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Abstract
StyleGAN has achieved great progress in 2D face recon-

struction and semantic editing via image inversion and la-
tent editing. While studies over extending 2D StyleGAN to
3D faces have emerged, a corresponding generic 3D GAN
inversion framework is still missing, limiting the applica-
tions of 3D face reconstruction and semantic editing. In
this paper, we study the challenging problem of 3D GAN
inversion where a latent code is predicted given a single
face image to faithfully recover its 3D shapes and detailed
textures. The problem is ill-posed: innumerable composi-
tions of shape and texture could be rendered to the cur-
rent image. Furthermore, with the limited capacity of a
global latent code, 2D inversion methods cannot preserve
faithful shape and texture at the same time when applied to
3D models. To solve this problem, we devise an effective
self-training scheme to constrain the learning of inversion.
The learning is done efficiently without any real-world 2D-
3D training pairs but proxy samples generated from a 3D
GAN. In addition, apart from a global latent code that cap-
tures the coarse shape and texture information, we augment
the generation network with a local branch, where pixel-
aligned features are added to faithfully reconstruct face de-
tails. We further consider a new pipeline to perform 3D
view-consistent editing. Extensive experiments show that
our method outperforms state-of-the-art inversion methods
in both shape and texture reconstruction quality.

1. Introduction
This work aims to devise an effective approach for

encoder-based 3D Generative Adversarial Network (GAN)
inversion. In particular, we focus on the reconstruction of
3D face, requiring just a single 2D face image as the input.
In the inversion process, we wish to map a given image to
the latent space and obtain an editable latent code with an
encoder. The latent code will be further fed to a generator to
reconstruct the corresponding 3D shape with high-quality
shape and texture. Further to the learning of an inversion
encoder, we also wish to develop an approach to synthesize
3D view-consistent editing results, e.g., changing a neutral
expression to smiling, by altering the estimated latent code.

GAN inversion [50] has been extensively studied for 2D
images but remains underexplored in the 3D world. Inver-

sion can be achieved via optimization [1,2,41], which typi-
cally provides a precise image-to-latent mapping but can be
time-consuming, or encoder-based techniques [40, 47, 49],
which explicitly learn an encoding network that maps an
image into the latent space. Encoder-based techniques en-
joy faster inversion, but the mapping is typically inferior to
optimization. In this study, we extend the notion of encoder-
based inversion from 2D images to 3D shapes.

Adding the additional dimension makes inversion more
challenging beyond the goal of reconstructing an editable
shape with detail preservation. In particular, 1) Recovering
3D shapes from 2D images is an ill-posed problem, where
innumerable compositions of shape and texture could gen-
erate identical rendering results. 3D supervisions are cru-
cial to alleviate the ambiguity of shape inversion from im-
ages. Though high-quality 2D datasets are easily accessi-
ble, owing to the expensive cost of scans there is currently a
lack of large-scale labeled 3D datasets. 2) The global latent
code, due to its compact and low-dimensional nature, only
captures the coarse shape and texture information. With-
out high-frequency spatial details, we cannot generate high-
fidelity outputs. 3) Compared with 2D inversion methods
where the editing view mostly aligns with the input view,
in 3D editing we expect the editing results to perform well
over the novel views with large pose variations. There-
fore, 3D GAN inversion is non-trivial task and could not
be achieved by directly applying existing approaches.

