RU×V . We de-
note the element of m at the map position (u, v) by m(u, v)
and the mask at (u, v) by n(u, v). The registered feature
m(u, v) ∈ RD is the latent code which contains visual in-
formation of the region corresponding to the map position
(u, v). This process can be written as follows:

X(u,v) =
{
ch,w ∈ Ct

∣∣u =
⌊qx(h,w)

s

⌉
, v =

⌊qy(h,w)
s

⌉}
m(u, v) =

1

n(u, v)

∑
ci∈X(u,v)

ci, n(u, v) = |X(u,v)|. (2)

The registration process Freg includes the encoding of Ct,
inverse projection, and feature registration. The Freg is rep-
resented as:

ml
t, n

l
t = Freg(It, pt; θenc), (3)

where θenc refers to the network parameters of the encoder.
The registration process Freg outputs a local map ml

t and a
local mask nl

t. The local map ml
t only contains the infor-

mation from the image It, and this will be integrated with
other local maps to form the global map mg.1 When mul-
tiple observations are given, we can use n to compute the
average value from the original and new latent codes. We
name this integration process Fmap, which operates Freg

over multiple observations. Fmap at time t with previous
mg

t−1 is formulated as follows:

(mg
t , n

g
t) = Fmap(It, pt,m

g
t−1, n

g
t−1; θenc)

mg
t (u, v) =

ml
t(u, v) · nl

t(u, v) +mg
t−1(u, v) · n

g
t−1(u, v)

nl
t(u, v) + ng

t−1(u, v)

ng
t (u, v) = nl

t(u, v) + ng
t−1(u, v) .

(4)1For simplicity, m without any superscript refers to the global map (mg)
in the rest of the paper.

9101

Decoding Fdec. To make these latent codes contain visual
information, we reconstruct the image observation from the
latent codes. We use a decoder which has a structure similar
to the generative scene network (GSN) [13] for rendering
an RGBD image from the 2D latent map. Originally, GSN
generates a random indoor floorplan from random variables.
Then GSN proposed how to render images from the gener-
ated floorplan, based on locally conditioned radiance fields.
Our approach involves designing the encoder θenc and the
registration process Freg to transform image observations
into latent codes, which can be converted to the locally con-
ditioned radiance fields. We utilize the locally conditioned
radiance fields from GSN to render an image from m. Given
the camera parameters, we can sample latent codes on points
along the camera ray, corresponding to the pixel location
which will be rendered in the camera. The sampled latent
codes are converted into modulation linear layer-based lo-
cally conditioned radiance fields [4, 13]. The decoder is
trained to render an RGBD image from the latent codes to
be close to the image observations It. The reader can refer
to [13] for a more detailed explanation about the rendering
procedure.

By training the rendered RGBD images Ĩt to be close to
the original observation It, the encoder is trained to extract
the visual information from the image. This mechanism is
similar to training an autoencoder, to extract and summarize
useful information from an image into a latent vector. We
sample N images in a random scene and embed them into
the RNR-Map. Then, we render each image from the final
RNR-Map and compare them with the original images. The
encoder and the decoder are trained using the following loss:

mg
i , n

g
i = Fmap(Ii, pi,m

g
i−1, n

g
i−1; θenc), i=1:N

Loss(θenc, θdec) =
1

N

N∑
i=1

||Ii − Fdec(m
g
N , pi; θdec)||1,

(5)

where θenc and θdec are weight parameters of the encoder
and decoder, respectively.

Since the rendering process is conditioned on the latent
codes from the image observation, our proposed reconstruc-
tion framework is capable of embedding and rendering ar-
bitrary images from unseen environments. This leads to the
generalizable property of RNR-Map. Also, the decoder can
synthesize a novel view, different from the observed direc-
tion, based on m. Examples of reconstructed observations
are shown in Figure 1b. The decoder can render images
from novel viewpoints in the observed region, based on the
latent codes. Note that the rendering boundary is limited to
the observed 3D points. We can see that the decoder gener-
ates grey color for the unobserved regions, in the last row
of Figure 1b. More examples of reconstructed images are
provided in the supplementary material A, as well as the
network architectures of the encoder and decoder B.1.

Mapping. After training, we can use Fmap for logging
visual information from the environment. Note that the
rendering function Fdec is not needed for mapping. The
RNR-Map is built incrementally during navigation, based
on the odometry information and the known camera intrin-
sics. At time t, the agent obtains mt and nt using Fmap, as
formulated in (4). If the same 3D point in the environment
is observed multiple times, Fmap averages the latent codes
based on the number of observation instances.

