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Abstract

LiDAR-based 3D point cloud recognition has benefited
various applications. Without specially considering the Li-
DAR point distribution, most current methods suffer from
information disconnection and limited receptive field, es-
pecially for the sparse distant points. In this work, we
study the varying-sparsity distribution of LiDAR points and
present SphereFormer to directly aggregate information
from dense close points to the sparse distant ones. We de-
sign radial window self-attention that partitions the space
into multiple non-overlapping narrow and long windows.
It overcomes the disconnection issue and enlarges the re-
ceptive field smoothly and dramatically, which significantly
boosts the performance of sparse distant points. Moreover,
to fit the narrow and long windows, we propose exponen-
tial splitting to yield fine-grained position encoding and
dynamic feature selection to increase model representation
ability. Notably, our method ranks 1st on both nuScenes and
SemanticKITTI semantic segmentation benchmarks with
81.9% and 74.8% mIoU, respectively. Also, we achieve
the 3rd place on nuScenes object detection benchmark with
72.8% NDS and 68.5% mAP. Code is available at https:
//github.com/dvlab-research/SphereFormer.git.

1. Introduction

Nowadays, point clouds can be easily collected by Li-
DAR sensors. They are extensively used in various indus-
trial applications, such as autonomous driving and robotics.
In contrast to 2D images where pixels are arranged densely
and regularly, LiDAR point clouds possess the varying-
sparsity property — points near the LiDAR are quite dense,
while points far away from the sensor are much sparser, as
shown in Fig. 2 (a).

However, most existing work [12, 13, 24, 25, 55, 70–72]
does not specially consider the the varying-sparsity point
distribution of outdoor LiDAR point clouds. They inherit
from 2D CNNs or 3D indoor scenarios, and conduct local
operators (e.g., SparseConv [24, 25]) uniformly for all lo-
cations. This causes inferior results for the sparse distant
points. As shown in Fig. 1, although decent performance
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Figure 1. Semantic segmentation performance on nuScenes val set
for points at different distances.

is yielded for the dense close points, it is difficult for these
methods to deal with the sparse distant points optimally.

We note that the root cause lies in limited receptive field.
For sparse distant points, there are few surrounding neigh-
bors. This not only results in inconclusive features, but also
hinders enlarging receptive field due to information discon-
nection. To verify this finding, we visualize the Effective
Receptive Field (ERF) [40] of the given feature (shown with
the yellow star) in Fig. 2 (d). The ERF cannot be expanded
due to disconnection, which is caused by the extreme spar-
sity of the distant car.

Although window self-attention [22, 30], dilated self-
attention [42], and large-kernel CNN [10] have been pro-
posed to conquer the limited receptive field, these methods
do not specially deal with LiDAR point distribution, and re-
main to enlarge receptive field by stacking local operators
as before, leaving the information disconnection issue still
unsolved. As shown in Fig. 1, the method of cubic self-
attention brings a limited improvement.

In this paper, we take a new direction to aggregate long-
range information directly in a single operator to suit the
varying-sparsity point distribution. We propose the module
of SphereFormer to perceive useful information from points
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(a) LiDAR Point Cloud (b) Radial Window Partition

(c) Sparse Distant Points (d) ERF of SparseConv (e) ERF of our method

car road vegetation building pole fence trunk

Figure 2. Effective Receptive Field (ERF) of SparseConv and ours. (a) LiDAR point cloud. (b) Radial window partition. Only a single
radial window is shown. Points inside the window are marked in red. (c) Zoom-in sparse distant points. A sparse car is circled in yellow.
(d) ERF of SparseConv, given the point of interest (with yellow star). White and red denote high contribution. (e) ERF of ours.

50+ meters away and yield large receptive field for feature
extraction. Specifically, we represent the 3D space using
spherical coordinates (r, θ, ϕ) with the sensor being the ori-
gin, and partition the scene into multiple non-overlapping
windows. Unlike the cubic window shape, we design radial
windows that are long and narrow. They are obtained by
partitioning only along the θ and ϕ axis, as shown in Fig. 2
(b). It is noteworthy that we make it a plugin module to
conveniently insert into existing mainstream backbones.

The proposed module does not rely on stacking local op-
erators to expand receptive field, thus avoiding the discon-
nection issue, as shown in Fig. 2 (e). Also, it facilitates
the sparse distant points to aggregate information from the
dense-point region, which is often semantically rich. So,
the performance of the distant points can be improved sig-
nificantly (i.e., +17.1% mIoU) as illustrated in Fig. 1.