To this end, we propose a novel Encoder-based 3D GAN
invErsion framework, E3DGE, which addresses the afore-
mentioned three challenges. Our framework has three novel
components with a delicate model design. Specifically:
Learning Inversion with Self-supervised Learning - The
first component focuses on the training of the inversion en-
coder. To address the shape collapse of single-view 3D re-
construction without external 3D datasets, we retrofit the
generator of a 3D GAN model to provide us with diverse
pseudo training samples, which can then be used to train
our inversion encoder in a self-supervised manner. Specif-
ically, we generate 3D shapes from the latent space W of
a 3D GAN, and then render diverse 2D views from each
3D shape given different camera poses. In this way, we can
generate many pseudo 2D-3D pairs together with the corre-
sponding latent codes. Since the pseudo pairs are generated
from a smooth latent space that learns to approximate a nat-
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ural shape manifold, they serve as effective surrogate data
to train the encoder, avoiding potential shape collapse.
Local Features for High-Fidelity Inversion - The second
component learns to reconstruct accurate texture details.
Our novelty here is to leverage local features to enhance the
representation capacity, beyond just the global latent code
generated by the inversion encoder. Specifically, in addi-
tion to inferring an editable global latent code to represent
the overall shape of the face, we further devise an hour-glass
model to extract local features over the residuals details that
the global latent code fails to capture. The local features,
with proper projection to the 3D space, serve as conditions
to modulate the 2D image rendering. Through this effective
learning scheme, we marry the benefits of both global and
local priors and achieve high-fidelity reconstruction.
Synthesizing View-consistent Edited Output - The third
component addresses the problem of novel view synthesis,
a problem unique to 3D shape editing. Specifically, though
we achieve high-fidelity reconstruction through aforemen-
tioned designs, the local residual features may not fully
align with the scene when being semantically edited. More-
over, the occlusion issue further degrades the fusion perfor-
mance when rendering from novel views with large pose
variations. To this end, we propose a 2D-3D hybrid align-
ment module for high-quality editing. Specifically, a 2D
alignment module and a 3D projection scheme are intro-
duced to jointly align the local features with edited images
and inpaint occluded local features in novel view synthesis.

Extensive experiments show that our method achieves
3D GAN inversion with plausible shapes and high-fidelity
image reconstruction without affecting editability. Owing
to the self-supervised training strategy with delicate global-
local design, our approach performs well on real-world 2D
and 3D benchmarks without resorting to any real-world 3D
dataset for training. To summarize, our main contributions
are as follows:

• We propose an early attempt at learning an encoder-
based 3D GAN inversion framework for high-quality
shape and texture inversion. We show that, with care-
ful design, samples synthesized by a GAN could serve
as proxy data for self-supervised training in inversion.

• We present an effective framework that uses local fea-
tures to complement the global latent code for high-
fidelity inversion.

• We propose an effective approach to synthesize view-
consistent output with a 2D-3D hybrid alignment.

2. Related Work

3D-aware Image Synthesis. Generative Adversarial Net-
work [13] has shown promising results in generating pho-
torealistic images [5, 21, 22] and inspired researchers to
put efforts on 3D aware generation [15, 31, 34]. However,

these methods use explicit shape representations, i.e., vox-
els [15,31] and meshes [34] as the intermediate shape mod-
els, which lacks photorealism and is memory-inefficient.
Motivated by the recent success of neural rendering [28,
29, 37], researchers shift to implicit function along with the
volume rendering process as the incorporated 3D inductive
bias. Especially, NeRF [29] proposed an implicit 3D rep-
resentation for novel view synthesis which defines a scene
as {c, σ} = FΦ(x,v), where x is the query point, v is the
viewing direction from camera origin to x, c is the emitted
radiance (color) and σ is the volume density. Researchers
further extend NeRF to generation task [7, 45] and show
impressive 3D-awareness synthesis. To increase the genera-
tion resolution, recent works [8,16,52] resort to voxel-based
representations or adopting a hybrid design [8, 14, 32, 33].
By lifting the intermediate low-resolution 2D features to
high resolution with a 2D super-resolution decoder, the hy-
brid design achieves high resolution of 10242.
GAN-supervised Training. Previous works [4, 17, 18, 27,
36,53,55] propose to use pretrained GAN to generate train-
ing dataset. Through careful design in the sampling strat-
egy [18], loss functions [36] and generation process [55],
researches show that off-the-shelf image generators could
facilitate a series of downstream visual applications.
2D GAN Inversion. Optimization-based 2D GAN inver-
sion methods [1,12] achieve photorealistic reconstruction at
the cost of slow inference and lack of editability. To speed
up, Encoder-based methods [9, 40, 47, 49, 56] like pSp [40]
and e4e [47] have been developed and show better proper-
ties in editing through specific model design [40, 49] and
training strategies [47]. However, they [1, 2, 40, 47, 56] all
adopt global latent code alone for GAN inversion task, thus
failing to recover high-fidelity details. Recently, HFGI [49]
introduce an extra spatial consultation map to mitigate this
issue, though still designed to restore 2D textures without
considering 3D shape modeling. In this work, we propose a
delicate design that exploits local features to recover texture
details and achieves view-consistent synthesis.
3D GAN Inversion and Editing. Recent development of
3D GANs [7, 8, 14, 32, 33, 45] also calls for correspond-
ing inversion frameworks. π-GAN and EG3D [8] directly
adopt 2D inversion method [1, 41], which requires expen-
sive latent or model optimization and still introduces im-
plausible shape artifacts. The most relevant work to ours
is Lin et al. [26], which employs a computationally ex-
pensive optimization-based framework [1] and combines
FLAME [11, 25] for portrait animation. However, it fails
to guarantee reasonable shape and is limited to human face
domain. In parallel, some works are not based on 3D GAN
and introduce a feed-forward [6, 11] or auto-decoder [39]
pipeline for single-view 3D reconstruction [6, 11] or edit-
ing [39], which cannot leverage the strong GAN priors for
high-resolution and flexible latent-based editing.
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Figure 1. StyleSDF. Given a sampled latent code w and a camera
pose ξ, StyleSDF generates object SDF d to depict the shape and
the corresponding face image I.