4. Localization
One of the crucial components of the navigation task is

localization. In the following sections, we describe how
RNR-Map is used for two localization tasks: image-based
localization and camera tracking. Here, we consider 3-DoF
pose (x, y, a) for localization.

4.1. Image-Based Localization

The implicit visual information of the latent codes in
RNR-Map can provide useful clues for finding out which
grid cell is the closest to the given target image Itrg. Inspired
by the fast localization method in [22], we directly compare
latent codes from the target image Itrg and the RNR-Map
m for localization. We denote this image-based localization
function as Floc. Suppose that the target image is taken at the
pose ptrg = (xtrg, ytrg, atrg), and the corresponding map
position is (utrg, vtrg). Floc outputs a heatmap E ∈ RU×V

and the predicted orientation of the target atrg. E highlights
which grid cell corresponds to the target location (utrg, vtrg),
among the observed area in m.

The localization process Floc is shown in Figure 2. The
RNR-Map m is constructed from a partial observation about
the environment. The query image is transformed into mtrg

using Freg(Itrg, p0; θenc). Here, we use origin p0 = (0, 0, 0)
as an input to Freg since the agent does not know the po-
sition of the target location. Floc includes three convolu-
tional neural networks, Fk, Fq, and FE . Fk and Fq are
for proccessing m and mtrg into m′

k and m′
q, respectively.

We found it helpful to introduce neural networks (Fk, Fq)
for better localization results. Then, we search query m′

q

by convolving (cross-correlation, denoted as Conv) with
m′

k. The query map m′
q is rotated into R different angles

{0◦, ..., 360◦ × R−1
R }. (m′

q)r denotes Rotr(m
′
q), where

Rotr represents the r-th from the R possible rotations. Each
rotated query (m′

q)r works as a filter, and the output from
the Conv is forwarded to FE . FE outputs E ∈ RU×V

which highlights the most query-related region in m. Each
pixel eu,v ∈ E in the heatmap represents the probability
of the query image being taken at (u, v). Also, FE has an
additional head which predict the orientation of the target
observation.

The overall localization process can be put together as:

Floc(m,mtrg; θloc) = FE(Conv(Fk(m), {Fq(mtrg)r}R1)),
(6)

9102

…

Conv: Cross-Correlation

RNR-Map 𝑚

Heatmap 𝐸

𝑚!"#

𝑚′$ 𝑚′%

𝑭𝑬

Angle 𝑎!"#

𝑚'
$ " "()

*

(𝑢!"#, 𝑣!"#)

𝐼!"#

Figure 2. Localization using Floc. A target observation can be
localized by cross-correlation (Conv) between m and mtrg. Before
the cross-correlation, each RNR-Map is forwarded to the CNN Fk

and Fq . After Conv, FE takes the output of the Conv and outputs
a heatmap E which highlights the most plausible target area.

where θloc denotes the weight parameters of Fk, Fq, and
FE . Detailed explanations about the network architecture
are provided in the supplementary material B.2.

We make a ground-truth Gaussian heatmap Egt which
highlights the ground-truth map location (utrg, vtrg) of the
query image. The representation of an orientation atrg is
discretized into 18 bins, and FE is trained to select the ap-
propriate bin using cross-entropy loss. The framework is
trained to generate a distribution similar to the ground-truth
heatmap Egt and predicts the atrg. The following loss term
is used to train Floc:

(Ê, âtrg) = Floc(m,mtrg; θloc)

Loss(θloc) = DKL(Egt, Ê) + CE(atrg, âtrg),
(7)

where DKL refers to KL divergence, and CE refers to cross-
entropy loss. We provide quantitative and qualitative experi-
mental results of Floc in the supplementary material C.2.

4.2. Camera Tracking
During the navigation, the agent needs to be aware of

its own pose to accurately record the observed visual ob-
servation. By cumulating odometry readings, the agent can
calculate its relative pose to the start pose. However, in the
real world, it is difficult to determine the accurate pose of
a robot due to noises in odometry readings. The differen-
tial rendering function of Fdec can be used for adjusting the
rough estimation of the agent pose pt. The pose optimization
is based on the photometric loss between the rendered image
and the current observation. As the rendering process Fdec

is differential, the pose of the agent pt can be optimized with
the gradient descent method. We name this camera tracking
function as Ftrack. At time t, the agent has the previously
estimated pose p̂t−1, and takes the odometry data ∆pt. The
rough estimation of the current pose pt can be calculated
by simply adding ∆pt to the previous pose p̂t−1. p̄t de-
notes such roughly estimated pose: p̄t = p̂t−1+∆pt. Using

Mapping Module Navigation
ModuleOccupancy Map RNR-Map

Exploration Score

Latent Score

Point Navi.
Policy

Stopper

Target RGBD 𝐼!"#

Current RGBD 𝐼!