Moreover, to fit the long and narrow radial windows, we
propose exponential splitting to obtain fine-grained relative
position encoding. The radius r of a radial window can
be over 50 meters, which causes large splitting intervals.
It thus results in coarse position encoding when converting
relative positions into integer indices. Besides, to let points
at varying locations treat local and global information dif-
ferently, we propose dynamic feature selection to make fur-
ther improvements.

In total, our contribution is three-fold.

• We propose SphereFormer to directly aggregate long-
range information from dense-point region. It in-
creases the receptive field smoothly and helps improve

the performance of sparse distant points.

• To accommodate the radial windows, we develop ex-
ponential splitting for relative position encoding. Our
dynamic feature selection further boosts performance.

• Our method achieves new state-of-the-art results on
multiple benchmarks of both semantic segmentation
and object detection tasks.

2. Related Work

2.1. LiDAR-based 3D Recognition

Semantic Segmentation. Segmentation [6, 14, 15, 31, 32,
34, 49, 59–61, 83] is a fundamental task for vision per-
ception. Approaches for LiDAR-based semantic segmen-
tation can be roughly grouped into three categories, i.e.,
view-based, point-based, and voxel-based methods. View-
based methods either transform the LiDAR point cloud into
a range view [3, 43, 46, 68, 69], or use a bird-eye view
(BEV) [80] for a 2D network to perform feature extraction.
3D geometric information is simplified.

Point-based methods [28, 30, 44, 45, 56, 58, 73] adopt the
point features and positions as inputs, and design abundant
operators to aggregate information from neighbors. More-
over, the voxel-based solutions [13, 24, 25] divide the 3D
space into regular voxels and then apply sparse convolu-
tions. Further, methods of [12,17,29,37,55,71,89] propose
various structures for improved effectiveness. All of them
focus on capturing local information. We follow this line
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of research, and propose to directly aggregate long-range
information.

Recently, RPVNet [70] combines the three modalities
by feature fusion. Furthermore, 2DPASS [72] incorporates
2D images during training, and [48] fuses multi-modal fea-
tures. Despite extra 2D information, the performance of
these methods still lags behind compared to ours.

Object Detection. 3D object detection frameworks can
be roughly categorized into single-stage [11, 26, 36, 76,
84, 85] and two-stage [19, 41, 50, 51] methods. Voxel-
Net [86] extracts voxel features by PointNet [44] and ap-
plies RPN [47] to obtain the proposals. SECOND [74]
is efficient thanks to the accelerated sparse convolutions.
VoTr [42] applies cubic window attention to voxels. Li-
DARMultiNet [78] unifies semantic segmentation, panop-
tic segmentation, and object detection into a single multi-
task network with multiple types of supervision. Our ex-
periments are based on CenterPoint [79], which is a widely
used anchor-free framework. It is effective and efficient.
Also, [65] is proposed to improve the distance objects. With
similar goal, we aim to enhance the features of sparse dis-
tant points, and our proposed module can be conveniently
inserted into existing frameworks.

2.2. Vision Transformer

Recently, Transformer [64] become popular in various
2D image understanding tasks [5, 16, 20, 21, 38, 42, 54, 62,
63,66,67,75,81,88]. ViT [21] tokenizes every image patch
and adopts a Transformer encoder to extract features. Fur-
ther, PVT [67] presents a hierarchical structure to obtain a
feature pyramid for dense prediction. It also proposes Spa-
tial Reduction Attention to save memory. Also, Swin Trans-
former [38] uses window-based attention and proposes the
shifted window operation in the successive Transformer
block. Moreover, methods of [16, 20, 75] propose differ-
ent designs to incorporate long-range dependencies. There
are also methods [22, 30, 42, 53, 82] that apply Transformer
into 3D vision. Few of them consider the point distribution
of LiDAR point cloud. In our work, we utilize the varying-
sparsity property, and design radial window self-attention
to capture long-range information, especially for the sparse
distant points.

3. Our Method
In this section, we first elaborate on radial window par-

tition in Sec. 3.1. Then, we propose the improved position
encoding and dynamic feature selection in Sec. 3.2 and 3.3.

3.1. Spherical Transformer

To model the long-range dependency, we adopt the
window-attention [38] paradigm. However, unlike the cu-
bic window attention [22, 30, 42], we take advantage of the

Radial Window

Δ𝜃

Δ𝜙𝑟

Cubic Window

Figure 3. Cubic vs. Radial window partition. The radial win-
dow can directly harvest information from the dense-point region,
especially for the sparse distant points.

varying-sparsity property of LiDAR point cloud and present
the SphereFormer module, as shown in Fig. 3.