3. Preliminaries
Hybrid 3D-aware Generation. To achieve high-resolution
novel view synthesis, hybrid 3D-aware generator [8, 14, 32,
33] is proposed. It is a cascade model G = G1 ◦ G0 com-
posed of a NeRF-based renderer G0 [7] and a 2D super-
resolution network G1, as shown in Fig. 1. Both G0 and G1

follow the style-based architecture [21,23] to accept a latent
code w to control the style of the generated object. During
generation, G0 captures the underlying geometry with the
full control of w and camera pose ξ, and renders a low res-
olution image I0 and an intermediate feature map F. Then,
G1 further upsamples F to obtain a high-resolution image I
with added high-frequency details.

Among them, StyleSDF [33] introduces signed distance
function (SDF) to serve as a proxy for the density function
σ(x) used for the volume rendering in NeRF. Specifically,
StyleSDF uses G0 to predict the distance d(x) = G0(w,x)
between the query point x and the shape surface, where
the density function σ(x) can be transformed from d(x)
for NeRF [29] to render. The incorporation of SDF leads
to higher-quality geometry in terms of expressiveness view-
consistency and clear definition of the surface. StyleSDF
also enjoys the flexible style control for semantic editing as
in StyleGAN [21]. Therefore, in this paper we mainly use
StyleSDF as the base model for GAN inversion study. Note
that our method is not limited to StyleSDF and could be
easily extended to other style-based 3D GAN variations.

4. E3DGE
An effective 3D GAN inversion shall be capable of 1)

reconstructing plausible 3D shape given single-view input,
2) maintaining high-fidelity texture, and 3) allowing view-

consistent semantic edits. To achieve these goals, we pro-
pose the E3DGE framework with three novel components:
In Sec. 4.1, we leverage 3D GAN to generate pseudo 2D-3D
paired samples for 3D supervisions, and train an inversion
encoder E0 to estimate the latent of plausible 3D shapes
from a 2D image; In Sec. 4.2, we train a local encoder E1

to extract pixel-aligned features to enrich texture details for
high-fidelity inversion; Finally, Sec. 4.3 introduces a hybrid
alignment module for view-consistent semantic editing.

4.1. Self-supervised Inversion Learning

In this section, we propose to mitigate the lack of large-
scale high-quality 2D-3D paired datasets by retrofitting pre-
trained 3D GANs to provide pseudo samples for training
our inversion encoder. We demonstrate the model trained
from pseudo samples can rival and even outperform the
methods learned from real data on the 3D GAN inversion
task. We detail the process as follows.
Global Encoder for 3D GAN Inversion. With the style-
based G, we build our encoder E0 based on pSp [40] for in-
version. Given a target image I, E0 predicts its latent code
ŵ = E0(I). Given the corresponding camera pose ξ, the
reconstructed image is obtained by Ĩ = G(ŵ, ξ) to approx-
imate I. In addition, we would like its 3D shape predicted
by G0 to be plausible enough.
Distill 3D GANs as 3D Supervisions. Different compo-
sitions of shape and texture could lead to identical 2D-
rendered images. 3D supervision is needed to alleviate such
shape-texture ambiguity. In the lack of large-scale high-
quality 2D-3D paired samples, we formulate GAN Inver-
sion as a self-training task, where samples synthesized from
itself are leveraged to boost the reconstruction fidelity in
both 2D and 3D domains.