Odometry Δ𝑝!

Localization Module
Camera Tracking

𝐹!"$%&
Image Localization

𝐹'(%
𝒎𝒕𝒓𝒈

Action 𝑎!

Adjusted Pose 𝑝̂!

Input

𝒎𝒕

𝑬
𝒎𝒕

)𝑰𝒕𝑰𝒕

Figure 3. Navigation System Overview.

Ftrack, p̄t is optimized to p̂t. The output of pose optimization
can be derived by the following equation:

p̂t = Ftrack(mt−1, p̄t) = argmin
δpt

|Fdec(mt−1, p̄t+δpt)−It|,
(8)

which minimizes the error between the current observation
and the rendered image from the latent map. p̄t is the initial
value of the pose in the optimization process. By sampling
a small subset of pixels from the image, we can make this
optimization process fast enough to use it in navigation. We
provide the accuracy and inference speed of the proposed
camera tracking method in the supplementary material C.1.

5. Navigation
Now we describe how the RNR-Map and RNR-Map-

based localization functions can be utilized in a navigation
system. We consider the visual navigation task, especially
image-goal navigation. The objective of image-goal naviga-
tion is to find the target location given the image taken from
the target location. We build a visual navigation framework
which includes Fmap for mapping, Ftrack for localization,
and Floc for target searching. Figure 3 shows an overview
of the proposed navigation system. The system consists of
three modules, mapping, localization, and navigation. In
the following section, we describe how each module works
during navigation.

5.1. Mapping Module

The mapping module builds RNR-Map using the pre-
trained encoder and Fmap. At the start of the episode (t = 0),
the mapping module transforms the target image Itrg into
an RNR-Map mtrg. While maintaining mtrg, the module
updates the current RNR-Map mt using each image obser-
vation It with Fmap. Also, the mapping module builds an
occupancy map using depth information. This occupancy
map is used for collision avoidance in a point navigation
policy. The navigation module also uses this occupancy map
to add more exploration property to the navigation system.

9103

5.2. Localization Module

The localization framework described in Section 4 works
as a localization module in the proposed navigation system.
This localization module has two objectives during naviga-
tion. First, the localization module finds the most probable
area which is similar to the target location. Second, consid-
ering a noisy odometry sensor, the localization module is
needed to figure out the precise current pose of the agent.
The image-based localization function Floc and camera track-
ing function Ftrack are actively used in this module. With
high probability, the target location may not be in the current
RNR-Map mt in the navigation scenario. Hence, Floc for
the navigation task is trained to find the region in mt which
is closer to the target location.

5.3. Navigation Module

The navigation module consists of three submodules: ex-
ploration, point navigation, and stopper.

Exploration. The objective of the exploration module is
to select the most plausible region to explore. The module
decides where to visit in order to search the target loca-
tion, based on the probabilty heatmap E from Floc in the
localization module. We have adopted the concept from
robot exploration [24, 31, 41, 43], which builds a generalized
Voronoi graph on the occupancy map. We draw a Voronoi
graph on the occupancy map and calculate visitation priority
scores for each node of the created graph. Based on the
scores, the exploration module selects the nodes to explore.
Two types of scores are used for selecting exploration candi-
dates, the latent score and the exploration score. The latent
score is based on the heatmap E and represents how prob-
able the node is near the target location. The exploration
score of each node is simply calculated based on the values
in the occupancy map. The occupancy map has three types
of value: occupied, free and unseen. The exploration score
of a node is proportional to the number of unseen pixels in
the neighborhood of a node. The visitation priority of a node
is determined based on the sum of the latent score and the
exploration score.