Radial Window Partition. Specifically, we represent Li-
DAR point clouds using the spherical coordinate system
(r, θ, ϕ) with the LiDAR sensor being the origin. We parti-
tion the 3D space along the θ and ϕ axis. We, thus, obtain a
number of non-overlapping radial windows with a long and
narrow ’pyramid’ shape, as shown in Fig. 3. We obtain the
window index for the token at (ri, θi, ϕi) as

win indexi = (⌊
θi

∆θ
⌋, ⌊

ϕi

∆ϕ
⌋), (1)

where ∆θ and ∆ϕ denote the window size corresponding
to the θ and ϕ dimension, respectively.

Tokens with the same window index would be assigned
to the same window. The multi-head self-attention [64] is
conducted within each window independently as follows.

q̂ = f ·Wq , k̂ = f ·Wk, v̂ = f ·Wv , (2)

where f ∈ Rn×c denotes the input features of a window,
Wq,Wk,Wv ∈ Rc×c are the linear projection weights,
and q̂, k̂, v̂ ∈ Rn×c are the projected features. Then,
we split the projected features q̂, k̂, v̂ into h heads (i.e.,
Rn×(h×d)), and reshape them as q,k,v ∈ Rh×n×d. For
each head, we perform dot product and weighted sum as

attnk = softmax(qk · kT
k ), (3)

ẑk = attnk · vk, (4)

where qk,kk,vk ∈ Rn×d denote the features of the k-th
head, and attnk ∈ Rn×n is the corresponding attention
weight. Finally, we concatenate the features from all heads
and apply the final linear projection with weight Wproj ∈
Rc×c to yield the output z ∈ Rn×c as

ẑ = concat({ẑ0, ẑ1, ..., ẑh−1}). (5)

z = ẑ ·Wproj . (6)

SphereFormer serves as a plugin module and can be con-
veniently inserted into existing mainstream models, e.g.,
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Figure 4. Comparison between (a) uniform splitting and (b) expo-
nential splitting. The query is at the leftmost point.

SparseConvNet [24,25], MinkowskiNet [13], local window
self-attention [22, 30, 42]. In this paper, we find that insert-
ing it into the end of each stage works well, and the network
structure is given in the supplementary material. The result-
ing model can be applied to various downstream tasks, such
as semantic segmentation and object detection, with strong
performance as produced in experiments.

SphereFormer is effective for the sparse distant points
to get long-range information from the dense-point region.
Therefore, the sparse distant points overcome the discon-
nection issue, and increase the effective receptive field.

Comparison with Cylinder3D. Although both Cylin-
der3D [89] and ours use polar or spherical coordinates to
match LiDAR point distribution, there are two essential dif-
ferences yet. First, Cylinder3D aims at a more balanced
point distribution, while our target is to enlarge the recep-
tive field smoothly and enable the sparse distant points to
directly aggregate long-range information from the dense-
point region. Second, what Cylinder3D does is replace the
cubic voxel shape with the fan-shaped one. It remains to
use local neighbors as before and still suffers from limited
receptive field for the sparse distant points. Nevertheless,
our method changes the way we find neighbors in a single
operator (i.e., self-attention) and it is not limited to local
neighbors. It thus avoids information separation between
near and far objects and connects them in a natural way.

3.2. Position Encoding

For the 3D point cloud network, the input features have
already incorporated the absolute xyz position. Therefore,
there is no need to apply absolute position encoding. Also,
we notice that Stratified Transformer [30] develops the con-
textual relative position encoding. It splits a relative po-
sition into several discrete parts uniformly, which converts
the continuous relative positions into integers to index the
positional embedding tables.

This method works well with local cubic windows. But
in our case, the radial window is narrow and long, and its
radius r can take even more than 50 meters, which could
cause large intervals during discretization and thus coarse-

grained positional encoding. As shown in Fig. 4 (a), be-
cause of the large interval, key1 and key2 correspond to the
same index. But there is still a considerable distance be-
tween them.