As shown in Fig 1, we synthesize paired 3D shape infor-
mation S and 2D image I from latent code w and camera
pose ξ using G to train E0. To extract the 3D shape infor-
mation S of each synthetic shape, we first sample a point set
P = {PO,PF} where PO and PF contain points sampled
from the surface and around the surface, respectively. Then,
we calculate the geometry descriptor di and ni for each 3D
point xi ∈ P , and S is defined as the set of geometry de-
scriptors of all 3D point in P:

S = {{di,ni}|P|
i=1 |

xi ∈ P, di = G0(w,xi),ni = ∇xi
di},

(1)

where di is the distance from xi to the shape surface and ni

is the surface normal defined by the gradient of the distance
w.r.t. xi. Note our method is not limited to the SDF-based
shape representation and can be easily extended to radiance-
based methods [7, 8, 35]. Moreover, given different camera
poses, we can generate a diverse 2D-3D dataset to help al-
leviate the shape-texture ambiguity, i.e., for each shape S,
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various images I = G(w, ξ) can be rendered by randomly
sampling ξ from a predefined pose distribution pξ. Finally,
we define X = {S, ξ, I} as a training sample for E0.
3D GAN-Supervised Training. As shown in Fig. 2 (a),
given a training sample X , the forward process is repre-
sented as:

ŵ = E0(I) (2)

{Ĩ, Ŝ} = G(ŵ, ξ,P) (3)

where ŵ is the estimated latent code and Ŝ =
{{d̂i, n̂i}|P|

i=1 | xi ∈ P} is the estimated 3D shape infor-
mation conditioned on w̃ and P .

To achieve 3D supervision, we would like the estimated
Ŝ to approximate the ground truth S. Specifically, for points
over the surface, their distances and normal are both consid-
ered while for points around the surface, we only supervise
their distance following [3, 37], leading to geometry loss:

LO
geo = EX

[
1

|PO|

|PO|∑
i=1

λg1 |d̂i|+ λg2∥n̂i − ni∥1

]
(4)

LF
geo = EX

[
1

|PF |

|PF |∑
i=1

λg3 |d̂i − di|

]
(5)

Lgeo = LO
geo + LF

geo, (6)

where λs are loss weights and di = 0 for points over the
surface. We also impose code reconstruction loss Lcode =
∥ŵ − w∥2 to regularize the learning and 2D supervisions
Lrec to minimize the reconstruction error between Ĩ and I
as in pSp [40]. The overall loss is L = Lgeo+Lcode+Lrec.

4.2. Local Features for High-Fidelity Inversion

To facilitate introductions in the following sections, we
first take a look at the details of StyleSDF. As shown in
Fig. 1, G0 can be further divided into four parts: a 8-layer
MLP encoder EG0 , a SDF decoder ϕg , a feature decoder
ϕf and a color decoder ϕc. EG0 extracts a global fea-
ture fG(x) = EG0(x,w). Based on fG, ϕg and ϕf com-
pute SDF d(x) = ϕg(fG(x)) and the last-layer feature
f(x,v) = ϕf (fG(x),v) of G0, respectively. f could be di-
rectly transformed to color c(x,v) = ϕc(f(x,v)) or being
volume integrated to F and sent to G1 for high resolution
synthesis. For simplicity, we will omit v in the following.
Local Feature for Detailed Textures. The global latent
code ŵ is a compact representation of the predicted scene.
However, previous works [9, 49] have validated that a low-
dimensional latent code discards high-frequency spatial de-
tails and fails to reconstruct high-fidelity outputs. This phe-
nomenon becomes more severe when lifting the 2D image
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Figure 3. Hybrid alignment for high-quality editing. Given
code prediction ŵ from encoder E0 pre-trained in stage-I, we aim
to generate high-quality view synthesis over the edited code ŵedit.
In (a), the local details ∆ along with the target edited image I′edit

and depth map ts(ŵ, ξ) are sent to pre-trained EADA to predict
aligned residual ∆′

edit. The original aligned residual ∆ along with
the 2D auxiliary residual ∆′

edit are processed by E1 to recover la-
tent maps FL and FADA for later fusion. In (b), the extracted fea-
tures fL(x) and fADA(x) are first fused together with a FiLM layer,
and the fused result f̂L(x) further serve as conditions to modulate
the global feature fG(x). The final modulated feature f̂(x) con-
tains complete information, globally and locally. The volume in-
tegrated F̂ is sent to G1 for high-resolution synthesis.