Point navigation policy and Stopper. The point naviga-
tion policy is a simple occupancy-map-based path-following
algorithm. When the exploration target node is selected, the
point navigation module draws the shortest path to the target
position. Following the path, the point navigation policy
heuristically avoids obstacles using the occupancy map. The
stopper module determines the arrival at the target location
and calculates the relative pose from the target location. We
employ a neural network Fstop which decides whether the
agent is near the target location. This neural network is
trained to output a binary value (1 if the target location is
reached and 0, otherwise) based on the mtrg and mt. For
efficient target reaching, we adopted the recent last-mile
navigation method [37] in stopper module. Based on key-
point matching, the relative pose between the target location

and the current location is calculated using Perspective-n-
Point [25] and RANSAC [18]. After Fstop detects the target
location, the point navigation policy navigates to the target
using the estimated relative pose. We provide detailed expla-
nations about graph generation and exploration planning in
the supplementary material G.

5.4. Implementation Details
The modules that require training are the encoder and

decoder, and the neural networks used in Floc and Fstop.
We trained them using the same dataset. We have collected
200 random navigation trajectories from each scene in 72
Gibson [39] environments with the Habitat simulator [29].
The pair of encoder and decoder is first trained, then Floc and
Fstop are trained based on the pretrained encoder. Further
implementation details (network architectures and training
details) are provided in the supplementary material B.

6. Experiments
We have evaluated RNR-Map in both localization and

navigation tasks. However, as the main objective of the pro-
posed RNR-Map is visual navigation, we focus on analyzing
the experiment results of the navigation task in the main
manuscript. For localization tasks, we summarize the exper-
imental results here and provide detailed information and
analyses in the supplementary material C.

6.1. Localization
We have tested Ftrack and Floc with other related base-

lines [22, 42]. In camera tracking task, the RNR-Map
Ftrack shows high speed (5Hz) and accuracy (0.108m error)
which are adequate for a real-time navigation system. More
than localizing the current pose of the agent, the RNR-Map
Floc is able to locate the previously seen images (image-
based localization task) with a high recall rate (inliers less
than 50cm with 99%) in the recorded map. We can leverage
this RNR-Map for searching the most similar place to the
query image even if the exact place is not in the current
environment. Two scenarios can be considered: (1) (Object
Change) There have been large changes in the environment
so that the object configuration of the environment is dif-
ferent from the information in the RNR-Map. (2) (Novel
Environment) The user only has a query image from a dif-
ferent environment but wants to find the most similar place
in the current environment. We have tested the RNR-Map
in both scenarios and observed that Floc robustly localizes
query images even if some object configuration changes.
When 33.9% of the observed images have changed, Floc

localizes the query image with less than 50cm error in 97.4%
of cases, and 20◦ error in 97.5% of cases. Also, when given
a query image from a different scene, the localized location
achieves 94.5% of visual similarity compared to the best
possible visual similarity in the given scene. The examples
of the image-based localization tasks are shown in Figure 4.
We can see that Floc finds visually similar places based on

9104

Success Case

Object Change Novel Environment

Failed Case

RNR-Map Query FoundRNR-Map Query Found

Figure 4. Examples of image-based localization. ★ location of
the query image on RNR-Map, and ● is the location found by Floc.
More examples are provided in the supplementary material C.2 and
C.3.

the RNR-Map, even when the environment has changed or
given in a novel environment. Additionally, we found that
the suggested method Floc mislocates when there are multi-
ple, similar locations in the environment or when the query
has poor visual information. We provide more detailed ex-
periments with baselines (MapNet [22], NICE-SLAM [42])
and examples in the supplementary material C.

6.2. Image-Goal Navigation

6.2.1 Baselines
We compare RNR-Map with learning-based agents using
behavior cloning (BC+RNN) and reinforcement learning
(DDPPO [38]). Also, to figure out the advantages of
the RNR-Map over an occupancy map, we include the
occupancy-map-based coverage method [10] as a baseline.
The objective of this method is to visit all possible area in
the given scene. We modified this method with the target
distance prediction from [21], to make the agent reach the
target when it is detected while exploring the environment
(ANS [10]+Pose Pred). We also compare our method with
the recent state-of-the-art image-goal navigation methods.
ZSEL [2], and OVRL [40] are reinforcement learning-based
methods which learn image-goal navigation task with spe-
cially designed rewards and the pretrained visual representa-
tion. NRNS builds a topological map and select the nodes
to explore by predicting the distances between the target
image and the node images with a distance prediction net-
work. SLING is a last-mile navigation method which predict
the relative pose of the target based on keypoint matching,
after the target is detected. This method needs to be in-
tegrated with the exploratory algorithm such as NRNS or
OVRL. Note that our method adopted this method, for effi-
cient target reaching. The digits of the baseline DDPPO,
OVRL, (NRNS,OVRL)+SLING are from [37] and their

open-sourced code2, and NRNS, ZSEL are from the original
papers [21], [2], respectively.

