






various images I = G(w, ξ) can be rendered by randomly
sampling ξ from a predefined pose distribution pξ. Finally,
we define X = {S, ξ, I} as a training sample for E0.
3D GAN-Supervised Training. As shown in Fig. 2 (a),
given a training sample X , the forward process is repre-
sented as:

ŵ = E0(I) (2)

{Ĩ, Ŝ} = G(ŵ, ξ,P) (3)

where ŵ is the estimated latent code and Ŝ =
{{d̂i, n̂i}|P|

i=1 | xi ∈ P} is the estimated 3D shape infor-
mation conditioned on w̃ and P .

To achieve 3D supervision, we would like the estimated
Ŝ to approximate the ground truth S. Specifically, for points
over the surface, their distances and normal are both consid-
ered while for points around the surface, we only supervise
their distance following [3, 37], leading to geometry loss:

LO
geo = EX

[
1

|PO|

|PO|∑
i=1

λg1 |d̂i|+ λg2∥n̂i − ni∥1

]
(4)

LF
geo = EX

[
1

|PF |

|PF |∑
i=1

λg3 |d̂i − di|

]
(5)

Lgeo = LO
geo + LF

geo, (6)

where λs are loss weights and di = 0 for points over the
surface. We also impose code reconstruction loss Lcode =
∥ŵ − w∥2 to regularize the learning and 2D supervisions
Lrec to minimize the reconstruction error between Ĩ and I
as in pSp [40]. The overall loss is L = Lgeo+Lcode+Lrec.

4.2. Local Features for High-Fidelity Inversion

To facilitate introductions in the following sections, we
first take a look at the details of StyleSDF. As shown in
Fig. 1, G0 can be further divided into four parts: a 8-layer
MLP encoder EG0 , a SDF decoder ϕg , a feature decoder
ϕf and a color decoder ϕc. EG0 extracts a global fea-
ture fG(x) = EG0(x,w). Based on fG, ϕg and ϕf com-
pute SDF d(x) = ϕg(fG(x)) and the last-layer feature
f(x,v) = ϕf (fG(x),v) of G0, respectively. f could be di-
rectly transformed to color c(x,v) = ϕc(f(x,v)) or being
volume integrated to F and sent to G1 for high resolution
synthesis. For simplicity, we will omit v in the following.
Local Feature for Detailed Textures. The global latent
code ŵ is a compact representation of the predicted scene.
However, previous works [9, 49] have validated that a low-
dimensional latent code discards high-frequency spatial de-
tails and fails to reconstruct high-fidelity outputs. This phe-
nomenon becomes more severe when lifting the 2D image
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Figure 2. E3DGE for 3D GAN inversion. (a) We augment the
training of the encoder E0 with 3D supervision Lgeo for plausible
3D shape prediction. (b) We augment the representation capacity
of the global latent code ŵ with local point-dependent latent fea-
ture fL for high-fidelity texture reconstruction.

△!"#$

	𝐸1
𝒙

𝐟%(𝒙)

𝐟&(𝒙)

Fi
LM

𝐟(%(𝒙)

𝝃	

𝜋	

𝐟((𝒙) Volume 
Integration𝜙'

𝐅,

𝒗

𝐟-&(𝐱)
𝐟()((𝒙) Fi

LM 𝐺1

𝝃′	 △!"#$
*𝒕+

	𝐸1
𝜋	 	𝐸ADA

𝒕+
△, 𝐈-,-./*△, 𝐈-,-./

𝐟&(𝒙) 𝐟()((𝒙)

(a) Hybrid alignment for 𝐟!and 𝐟"#" extraction 

(b) Feature fusion for novel view editing 

Source view
Query view

	𝐸ADA

𝐈(,-./*

Figure 3. Hybrid alignment for high-quality editing. Given
code prediction ŵ from encoder E0 pre-trained in stage-I, we aim
to generate high-quality view synthesis over the edited code ŵedit.
In (a), the local details ∆ along with the target edited image I′edit

and depth map ts(ŵ, ξ) are sent to pre-trained EADA to predict
aligned residual ∆′

edit. The original aligned residual ∆ along with
the 2D auxiliary residual ∆′

edit are processed by E1 to recover la-
tent maps FL and FADA for later fusion. In (b), the extracted fea-
tures fL(x) and fADA(x) are first fused together with a FiLM layer,
and the fused result f̂L(x) further serve as conditions to modulate
the global feature fG(x). The final modulated feature f̂(x) con-
tains complete information, globally and locally. The volume in-
tegrated F̂ is sent to G1 for high-resolution synthesis.