to a 3D scene, which contains exponentially more infor-
mation. Inspired by recent progress in few-shot 3D recon-
struction [3, 10, 42, 43, 48, 51, 54], we propose to make up
for the lost information by introducing pixel-aligned (local)
features. As shown in Fig. 2 (b), rather than conditioning all
3D points with the same latent code ŵ, we augment the rep-
resentation capacity with local latent codes fL that is depen-
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dent on each point x. We introduce a local hourglass [30]
encoder E1 to predict a residual feature map FL based on
the reconstruction residue ∆ = I− Ĩ,

FL = E1(∆, ts(ŵ, ξ)), (7)

where ts(ŵ, ξ) is the depth map of the scene derived from
the SDF to serve as 3D context information. Then, the local
latent code of a point x is its corresponding value in FL:

fL(x) = FL(π(x))⊕ PE(x), (8)

where π maps the 3D point x to its corresponding pixel co-
ordinate on 2D feature map FL. Since in 3D scenes, points
along a ray will be projected to the same coordinate on the
2D plane, to differentiate these points, we additionally con-
catenate their positional encoding PE(x) [29] in Eq. (8). In
this way, the local feature fL only encodes the residual in-
formation at the projected position π(x) but is also capable
of determining where the residual information lies in the 3D
scene, as well as inpainting the occluded areas along the ray.

Finally, we fuse the local latent code fL(x) with the
global latent code fG(x) = EG0(x, ŵ) to supplement
the missing high-frequency details. Specifically, the fea-
ture fusion is based on Feature-wise Linear Modulation
(FiLM) [38]. As shown in Fig. 2, fL(x) is fed into two MLP
layers to obtain the scale and bias modulation parameters
fγL (x) and fβL (x). Then we modulate fG(x) with FiLM

f̂G(x) = FiLM(fG(x), fL(x)) = fγL (x) · fG(x) + fβL (x).

The fused f̂G(x) is volume integrated to F̂ and the final
high-fidelity reconstructed image is obtained as Î = G1(F̂).

Note that through point projection π, the reconstruction
with local prior is not limited to the original view, and natu-
rally works for novel views. However, for views with severe
occlusions or additional editing, the residual features may
not fully align with the scene, leading to a failed feature fu-
sion. We will address this issue in the next subsection with
our hybrid feature alignment.

4.3. Hybrid Alignment for High-Quality Editing

Though we achieve high-fidelity reconstruction with the
aforementioned designs, there is a trade-off between the in-
put view reconstruction quality and novel view editing per-
formance. We first analyze the reasons behind and propose
a hybrid alignment module to address this issue.
Reconstruction Editing Trade-off. Given an input image
I with paired reconstruction Ĩ and residual map ∆ extracted
from the input view ξ with the aforementioned method, the
reconstruction performance trade-offs the editing perfor-
mance due to the following two reasons. First, at test time
when the input image is edited Ĩedit or query view ξ′ ̸= ξ,
the residual map no longer aligns and is likely to result in

wrong predictions. Second, if we supervise the models to
reconstruct the input itself, the learned features are regres-
sive rather than generative since all prediction areas are vis-
ible in the inputs. With these above-mentioned challenges,
though the model could yield perfect reconstruction at train-
ing, it would result in noticeable performance degradation
when rendering from novel views at test time.
Hybrid Alignment for High-Quality Editing. To ad-
dress the first challenge, we propose to infer aligned fea-
tures with a 2D-3D hybrid alignment. Specifically, given
edited latent code ŵedit, the initial novel-view edited im-
age Ĩ′edit = G0(ŵedit, ξ

′) is misaligned with ∆. Inspired
by HFGI [49], we leverage a 2D alignment module EADA
to address the misalignment. As shown in Fig. 3 (a), we
first obtain ∆edit = EADA(∆, G0(ŵedit, ξ)), transform it to
residual feature map Fedit