6.2.2 Task setup
We have tested each method in the public image-goal naviga-
tion datasets from NRNS [21] and Gibson [39] with Habitat
simulator [29]. Gibson dataset consists of 72 houses for
training split, and 14 houses for the validation split. NRNS
dataset consists of three difficulty levels (easy, medium, hard)
with two path types (straight and curved). Each difficulty
level has 1000 episodes for each path type, except for the
hard-straight set (806). The objective of the image-goal
navigation is to find the target place given the image of the
target location. The agent only has access to the current
RGBD observations and an odometry reading. We consider
a noisy setting [10] where the odometry sensor and the robot
actuation include noises as in the real world. The RGBD
image observation comes from a directional camera with
90◦ of HFOV. A discrete action space is used in this paper
with four types of actions: move forward 0.25m. turn right
10◦, turn left 10◦, and stop. The maximum time step of each
episode is set to 500. An episode is considered a success
when the agent takes a stop action within 1m from the target
location. Two evaluation metrics are used: success rate (SR)
and success weighted by (normalized inverse) path length
(SPL) [3], which represents the efficiency of a navigation
path.

6.2.3 Image-goal navigation Results

RNR-Map helps efficient navigation. Table 1 shows the
average SR and SPL of each method. We can see that the
proposed navigation framework with the RNR-Map shows
competitive or higher performance compared to the base-
lines, on image-goal navigation tasks. Many of the baselines
(DDPPO, ZSEL, OVRL, OVRL+SLING) include reinforce-
ment learning which is sample inefficient and computation-
ally heavy, while having relatively simple representation
about the environment. In contrast, the RNR-Map shows
higher performances while only requiring an offline trajec-
tory dataset for training neural networks. Based on this
result, we argue that having a good internal representation
of the environment and finding how to extract exploratory
signals from such representation are important. An agent
with an informative environmental representation can navi-
gate well without the numerous inefficient interactions often
required in reinforcement learning. Compared to baselines
which have their own internal representation of the environ-
ment (NRNS, NRNS+SLING, ANS), our method shows a
much higher performances in curved scenarios. From this
result, we can infer that the RNR-Map indeed provides use-
ful information for searching targets, more than coverage
signals, and better than the existing methods. The ablation
study shown in Table 2 also displays a similar trend. We
ablated the main functions of the navigation framework Floc

and Ftrack, as well as noises. Without the latent score from
2https://github.com/Jbwasse2/SLING

9105

https://github.com/Jbwasse2/SLING

Stragint Curved

Easy Medium Hard Overall Easy Medium Hard Overall
SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL

BC + RNN 39.4 27.9 25.7 15.9 13.3 9.0 26.1 17.6 26.4 12.6 20.3 10.5 8.4 4.8 18.4 9.3
DDPPO [38] 43.2 38.5 36.4 34.8 7.4 7.2 29.0 26.8 22.2 16.5 20.7 18.5 4.2 3.7 15.7 12.9

ANS + Target Pred [10] 68.8 55.1 54.0 30.3 42.4 22.9 55.1 36.1 48.0 21.0 46.0 20.5 31.3 14.6 41.8 18.7
NRNS [21] 64.1 55.4 47.9 39.5 25.2 18.1 45.7 37.7 27.3 10.6 23.1 10.4 10.5 5.6 20.3 8.8
ZSEL [2] - - - - - - - - 41.0 28.2 27.3 18.6 9.3 6.0 25.9 17.6

OVRL [40] 53.6 34.7 48.6 33.3 32.5 21.9 44.9 30.0 53.6 31.8 47.6 30.2 35.6 22.0 45.6 28.0
NRNS + SLING [37] 85.3 74.4 66.8 49.3 41.1 28.8 64.4 50.8 58.6 16.1 47.6 16.8 24.9 10.1 43.7 14.3
OVRL + SLING [37] 71.2 54.1 60.3 44.4 43.0 29.1 58.2 42.5 68.4 47.0 57.7 39.8 40.2 25.5 55.4 37.4

RNR-Map (ours) 76.4 55.3 73.6 46.1 54.6 30.2 68.2 43.9 75.3 52.5 70.9 42.3 51.0 27.4 65.7 40.8

Table 1. Image-goal Navigation Result. SR: Success Rate. SPL: Success weighted by Path Length.