to a 3D scene, which contains exponentially more infor-
mation. Inspired by recent progress in few-shot 3D recon-
struction [3, 10, 42, 43, 48, 51, 54], we propose to make up
for the lost information by introducing pixel-aligned (local)
features. As shown in Fig. 2 (b), rather than conditioning all
3D points with the same latent code ŵ, we augment the rep-
resentation capacity with local latent codes fL that is depen-
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dent on each point x. We introduce a local hourglass [30]
encoder E1 to predict a residual feature map FL based on
the reconstruction residue ∆ = I− Ĩ,

FL = E1(∆, ts(ŵ, ξ)), (7)

where ts(ŵ, ξ) is the depth map of the scene derived from
the SDF to serve as 3D context information. Then, the local
latent code of a point x is its corresponding value in FL:

fL(x) = FL(π(x))⊕ PE(x), (8)

where π maps the 3D point x to its corresponding pixel co-
ordinate on 2D feature map FL. Since in 3D scenes, points
along a ray will be projected to the same coordinate on the
2D plane, to differentiate these points, we additionally con-
catenate their positional encoding PE(x) [29] in Eq. (8). In
this way, the local feature fL only encodes the residual in-
formation at the projected position π(x) but is also capable
of determining where the residual information lies in the 3D
scene, as well as inpainting the occluded areas along the ray.

Finally, we fuse the local latent code fL(x) with the
global latent code fG(x) = EG0(x, ŵ) to supplement
the missing high-frequency details. Specifically, the fea-
ture fusion is based on Feature-wise Linear Modulation
(FiLM) [38]. As shown in Fig. 2, fL(x) is fed into two MLP
layers to obtain the scale and bias modulation parameters
fγL (x) and fβL (x). Then we modulate fG(x) with FiLM

f̂G(x) = FiLM(fG(x), fL(x)) = fγL (x) · fG(x) + fβL (x).

The fused f̂G(x) is volume integrated to F̂ and the final
high-fidelity reconstructed image is obtained as Î = G1(F̂).

Note that through point projection π, the reconstruction
with local prior is not limited to the original view, and natu-
rally works for novel views. However, for views with severe
occlusions or additional editing, the residual features may
not fully align with the scene, leading to a failed feature fu-
sion. We will address this issue in the next subsection with
our hybrid feature alignment.

4.3. Hybrid Alignment for High-Quality Editing

Though we achieve high-fidelity reconstruction with the
aforementioned designs, there is a trade-off between the in-
put view reconstruction quality and novel view editing per-
formance. We first analyze the reasons behind and propose
a hybrid alignment module to address this issue.
Reconstruction Editing Trade-off. Given an input image
I with paired reconstruction Ĩ and residual map ∆ extracted
from the input view ξ with the aforementioned method, the
reconstruction performance trade-offs the editing perfor-
mance due to the following two reasons. First, at test time
when the input image is edited Ĩedit or query view ξ′ ̸= ξ,
the residual map no longer aligns and is likely to result in

wrong predictions. Second, if we supervise the models to
reconstruct the input itself, the learned features are regres-
sive rather than generative since all prediction areas are vis-
ible in the inputs. With these above-mentioned challenges,
though the model could yield perfect reconstruction at train-
ing, it would result in noticeable performance degradation
when rendering from novel views at test time.
Hybrid Alignment for High-Quality Editing. To ad-
dress the first challenge, we propose to infer aligned fea-
tures with a 2D-3D hybrid alignment. Specifically, given
edited latent code ŵedit, the initial novel-view edited im-
age Ĩ′edit = G0(ŵedit, ξ

′) is misaligned with ∆. Inspired
by HFGI [49], we leverage a 2D alignment module EADA
to address the misalignment. As shown in Fig. 3 (a), we
first obtain ∆edit = EADA(∆, G0(ŵedit, ξ)), transform it to
residual feature map Fedit

L via Eq. (7) and retrieve the view-
consistent 3D local feature fL via Eq. (8). However, to ren-
der the high-quality edited image Î′edit from novel view ξ′,
Fedit

L might still suffer from occlusion due to large pose vari-
ations. To the end, we propose a hybrid alignment to further
refine Fedit

L with 2D aligned feature from EADA. Specifi-
cally, we align a 2D residue ∆′

edit = EADA(∆, Ĩ′edit) and
retrieve its corresponding fADA with E1, which fills the oc-
clusion in a 2D manner but lacks 3D consistency. To marry
the best of both, as shown in in Fig 3 (b), we modulate fL
with fADA,

f̃L(x) = FiLM(fL(x), fADA(x)), (9)

and further fuse f̃L with fG(x) for final prediction,

f̂(x) = FiLM(fG(x), f̃L(x)), (10)

where f̂(x) is then integrated to F̂ for rendering the final
novel-view edited image Î′edit = G1(F̂).
Novel View Training for Coherent View Synthesis. To
address the second challenge and enforce the model to learn
generative features, during training, we sample two views
ξ1 and ξ2 for each style code w, and render the correspond-
ing images Iξ1 and Iξ2 . Then, we train the models to re-
construct plausible novel views, i.e., G(E(Iξ1), ξ2) ≈ Iξ2

and G(E(Iξ2), ξ1) ≈ Iξ1 . This training strategy facilitates
a high-quality view synthesis over edited scenes.
Training. We leverage the image reconstruction loss [1],
defined as Lrec(I) = λ1L2(I) + λ2LLPIPS(I) + λ3LId(I).
We further adopt adversarial loss Ladv [21] to improve the
naturalness of the output image.