L via Eq. (7) and retrieve the view-
consistent 3D local feature fL via Eq. (8). However, to ren-
der the high-quality edited image Î′edit from novel view ξ′,
Fedit

L might still suffer from occlusion due to large pose vari-
ations. To the end, we propose a hybrid alignment to further
refine Fedit

L with 2D aligned feature from EADA. Specifi-
cally, we align a 2D residue ∆′

edit = EADA(∆, Ĩ′edit) and
retrieve its corresponding fADA with E1, which fills the oc-
clusion in a 2D manner but lacks 3D consistency. To marry
the best of both, as shown in in Fig 3 (b), we modulate fL
with fADA,

f̃L(x) = FiLM(fL(x), fADA(x)), (9)

and further fuse f̃L with fG(x) for final prediction,

f̂(x) = FiLM(fG(x), f̃L(x)), (10)

where f̂(x) is then integrated to F̂ for rendering the final
novel-view edited image Î′edit = G1(F̂).
Novel View Training for Coherent View Synthesis. To
address the second challenge and enforce the model to learn
generative features, during training, we sample two views
ξ1 and ξ2 for each style code w, and render the correspond-
ing images Iξ1 and Iξ2 . Then, we train the models to re-
construct plausible novel views, i.e., G(E(Iξ1), ξ2) ≈ Iξ2

and G(E(Iξ2), ξ1) ≈ Iξ1 . This training strategy facilitates
a high-quality view synthesis over edited scenes.
Training. We leverage the image reconstruction loss [1],
defined as Lrec(I) = λ1L2(I) + λ2LLPIPS(I) + λ3LId(I).
We further adopt adversarial loss Ladv [21] to improve the
naturalness of the output image.

5. Experiments
Datasets. We mainly focus on the human face domain
and use both 2D and 3D datasets for extensive evaluation.
To examine 2D reconstruction quality, we adopt CelebA-
HQ [20, 24] dataset for source view reconstruction. To fur-
ther evaluate novel view synthesis performance, we synthe-
size 100 trajectory videos from a pretrained generator as
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Figure 4. Qualitative comparisons on face reconstruction (Rec) and editing (Edit) under novel views.

Table 1. Quantitative performance on CelebA-HQ. ‘T’ and ‘S’
denote the time for texture and shape inversion, respectively.

Methods MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑ Time(s) ↓

SG2EG3D .241 ± .019 .671 ± .014 .288 ± .019 .434 ± .037 100
PTIEG3D .079 ± .005 .769 ± .012 .105 ± .011 .779 ± .027 114
SG2StyleSDF .202 ± .063 .650 ± .054 .167 ± .046 .219 ± .106 235
PTIStyleSDF .062 ± .012 .796 ± .017 .027 ± .005 .892 ± .009 246

pSpStyleSDF .150 ± .032 .696 ± .048 .270 ± .059 .498 ± .099 0.29
e4eStyleSDF .174 ± .049 .669 ± .049 .226 ± .063 .252 ± .107 0.29

E3DGE .103 ± .010 .769 ± .039 .136 ± .039 .881 ± .041 0.45(T)/0.81(S)

Table 2. Quantitative performance on Novel View Synthesis.

Methods MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑

SG2StyleSDF .284 ± .025 .572 ± .006 .244 ± .031 .304 ± .036
PTIStyleSDF .186 ±.016 .652 ± .015 .215 ± .045 .795 ± .040

pSpStyleSDF .201 ± .010 .634 ± .005 .285 ± .029 .559 ± .043
e4eStyleSDF .197 ± .016 .597 ± .011 .212 ± .023 .297 ± .058

E3DGE .147 ± .011 .694 ± .018 .151 ± .024 .901 ± .012

a proxy test set. For attribute editing, we adopt Interface-
GAN [46] and Talk2Edit [19] to search for the editing di-
rections. To evaluate 3D shape reconstruction quality, we
use NoW benchmark [44] that provides a rich variety of
face images with ground-truth 3D scans. The 3D GANs are
pre-trained on FFHQ [21]. Note that our method does not
rely on any external 3D data during the training process.
Implementation Details. For all the encoder models, we
adopt Adam optimizer with a learning rate of 5e−5 to train
the models on 4 NVIDIA Tesla V100 GPUs, with a reso-
lution of 2562, batch size of 24, and 16 samples along a
ray for the recommended 200K iterations. Following [42],

we filter our invisible 3D points when training from a cer-
tain view. Code, dataset, and all pre-trained models will be
made publicly available. More details are included in the
supplementary material.