Easy Medium Hard Overall

Noise Floc Ftrack SR SPL SR SPL SR SPL SR SPL

✘ ✘ - 60.3 41.0 57.7 36.8 39.9 23.4 52.6 33.7
✘ ✔ - 72.8 61.1 67.7 48.9 48.8 31.1 63.1 47.0
✔ ✔ ✘ 74.6 53.6 64.0 40.9 40.8 23.6 59.8 39.4

✔ ✔ ✔ 75.3 53.9 72.2 44.2 52.8 28.9 66.9 42.3

Table 2. Ablation study. The values are the average of the straight
and curved scenarios.

Mapping Freg Tracking Ftrack Localization Floc Rendering Fdec

91.9 Hz (10.9 ms) 5.0 Hz (200 ms) 56.8 Hz (17.6 ms) 14.7 Hz (68.0 ms)

Table 3. Runtime analysis of RNR-Map.

Floc, the success rate and SPL dramatically drop. We also
have tested the proposed method in MP3D [8] dataset, and
observed similar results with Gibson dataset. We provide the
results in the supplementary material E, and additional abla-
tion study about the submodules of the navigation module is
also provided in D.

Ftrack makes RNR-Map robust to noise. Comparing the
third row and the last row of Table 2, we can infer that the
pose adjusting function Ftrack helps the agent to find the
image goal more effectively, even with the noisy odometry.
The proposed method shows higher success rates in noisy
settings, while SPL values are low. We believe this is from
the randomness of noises, which helps the local navigation
policy to escape from being stuck in a single location.

RNR-Map is real-time capable. We analyzed the runtime
for each feature of RNR-Map and report them in Table 3.

The runtimes are measured on a desktop PC with a Intel
i7-9700KF CPU @ 3.60GHz, and an NVIDIA GeForce RTX
2080 Ti GPU. We can see that each function of RNR-Map
operates fast enough for real-time navigation, even when
including NeRF-based rendering.

Navigation example. Figure 5 provides an example of an
image-goal navigation episode. Floc highlights two types of
places, a place that looks similar to the target image and an
explorable place like the end of the aisle, or doorway. We
can see that the highlighted area at the start of the episode
has a similar observation to the target image. First, the
agent navigates to a similar-looking place but decided not

Final Obs.

Target Img. Similar Img.

Latent
Score

Explorable

Figure 5. Example of image-goal navigation episode. The
heatmap value of E from Floc is highlighted on the map according
to the colorbar on the left.

to stop at the location. While navigating to another place
that shows a high latent score, the agent has found the target
location, and the latent score also changed to highlight the
target. Additional qualitative results of navigation episodes
are provided in the supplementary material F and video.

7. Conclusion
In this paper, we have proposed RNR-Map for visual

navigation, which captures visual information about the en-
vironment. The RNR-Map is helpful for visual navigation in
two ways: (1) The latent codes in the RNR-Map can provide
rich signals to find the target location, given a query image.
(2) The rendering property of the RNR-Map helps the agent
to accurately estimate its pose based on a photometric error,
in an unseen environment. The proposed method has outper-
formed other methods in image-based localization. Also, we
have found that the image-based localization of RNR-Map is
robust to environmental changes. In image-goal navigation
tasks, the proposed method outperforms the current state-
of-the-art image-goal navigation methods. Furthermore, the
fast inference time of the RNR-Map shows its potential for
real-world applications. However, the proposed method still
has limitations. Once the observation images are embedded
in grids, RNR-Map is hard to correct the past odometry error.
We can consider applying loop closure using the proposed
localization framework. Inspired by existing graph-based
SLAM methods, a pose graph with local RNR-Maps can
be leveraged to optimize poses, leading to consensus in the
pixel renderings from the global RNR-Map.

9106

References
[1] Michal Adamkiewicz, Timothy Chen, Adam Caccavale,

Rachel Gardner, Preston Culbertson, Jeannette Bohg, and
Mac Schwager. Vision-Only Robot Navigation in a Neural
Radiance World. IEEE Robotics and Automation Letters,
7(2):4606–4613, 2022. 1, 2

[2] Ziad Al-Halah, Santhosh K. Ramakrishnan, and Kristen Grau-
man. Zero Experience Required: Plug & Play Modular Trans-
fer Learning for Semantic Visual Navigation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 7, 8

[3] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On Evaluation of Embodied Navi-
gation Agents. arXiv preprint arXiv:1807.06757, 2018. 7