Exponential Splitting. Specifically, since the r dimen-
sion covers long distances, we propose exponential split-
ting for the r dimension as shown in Fig. 4 (b). The split-
ting interval grows exponentially when the index increases.
In this way, the intervals near the query are much smaller,
and the key1 and key2 can be assigned to different posi-
tion encodings. Meanwhile, we remain to adopt the uni-
form splitting for the θ and ϕ dimensions. In notation,
we have a query token qi and a key token kj . Their rel-
ative position (rij , θij , ϕij) is converted into integer index
(idxr

ij , idx
θ
ij , idx

ϕ
ij) as

idxr
ij =

 −max(0, ⌈log2(
−rij
a

)⌉)− 1 rij < 0
0 rij = 0

max(0, ⌈log2(
rij
a

)⌉) rij > 0

,

idxθ
ij = ⌊

θij

intevalθ
⌋, idxϕ

ij = ⌊
ϕij

intevalϕ
⌋,

idxx = idxx +
L

2
, x ∈ {r, θ, ϕ},

where a is a hyper-parameter to control the starting splitting
interval, and L is the length of the positional embedding
tables. Note that we also add the indices with L

2 to make
sure they are non-negative.

The above indices (idxr
ij , idx

θ
ij , idx

ϕ
ij) are then used

to index their positional embedding tables tr, tθ, tϕ ∈
RL×(h×d) to find the corresponding position encoding
pr
ij ,p

θ
ij ,p

ϕ
ij ∈ Rh×d, respectively. Then, we sum them up

to yield the resultant positional encoding p ∈ Rh×d, which
then performs dot product with the features of qi and kj ,
respectively. The original Eq. (3) is updated to

p = pr
ij + pθ

ij + pϕ
ij ,

pos biask,i,j = qk,i · pT
k + kk,j · pT

k ,

attnk = softmax(qk · kT
k + pos biask),

where pos bias ∈ Rh×n×n is the positional bias to the
attention weight, qk,i ∈ Rd means the the k-th head of the
i-th query feature, and pk ∈ Rd is the k-th head of the
position encoding p.

The exponential splitting strategy provides smaller split-
ting intervals for near token pairs and larger intervals for
distant ones. This operation enables a fine-grained posi-
tion representation between near token pairs, and still main-
tains the same number of intervals in the meanwhile. Even
though the splitting intervals become larger for distant token
pairs, this solution actually works well since distant token
pairs require less fine-grained relative position.
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Figure 5. Varying-sparsity property of LiDAR point clouds. The
dense close car is marked with a green circle and the sparse distant
bicycle is marked with a red circle (best viewed in color).

3.3. Dynamic Feature Selection

Point clouds scanned by LiDAR have the varying-
sparsity property — close points are dense and distant
points are much sparser. This property makes points at dif-
ferent locations perceive different amounts of local infor-
mation. For example, as shown in Fig. 5, a point of the car
(circled in green) near the LiDAR is with rich local geomet-
ric information from its dense neighbors, which is already
enough for the model to make a correct prediction – incur-
ring more global contexts might be contrarily detrimental.
However, a point of bicycle (circled in red) far away from
the LiDAR lacks shape information due to the extreme spar-
sity and even occlusion. Then we should supply long-range
contexts as a supplement. This example shows treating all
the query points equally is not optimal. We thus propose
to dynamically select local or global features to address this
issue.

As shown in Fig. 6, for each token, we incorporate not
only the radial contextual information, but also local neigh-
bor communication. Specifically, input features are pro-
jected into query, key and value features as Eq. (2). Then,
the first half of the heads are used for radial window self-
attention, and the remaining ones are used for cubic win-
dow self-attention. After that, these two features are con-
catenated and then linearly projected to the final output z
for feature fusion. It enables different points to dynamically
select local or global features. Formally, the Equations (3-5)
are updated to

attnradial
k = softmax(qradial

k · kradial
k

T
),

ẑradialk = attnradial
k · vradial

k ,

attncubic
k = softmax(qcubic

k · kcubic
k

T
),

ẑcubick = attncubic
k · vcubic

k ,

head 0

head ℎ − 1

f %&'(&)

f *+,(*

f
Cubic Window

Radial Window

"z%&'(&)

"z*+,(*

"z

head 1

Head
Splitting

f

…

Linear
Layer

z

Figure 6. Dynamic feature selection. We split the heads to conduct
radial and cubic window self-attention respectively.

ẑ = concat({ẑradial0 , ẑradial1 , ..., ẑradialh/2−1, ẑ
cubic
h/2 , ..., ẑcubich−1 }),

where qcubic
k ,kcubic

k ,vcubic
k ∈ Rncubic×d denote the query,

key and value features for the k-th head with cubic window
partition, and attncubic

k ∈ Rncubic×ncubic

denotes the cubic
window attention weight for the k-th head.