5.1. Evaluation

5.1.1 Quantitative Evaluation

For comparison, we implement two canonical encoder-
based GAN inversion approaches on StyleSDF [33], i.e.,
pSp [40] and e4e [47], which stress reconstruction and
editing quality respectively. Furthermore, we also imple-
ment optimization-based methods [21,41] on StyleSDF and
EG3D [8] for extensive comparison.

We report inversion performance for both source view
reconstruction and novel view synthesis in Tabs 1-2. For
source view reconstruction, the metrics are calculated on
the 2, 824 images from CelebA-HQ test set [24]. For novel
view synthesis, the metrics are averaged from 100 videos
generated from pre-trained 3D GANs, each with 250 frames
covering ellipsoid camera poses trajectory. For each video,
we randomly pick one image as source view input and
the remaining images as ground truths with labeled poses
as query views. In this way, we could extensively eval-
uate the view synthesis ability under occlusions and var-
ied input viewpoints. We also compare E3DGE against
two optimization-based methods [22, 41]. As demonstrated
in Tab 1, our approach substantially outperforms encoder-
based baselines in terms of reconstruction quality on two
settings and achieves considerablely faster inference speed
against optimization-based methods. Notice that we do not
include EG3D in Tab 2 due to its camera pose being mis-
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Figure 5. Visual comparisons on optimization-based methods. ‘Rec’ and ‘Edit’ represent reconstruction and editing, respectively.

aligned with StyleSDF. Please also refer to the supplemen-
tary materials for quantitative results of 3D reconstruction.

5.1.2 Qualitative Evaluation

Encoder Baselines. We visualize both inversion and edit-
ing results against encoder baselines in Fig. 4. Geometry-
wise, the baseline models without explicit 3D supervisions
tend to generate implausible intermediate shapes, e.g., Be-
sides, their reconstruction is not close to the “ground truth”,
and the reconstructed surface lacks details. Our method suc-
cessfully regularizes the intermediate 3D shapes and gener-
ates plausible results with surface details and a more com-
plete structure. For instance, in rows 1, our method recon-
structs 3D eyeglasses in which the baselines fail. Corre-
sponding metrics in Tab. 4 also validate the usefulness of
the direct geometry supervisions and loss designs. Texture-
wise, existing methods generate distorted results and suffer
artifacts and identity change. In contrast, with pixel-aligned
features incorporated, our method is more robust with high-
fidelity results. In particular, our method captures more de-
tails and preserves the identity of different input viewpoints.

For editing, we choose the “Smile” attribute for editing.
Beyond plausible shape reconstruction with high-fidelity
texture inversion, and in-view synthesis over edited results,
our method consistently generates high-quality edited ren-
derings in terms of view consistency, details conservation,
and identity preservation. Compared with our method, the
baselines either fail to render intact identity (column 5) or
generate visually plausible shapes (column 6).
Optimization Baselines. We also compare our method
with the state-of-the-art optimization-based methods [8,41]
in Fig. 5. We include the performance of PTI [41] on both
StyleSDF and EG3D for extensive evaluation. With more

than 100× faster inference, our method achieves a compara-
ble inversion quality. Also, the editing results produced by
E3DGE successfully preserve the local details with high-
fidelity novel view editing performance. We also notice
the geometry-texture misalignment of EG3D (column 7),
where the ”Smiling” texture with teeth does not align with
the geometry without teeth.