[4] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb
Sterkin, Victor Lempitsky, and Denis Korzhenkov. Image
Generators with Conditionally-Independent Pixel Synthesis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 4

[5] Valts Blukis, Taeyeop Lee, Jonathan Tremblay, Bowen Wen,
In So Kweon, Kuk-Jin Yoon, Dieter Fox, and Stan Birchfield.
Neural Fields for Robotic Object Manipulation from a Single
Image. arXiv preprint arXiv:2210.12126, 2022. 2

[6] Arunkumar Byravan, Jan Humplik, Leonard Hasenclever,
Arthur Brussee, Francesco Nori, Tuomas Haarnoja, Ben
Moran, Steven Bohez, Fereshteh Sadeghi, Bojan Vujatovic,
et al. NeRF2Real: Sim2real Transfer of Vision-guided
Bipedal Motion Skills using Neural Radiance Fields. arXiv
preprint arXiv:2210.04932, 2022. 2

[7] Vincent Cartillier, Zhile Ren, Neha Jain, Stefan Lee, Irfan
Essa, and Dhruv Batra. Semantic mapnet: Building allocen-
tric semanticmaps and representations from egocentric views.
arXiv preprint arXiv:2010.01191, 2020. 2

[8] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-
D Data in Indoor Environments. International Conference on
3D Vision (3DV), 2017. 8

[9] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and
Ruslan Salakhutdinov. Object Goal Navigation using Goal-
Oriented Semantic Exploration. In Proceedings of the Ad-
vances in Neural Information Processing Systems (NeurIPS),
2020. 1, 2

[10] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Ab-
hinav Gupta, and Ruslan Salakhutdinov. Learning To Explore
Using Active Neural SLAM. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2020.
1, 2, 7, 8

[11] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning
Exploration Policies for Navigation. In Proceedings of the In-
ternational Conference on Learning Representations (ICLR),
2019. 1, 2

[12] Qiyu Dai, Yan Zhu, Yiran Geng, Ciyu Ruan, Jiazhao Zhang,
and He Wang. GraspNeRF: Multiview-based 6-DoF Grasp
Detection for Transparent and Specular Objects Using Gen-
eralizable NeRF. arXiv preprint arXiv:2210.06575, 2022.
2

[13] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,
Graham W. Taylor, and Joshua M. Susskind. Unconstrained
scene generation with locally conditioned radiance fields. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 4

[14] Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and
Marc Toussaint. Learning Multi-Object Dynamics with Com-
positional Neural Radiance Fields. In Proceedings of the
Conference on Robot Learning (CoRL), 2022. 2

[15] Danny Driess, Ingmar Schubert, Pete Florence, Yunzhu Li,
and Marc Toussaint. Reinforcement learning with neural
radiance fields. arXiv preprint arXiv:2206.01634, 2022. 1

[16] Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and
Cheston Tan. A Survey of Embodied AI: From Simulators to
Research Tasks. IEEE Transactions on Emerging Topics in
Computational Intelligence, 2022. 1, 2

[17] Alberto Elfes. Using occupancy grids for mobile robot per-
ception and navigation. Computer, 22(6):46–57, 1989. 1,
2

[18] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 6

[19] Georgios Georgakis, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, and Kostas Daniilidis. Learning to Map
for Active Semantic Goal Navigation. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2022. 1, 2

[20] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-
thankar, and Jitendra Malik. Cognitive Mapping and Planning
for Visual Navigation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2017. 2

[21] Meera Hahn, Devendra Chaplot, Shubham Tulsiani, Mustafa
Mukadam, James Rehg, and Abhinav Gupta. No RL, No
Simulation: Learning to Navigate without Navigating. In Pro-
ceedings of the Advances in Neural Information Processing
Systems (NeurIPS), 2021. 1, 2, 7, 8

[22] João F. Henriques and Andrea Vedaldi. MapNet: An Allocen-
tric Spatial Memory for Mapping Environments. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 2, 4, 6, 7

[23] Jeffrey Ichnowski*, Yahav Avigal*, Justin Kerr, and Ken
Goldberg. Dex-NeRF: Using a neural radiance field to grasp
transparent objects. In Conference on Robot Learning (CoRL),
2020. 2

[24] Jonghoek Kim, Fumin Zhang, and Magnus Egerstedt. A prov-
ably complete exploration strategy by constructing voronoi
diagrams. Autonomous Robots, 29(3):367–380, 2010. 6