4. Experiments
In this section, we first introduce the experimental setting

in Sec. 4.1. Then, we show the semantic segmentation and
object detection results in Sec. 4.2 and 4.3. The ablation
study and visual comparison are shown in Sec. 4.4 and 4.5.
Our code and models will be made publicly available.

4.1. Experimental Setting

Network Architecture. For semantic segmentation, we
adopt the encoder-decoder structure and follow U-Net [49]
to concatenate the fine-grained encoder features in the de-
coder. We follow [89] to use SparseConv [24, 25] as our
baseline model. There are a total of 5 stages whose channel
numbers are [32, 64, 128, 256, 256], and there are two resid-
ual blocks at each stage. Our proposed module is stacked at
the end of each encoding stage. For object detection, we
adopt CenterPoint [79] as our baseline model, where the
backbone possesses 4 stages whose channel numbers are
[16, 32, 64, 128]. Our proposed module is stacked at the end
of the second and third stages. Note that our proposed mod-
ule incurs negligible extra parameters, and more details are
given in the supplementary material.

Datasets. Following previous work, we evaluate methods
on nuScenes [4], SemanticKITTI [3], and Waymo Open
Dataset [52] (WOD) for semantic segmentation. For ob-
ject detection, we evaluate our methods on the nuScenes [4]
dataset. The details of the datasets are given in the supple-
mentary material.

Implementation Details. For semantic segmenta-
tion, we use 4 GeForce RTX 3090 GPUs for training.
We train the models for 50 epochs with AdamW [39]
optimizer and ‘poly’ scheduler where power is set to
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SqueezeSegV2 [68] 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 26.3
DarkNet53Seg [3] 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2
RangeNet53++ [43] 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9
3D-MiniNet [1] 55.8 91.6 74.5 64.2 25.4 89.4 90.5 28.5 42.3 42.1 29.4 82.8 60.8 66.7 47.8 44.1 14.5 60.8 48.0 56.6
SqueezeSegV3 [69] 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9
PointNet++ [45] 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9
TangentConv [56] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5
PointASNL [73] 46.8 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9
RandLA-Net [28] 55.9 90.5 74.0 61.8 24.5 89.7 94.2 43.9 29.8 32.2 39.1 83.8 63.6 68.6 48.4 47.4 9.4 60.4 51.0 50.7
KPConv [58] 58.8 90.3 72.7 61.3 31.5 90.5 95.0 33.4 30.2 42.5 44.3 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4
PolarNet [80] 54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5
JS3C-Net [71] 66.0 88.9 72.1 61.9 31.9 92.5 95.8 54.3 59.3 52.9 46.0 84.5 69.8 67.9 69.5 65.4 39.9 70.8 60.7 68.7
SPVNAS [55] 67.0 90.2 75.4 67.6 21.8 91.6 97.2 56.6 50.6 50.4 58.0 86.1 73.4 71.0 67.4 67.1 50.3 66.9 64.3 67.3
Cylinder3D [89] 68.9 92.2 77.0 65.0 32.3 90.7 97.1 50.8 67.6 63.8 58.5 85.6 72.5 69.8 73.7 69.2 48.0 66.5 62.4 66.2
RPVNet [70] 70.3 93.4 80.7 70.3 33.3 93.5 97.6 44.2 68.4 68.7 61.1 86.5 75.1 71.7 75.9 74.4 43.4 72.1 64.8 61.4
(AF)2-S3Net [12] 70.8 92.0 76.2 66.8 45.8 92.5 94.3 40.2 63.0 81.4 40.0 78.6 68.0 63.1 76.4 81.7 77.7 69.6 64.0 73.3
PVKD [27] 71.2 91.8 70.9 77.5 41.0 92.4 97.0 67.9 69.3 53.5 60.2 86.5 73.8 71.9 75.1 73.5 50.5 69.4 64.9 65.8
2DPASS [72] 72.9 89.7 74.7 67.4 40.0 93.5 97.0 61.1 63.6 63.4 61.5 86.2 73.9 71.0 77.9 81.3 74.1 72.9 65.0 70.4
Ours 74.8 91.8 78.2 69.7 41.3 93.8 97.5 59.6 70.1 70.5 67.7 86.7 75.1 72.4 79.0 80.4 75.3 72.8 66.8 72.9