5.2. Ablation Study

Effect of 3D GAN as Supervisions. We quantitatively
validate the effects of 3D supervision in the NoW Chal-
lenge validation set and report the corresponding metrics in
Tab. 4. Compared with 2D supervision only, adding 3D su-
pervisions greatly improves the reconstruction quality. We
also validate the benefits of all loss terms in E0 training.
Effect of Local Features. As discussed, the local features
preserve the image details to facilitate high-fidelity recon-
struction. To validate the effectiveness of local features
in texture reconstructions, we show the inversion results in
Fig. 6. With the proposed local-global fusion pipeline, our
model captures more details and guarantees photorealistic
reconstruction. Quantitative results in Tab. 3 also validate
the effectiveness of local features in high-quality inversion.
The results on the video trajectories also show that with-
out delicate design, e.g. novel view training, local features
would fully collapse over novel view synthesis.
Effect of Hybrid Alignment. We show the view synthe-
sis achieved by different alignment methods in Fig. 7. To
quantitatively analyze the effect of hybrid alignment, in
Tab. 3 we evaluate the model performance of 3D alignment
and 2D alignment individually. For both ablations, novel
view training is enabled. As shown here, the 3D alignment
model shows better view consistency in video prediction
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Table 3. Ablations of Local Features and Hybrid Fusion. Our local-global model design with hybrid alignment achieves the balance of
high-quality reconstruction and view synthesis.

Source View Reconstruction Novel View Synthesis

Ablation Settings MAE ↓ SSIM ↑ LPIPS ↓ ID ↑ MAE ↓ SSIM ↑ LPIPS ↓ ID ↑

Synthetic Training .245 ± .024 .634 ± .019 .333 ± .029 .369 ± .056 .241 ± .011 .594 ± .008 .366 ± .059 .770 ± .026
+Local Features .074 ± .007 .811 ± .015 .075 ± .010 .953 ± .006 .282 ± .103 .571 ± 0.056 .511 ± 0.031 .608 ± .123

+2D Alignment .098 ± .005 .774 ± .038 .140 ± .040 .900 ± .032 .178 ± .007 .656 ± .009 .178 ± .012 .895 ± .018
+3D Alignment .102 ± .009 .772 ± .015 .119 ± .016 .818 ± .029 .150 ± .011 .689 ± .022 .140 ± .021 .891 ± .011

Table 4. Effect of 3D Supervisions on the NoW Challenge.

Settings Median↓ Mean↓ Std

pSpStyleSDF 1.97 2.43 2.05
e4eStyleSDF 2.83 3.40 2.67

+LO
geo 1.75 2.11 1.72

+LF
geo 1.71 2.09 1.70

+Lcode 1.66 2.06 1.69
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Figure 6. Ablation of Local Features. Our method with pixel-
aligned features shows photorealistic reconstructions.

measured by reconstruction metrics, and the 2D alignment
model shows better identity preservation. The hybrid align-
ment model marries the best of both and also enables se-
mantic editing and yields better reconstruction performance
on the video predictions.

6. Conclusion and Discussions

We propose a novel 3D GAN inversion framework
E3DGE for 3D GAN inversion and editing. We marry
the benefits of both self-supervised global prior and pixel-
aligned local prior for high-quality shape and texture re-
construction. A hybrid alignment that bridges the best of
2D and 3D features is further proposed for view-consistent
editing. Benefiting from the overall system design, the pro-
posed method has advantages in terms of both high fidelity

Input Raw 3D Align 3D Align 2D Align Hybrid Align

Figure 7. Ablation of Hybrid Alignment. From left to right,
we show the novel view synthesis of raw 3D-aligned features
w/wo novel view training, synthesis achieved using 2D-aligned
features, and the final hybrid features. 3D-aligned features are
view-consistent but suffer from occlusions (circled), while 2D fea-
tures are visually plausible but lack some details (e.g., hair color).
Our hybrid fused results share the best of both.

and editability. As a pioneer attempt in this direction, we
believe this work opens a new line of research direction and
will inspire future works on 3D GAN inversion, few-shot
3D reconstruction and 3D-aware learning from 2D images.

Limitations and Future Work. The proposed method suf-
fers data bias introduced by the synthetic data. As the syn-
thetic data lacks complex details and pose variations com-
pared with real-world data, our method trained with it tends
to generate simple background and fail on extreme poses.
Special attentions should be paid to data bias to avoid so-
cial impact to under represented minorities. A future di-
rection is to leverage real data for semi-supervised training.
Another future direction is to leverage the hyper-network
for efficient local feature incorporation to alleviate the extra
computational cost of the 2D alignment module. Finally,
we would explore the potentials of our framework on other
3D GANs and shapes beyond human face and other editing
methods uniquely designed for 3D GANs.
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Projects (IAF-ICP) Funding Initiative, as well as cash and
in-kind contribution from the industry partner(s). It is also
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