[25] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Epnp: An accurate O(n) solution to the PnP problem. Inter-
national Journal of Computer Vision, 81(2):155–166, 2009.
6

[26] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal,
and Antonio Torralba. 3D Neural Scene Representations for
Visuomotor Control. In Conference on Robot Learning, 2021.
2

[27] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon
Lucey. BARF: Bundle-Adjusting Neural Radiance Fields. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 2

9107

[28] Dominic Maggio, Marcus Abate, Jingnan Shi, Courtney
Mario, and Luca Carlone. Loc-NeRF: Monte Carlo Lo-
calization using Neural Radiance Fields. arXiv preprint
arXiv:2209.09050, 2022. 1, 2

[29] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A Platform for Embodied AI Research. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019. 6, 7

[30] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View
Synthesis. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020. 2

[31] Keiji Nagatani and Howie Choset. Toward robust sensor based
exploration by constructing reduced generalized voronoi
graph. In Proceedings 1999 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Human and En-
vironment Friendly Robots with High Intelligence and Emo-
tional Quotients (Cat. No. 99CH36289), volume 3, pages
1687–1692. IEEE, 1999. 6

[32] Emilio Parisotto and Ruslan Salakhutdinov. Neural Map:
Structured Memory for Deep Reinforcement Learning. In
International Conference on Learning Representations, 2018.
2

[33] Benjamin Planche, Xuejian Rong, Ziyan Wu, Srikrishna
Karanam, Harald Kosch, YingLi Tian, Jan Ernst, and Hut-
ter Andreas. Incremental Scene Synthesis. In Proceedings
of the Advances in Neural Information Processing Systems
(NeurIPS), 2019. 2

[34] Ziad Al-Halah Santhosh Kumar Ramakrishnan and Kristen
Grauman. Occupancy Anticipation for Efficient Exploration
and Navigation. In Proceedings of the European Conference
on Computer Vision (ECCV), 2020. 2

[35] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew Davison.
iMAP: Implicit Mapping and Positioning in Real-Time. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 1, 2

[36] Saim Wani, Shivansh Patel, Unnat Jain, Angel X. Chang,
and Manolis Savva. MultiON: Benchmarking Semantic Map
Memory using Multi-Object Navigation. In Proceedings
of the Advances in Neural Information Processing Systems
(NeurIPS), 2020. 1, 2

[37] Justin Wasserman, Karmesh Yadav, Girish Chowdhary, Abhi-
nav Gupta, and Unnat Jain. Last-Mile Embodied Visual Navi-
gation. In Proceedings of the Conference on Robot Learning
(CoRL), 2022. 2, 6, 7, 8

[38] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee,
Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.
DD-PPO: Learning near-perfect pointgoal navigators from 2.5
billion frames. In Proceedings of the International Conference
on Learning Representations (ICLR), 2020. 7, 8

[39] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Ji-
tendra Malik, and Silvio Savarese. Gibson Env: Real-
World Perception for Embodied Agents. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 6, 7

[40] Karmesh Yadav, Ram Ramrakhya, Arjun Majumdar, Vincent-
Pierre Berges, Sachit Kuhar, Dhruv Batra, Alexei Baevski,

and Oleksandr Maksymets. Offline Visual Representa-
tion Learning for Embodied Navigation. arXiv preprint
arXiv:2204.13226, 2022. 7, 8

[41] Qiwen Zhang, David Whitney, Florian Shkurti, and Ioannis
Rekleitis. Ear-based exploration on hybrid metric/topological
maps. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014. 6

[42] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun
Bao, Zhaopeng Cui, Martin R. Oswald, and Marc Pollefeys.
NICE-SLAM: Neural Implicit Scalable Encoding for SLAM.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 1, 2, 6, 7

[43] Xinkai Zuo, Fan Yang, Yifan Liang, Zhou Gang, Fei Su, Hai-
hong Zhu, and Lin Li. An Improved Autonomous Exploration
Framework for Indoor Mobile Robotics Using Reduced Ap-
proximated Generalized Voronoi Graphs. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 1:351–359, 2020. 6

9108

	. Introduction
	. Related Work
	. RNR-Map
	. Localization
	. Image-Based Localization
	. Camera Tracking

	. Navigation
	. Mapping Module
	. Localization Module
	. Navigation Module
	. Implementation Details

	. Experiments
	. Localization
	. Image-Goal Navigation
	Baselines
	Task setup
	Image-goal navigation Results

	. Conclusion