Table 1. Semantic segmentation results on SemanticKITTI test set. Methods published before the submission deadline (11/11/2022) are
listed.
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PolarNet [80] L 69.4 87.4 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5
JS3C-Net [71] L 73.6 88.1 80.1 26.2 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.2 96.8 64.5 76.9 74.1 87.5 86.1
Cylinder3D [89] L 77.2 89.9 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6
AMVNet [35] L 77.3 90.1 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVCNN [55] L 77.4 89.7 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
(AF)2-S3Net [12] L 78.3 88.5 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8
PMF [90] L+C 77.0 89.0 82.0 40.0 81.0 88.0 64.0 79.0 80.0 76.0 81.0 67.0 97.0 68.0 78.0 74.0 90.0 88.0
2D3DNet [23] L+C 80.0 90.1 83.0 59.4 88.0 85.1 63.7 84.4 82.0 76.0 84.8 71.9 96.9 67.4 79.8 76.0 92.1 89.2
2DPASS [72] L 80.8 90.1 81.7 55.3 92.0 91.8 73.3 86.5 78.5 72.5 84.7 75.5 97.6 69.1 79.9 75.5 90.2 88.0
Ours L 81.9 91.7 83.3 39.2 94.7 92.5 77.5 84.2 84.4 79.1 88.4 78.3 97.9 69.0 81.5 77.2 93.4 90.2

Table 2. Semantic segmentation results on nuScenes test set. Methods published before the submission deadline (11/11/2022) are listed.

0.9. The learning rate and weight decay are set to
0.006 and 0.01, respectively. Batch size is set to 16 on
nuScenes, and 8 on both SemanticKITTI and Waymo
Open Dataset. The window size is set to [120m, 2◦, 2◦]
for (r, θ, ϕ) on both nuScenes and SemanticKITTI, and
[80m, 1.5◦, 1.5◦] on Waymo Open Dataset. During data
preprocessing, we confine the input scene to the range
from [−51.2m,−51.2m,−4m] to [51.2m, 51.2m, 2.4m]
on SemanticKITTI and [−75.2m,−75.2m,−2m] to
[75.2m, 75.2m, 4m] on Waymo. Also, we set the voxel
size to 0.1m on both nuScenes and Waymo, and 0.05m on
SemanticKITTI.

For object detection, we adopt the OpenPCDet [57]
codebase and follow the default CenterPoint [79] to set
the training hyper-parameters. We set the window size to
[120m, 1.5◦, 1.5◦].

4.2. Semantic Segmentation Results

The results on SemanticKITTI test set are shown in Ta-
ble 1. Our method yields 74.8% mIoU, a new state-of-the-
art result. Compared to the methods based on range im-
ages [43, 68] and Bird-Eye-View (BEV) [80], ours gives a
result with over 20% mIoU performance gain. Moreover,
thanks to the capability of directly aggregating long-range
information, our method significantly outperforms the mod-
els based on sparse convolution [12,55,70,71,89]. It is also
notable that our method outperforms 2DPASS [72] that uses
extra 2D images in training by 1.9% mIoU.

In Tables 2 and 3, we also show the semantic segmenta-
tion results on nuScenes test and val set, respectively. Our
method consistently outperforms others by a large margin,
and achieves the 1st place on the benchmark. It is intriguing
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RangeNet53++ [43] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet [80] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext [18] 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
AMVNet [35] 76.1 79.8 32.4 82.2 86.4 62.5 81.9 75.3 72.3 83.5 65.1 97.4 67.0 78.8 74.6 90.8 87.9
Cylinder3D [89] 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
PVKD [27] 76.0 76.2 40.0 90.2 94.0 50.9 77.4 78.8 64.7 62.0 84.1 96.6 71.4 76.4 76.3 90.3 86.9
RPVNet [70] 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9
Ours 78.4 77.7 43.8 94.5 93.1 52.4 86.9 81.2 65.4 73.4 85.3 97.0 73.4 75.4 75.0 91.0 89.2
Ours‡ 79.5 78.7 46.7 95.2 93.7 54.0 88.9 81.1 68.0 74.2 86.2 97.2 74.3 76.3 75.8 91.4 89.7

Table 3. Semantic segmentation results on nuScenes val set. ‡ denotes using rotation and translation testing-time augmentations.
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SparseConv [25] 66.6 67.8 64.1 52.6 94.4 59.8 85.1 37.8 2.2 69.1 89.3 73.4 40.4 74.8 57.3 66.6 75.2 95.5 91.3 67.0 68.1 92.3 41.7 30.1 79.0 75.6
Ours 69.9 70.3 68.6 61.9 94.5 61.6 87.7 40.2 0.9 69.7 90.2 73.9 41.8 77.2 65.4 71.9 83.7 95.9 91.7 68.4 69.8 93.3 53.9 47.9 80.8 77.2

Table 4. Semantic segmentation results on Waymo Open Dataset val set.