5. Experiments
Datasets. We mainly focus on the human face domain
and use both 2D and 3D datasets for extensive evaluation.
To examine 2D reconstruction quality, we adopt CelebA-
HQ [20, 24] dataset for source view reconstruction. To fur-
ther evaluate novel view synthesis performance, we synthe-
size 100 trajectory videos from a pretrained generator as
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Figure 4. Qualitative comparisons on face reconstruction (Rec) and editing (Edit) under novel views.

Table 1. Quantitative performance on CelebA-HQ. ‘T’ and ‘S’
denote the time for texture and shape inversion, respectively.

Methods MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑ Time(s) ↓

SG2EG3D .241 ± .019 .671 ± .014 .288 ± .019 .434 ± .037 100
PTIEG3D .079 ± .005 .769 ± .012 .105 ± .011 .779 ± .027 114
SG2StyleSDF .202 ± .063 .650 ± .054 .167 ± .046 .219 ± .106 235
PTIStyleSDF .062 ± .012 .796 ± .017 .027 ± .005 .892 ± .009 246

pSpStyleSDF .150 ± .032 .696 ± .048 .270 ± .059 .498 ± .099 0.29
e4eStyleSDF .174 ± .049 .669 ± .049 .226 ± .063 .252 ± .107 0.29

E3DGE .103 ± .010 .769 ± .039 .136 ± .039 .881 ± .041 0.45(T)/0.81(S)

Table 2. Quantitative performance on Novel View Synthesis.

Methods MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑

SG2StyleSDF .284 ± .025 .572 ± .006 .244 ± .031 .304 ± .036
PTIStyleSDF .186 ±.016 .652 ± .015 .215 ± .045 .795 ± .040

pSpStyleSDF .201 ± .010 .634 ± .005 .285 ± .029 .559 ± .043
e4eStyleSDF .197 ± .016 .597 ± .011 .212 ± .023 .297 ± .058

E3DGE .147 ± .011 .694 ± .018 .151 ± .024 .901 ± .012

a proxy test set. For attribute editing, we adopt Interface-
GAN [46] and Talk2Edit [19] to search for the editing di-
rections. To evaluate 3D shape reconstruction quality, we
use NoW benchmark [44] that provides a rich variety of
face images with ground-truth 3D scans. The 3D GANs are
pre-trained on FFHQ [21]. Note that our method does not
rely on any external 3D data during the training process.
Implementation Details. For all the encoder models, we
adopt Adam optimizer with a learning rate of 5e−5 to train
the models on 4 NVIDIA Tesla V100 GPUs, with a reso-
lution of 2562, batch size of 24, and 16 samples along a
ray for the recommended 200K iterations. Following [42],

we filter our invisible 3D points when training from a cer-
tain view. Code, dataset, and all pre-trained models will be
made publicly available. More details are included in the
supplementary material.

5.1. Evaluation

5.1.1 Quantitative Evaluation

For comparison, we implement two canonical encoder-
based GAN inversion approaches on StyleSDF [33], i.e.,
pSp [40] and e4e [47], which stress reconstruction and
editing quality respectively. Furthermore, we also imple-
ment optimization-based methods [21,41] on StyleSDF and
EG3D [8] for extensive comparison.

We report inversion performance for both source view
reconstruction and novel view synthesis in Tabs 1-2. For
source view reconstruction, the metrics are calculated on
the 2, 824 images from CelebA-HQ test set [24]. For novel
view synthesis, the metrics are averaged from 100 videos
generated from pre-trained 3D GANs, each with 250 frames
covering ellipsoid camera poses trajectory. For each video,
we randomly pick one image as source view input and
the remaining images as ground truths with labeled poses
as query views. In this way, we could extensively eval-
uate the view synthesis ability under occlusions and var-
ied input viewpoints. We also compare E3DGE against
two optimization-based methods [22, 41]. As demonstrated
in Tab 1, our approach substantially outperforms encoder-
based baselines in terms of reconstruction quality on two
settings and achieves considerablely faster inference speed
against optimization-based methods. Notice that we do not
include EG3D in Tab 2 due to its camera pose being mis-
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