ID RadialWin ExpSplit Dynamic close medium far overall ∆

I 78.79 51.54 13.28 75.21 0.00
II ! 78.95 57.21 26.67 76.31 +1.10
III ! ! 79.92 61.09 31.10 77.60 +2.39
IV ! ! 79.51 58.94 28.95 77.05 +1.84
V ! ! ! 80.80 60.78 30.38 78.41 +3.20

Table 5. Ablation study. RadialWin: Radial window shape. Ex-
pSplit: Exponential splitting. Dynamic: Dynamic Feature Selec-
tion. Metric: mIoU.

Method close medium far overall
Cubic 79.21 54.31 19.31 76.19
Radial 80.80 60.78 30.38 78.41

Table 6. Comparison between radial and cubic window shapes.

window size 1.0◦ 1.5◦ 2.0◦ 2.5◦

mIoU (%) 77.8 77.5 78.4 77.6

Table 7. Effect of window size for the θ and ϕ dimensions.

to note that our method is purely based on LiDAR data, and
it works even better than approaches of [23, 72, 90] that use
additional 2D information.

Moreover, we demonstrate the semantic segmentation
results on Waymo Open Dataset val set in Table 4. Our
model outperforms the baseline model with a substantial
gap of 3.3% mIoU. Also, it is worth noting that our method
achieves a 9.3% mIoU performance gain for the far points,
i.e., the sparse distant points.

4.3. Object Detection Results

Our method also achieves strong performance in object
detection. As shown in Table 8, our method outperforms

other published methods on nuScenes test set, and ranks 3rd

on the LiDAR-only benchmark. It shows that directly ag-
gregating long-range information is also beneficial for ob-
ject detection. It also manifests the capability of our method
to generalize to instance-level tasks.

4.4. Ablation Study

To testify the effectiveness of each component, we con-
duct an extensive ablation study and list the result in Ta-
ble 5. The Experiment I (Exp. I for short) is our baseline
model of SparseConv. Unless otherwise specified, we train
the models on nuScenes train set and make evaluations on
nuScenes val set for the ablation study. To comprehensively
reveal the effect, we also report the performance at different
distances, i.e., close (≤ 20m), medium (> 20m & ≤ 50m),
far (> 50m) distances.

Window Shape. By comparing Experiments I and II in
Table 5, we can conclude that the radial window shape is
beneficial. Further, the improvement stems mainly from
better handling the medium and far points, where we yield
5.67% and 13.39% mIoU performance gain, respectively.
This result exactly verifies the benefit of aggregating long-
range information with the radial window shape.

Moreover, we also compare the radial window shape
with the cubic one proposed in [22, 30, 42]. As shown in
Table 6, the radial window shape considerably outperforms
the cubic one.

Besides, we investigate the effect of window size as
shown in Table 7. Setting it too small may make it hard to
capture meaningful information, while setting it too large
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Method NDS mAP Car Truck Bus Trailer C.V. Ped. Mot. Byc. T.C. Bar.
PointPillars [33] 45.3 30.5 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
3DSSD [77] 56.4 42.6 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
CBSG [87] 63.3 52.8 81.1 48.5 54.9 42.9 10.5 80.1 51.5 22.3 70.9 65.7
CenterPoint [79] 65.5 58.0 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9
HotSpotNet [8] 66.0 59.3 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6
CVCNET [7] 66.6 58.2 82.6 49.5 59.4 51.1 16.2 83.0 61.8 38.8 69.7 69.7
TransFusion [2] 70.2 65.5 86.2 56.7 66.3 58.8 28.2 86.1 68.3 44.2 82.0 78.2
Focals Conv [9] 70.0 63.8 86.7 56.3 67.7 59.5 23.8 87.5 64.5 36.3 81.4 74.1
Ours 70.7 65.5 84.9 55.1 66.4 59.3 29.9 86.0 71.4 47.1 79.7 75.2
Ours‡ 72.8 68.5 85.3 57.9 67.0 59.9 33.7 88.6 76.3 56.4 82.2 78.2

‡ Flipping and rotation testing-time augmentations.

Table 8. Object detection results on nuScenes test set. Methods published before the submission deadline (11/11/2022) are listed.

Input Ground Truth SparseConv Ours SparseConv Ours

barrier bicycle truck car driveable surface manmade terrain sidewalk vegetation

Figure 7. Visual comparison between vanilla SparseConv and ours (best viewed in color and by zoom-in). The brown box is the zoom-in of
the cyan box. The last two columns are the difference maps with the ground truth. More examples are given in the supplementary material.

may increase the optimization difficulty.

Exponential Splitting. Compared to Exp. IV, Exp. V im-
proves with 1.36% more mIoU, which shows the effective-
ness. Moreover, the consistent conclusion could be drawn
from Experiments II and III, where we witness 3.88% and
4.43% more mIoU for the medium and far points, respec-
tively. Also, we notice that with exponential splitting, all
the close, medium, and far points are better dealt with.

Dynamic Feature Selection. From the comparison be-
tween Experiments III and V, we note that dynamic feature
selection brings a 0.8% mIoU performance gain. Interest-
ingly, we further notice that the gain mainly comes from the
close points, which indicates that the close points may not
rely too much on global information, since the dense local
information is already enough for correct predictions for the
dense close points. It also reveals the fact that points at vary-
ing locations should be treated differently. Moreover, the
comparison between Exp. II and IV leads to consistent con-
clusion. Although the performance of medium and far de-
creases a little, the overall mIoU still increases, since their
points number is much than that of the close points.

4.5. Visual Comparison

As shown in Fig. 7, we visually compare the baseline
model (i.e., SparseConv) and ours. It visually indicates that
with our proposed module, more sparse distant objects are
recognized, which are highlighted with cyan boxes. More
examples are given in the supplementary material.

5. Conclusion

We have studied and dealt with varying-sparsity LiDAR
point distribution. We proposed SphereFormer to enable the
sparse distant points to directly aggregate information from
the close ones. We designed radial window self-attention,
which enlarges the receptive field for distant points to inter-
vene with close dense ones. Also, we presented exponential
splitting to yield more detailed position encoding. Dynam-
ically selecting local or global features is also helpful. Our
method demonstrates powerful performance, ranking 1st on
both nuScenes and SemanticKITTI semantic segmentation
benchmarks and achieving the 3rd on nuScenes object de-
tection benchmark. It shows a new way to further enhance
3D visual understanding. Our limitations are discussed in
the supplementary material.

17552



References
[1] Inigo Alonso, Luis Riazuelo, Luis Montesano, and Ana C

Murillo. 3d-mininet: Learning a 2d representation from
point clouds for fast and efficient 3d lidar semantic segmen-
tation. IEEE Robotics and Automation Letters, 2020. 6

[2] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun
Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust
lidar-camera fusion for 3d object detection with transform-
ers. In CVPR, 2022. 8

[3] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In ICCV, 2019. 2, 5, 6

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In CVPR, 2020. 5

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 3

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 2

[7] Qi Chen, Lin Sun, Ernest Cheung, and Alan L Yuille. Every
view counts: Cross-view consistency in 3d object detection
with hybrid-cylindrical-spherical voxelization. NeurIPS,
2020. 8

[8] Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, and Alan Yuille.
Object as hotspots: An anchor-free 3d object detection ap-
proach via firing of hotspots. In ECCV, 2020. 8

[9] Yukang Chen, Yanwei Li, Xiangyu Zhang, Jian Sun, and Ji-
aya Jia. Focal sparse convolutional networks for 3d object
detection. In CVPR, 2022. 8

[10] Yukang Chen, Jianhui Liu, Xiaojuan Qi, Xiangyu Zhang,
Jian Sun, and Jiaya Jia. Scaling up kernels in 3d cnns.
arXiv:2206.10555, 2022. 1

[11] Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and
Jiaya Jia. Fully sparse voxelnet for 3d object detection and
tracking. In CVPR, 2023. 3

[12] Ran Cheng, Ryan Razani, Ehsan Taghavi, Enxu Li, and
Bingbing Liu. 2-s3net: Attentive feature fusion with adap-
tive feature selection for sparse semantic segmentation net-
work. In CVPR, 2021. 1, 2, 6

[13] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In CVPR, 2019. 1, 2, 4

[14] Ruihang Chu, Yukang Chen, Tao Kong, Lu Qi, and Lei Li.
Icm-3d: Instantiated category modeling for 3d instance seg-
mentation. IEEE RAL, 7(1):57–64, 2021. 2

[15] Ruihang Chu, Xiaoqing Ye, Zhengzhe Liu, Xiao Tan, Xi-
aojuan Qi, Chi-Wing Fu, and Jiaya Jia. Twist: Two-way
inter-label self-training for semi-supervised 3d instance seg-
mentation. In CVPR, 2022. 2

[16] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.

Twins: Revisiting the design of spatial attention in vision
transformers. arXiv:2104.13840, 2021. 3

[17] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max
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