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Abstract

Scene flow estimation is a long-standing problem in com-
puter vision, where the goal is to find the 3D motion of
a scene from its consecutive observations. Recently, there
have been efforts to compute the scene flow from 3D point
clouds. A common approach is to train a regression model
that consumes source and target point clouds and outputs
the per-point translation vector. An alternative is to learn
point matches between the point clouds concurrently with
regressing a refinement of the initial correspondence flow.
In both cases, the learning task is very challenging since the
flow regression is done in the free 3D space, and a typical
solution is to resort to a large annotated synthetic dataset.

We introduce SCOOP, a new method for scene flow esti-
mation that can be learned on a small amount of data with-
out employing ground-truth flow supervision. In contrast to
previous work, we train a pure correspondence model fo-
cused on learning point feature representation and initial-
ize the flow as the difference between a source point and
its softly corresponding target point. Then, in the run-time
phase, we directly optimize a flow refinement component
with a self-supervised objective, which leads to a coherent
and accurate flow field between the point clouds. Experi-
ments on widespread datasets demonstrate the performance
gains achieved by our method compared to existing leading
techniques while using a fraction of the training data. Our
code is publicly available1.

1. Introduction
Scene flow estimation [27] is a fundamental problem

in computer vision with various use-cases, such as au-
tonomous driving, scene parsing, pose estimation, and ob-
ject tracking, to name a few. Given two consecutive obser-
vations of a 3D scene, the aim is to compute the dynamics
of the scene between the observations. Scene flow predic-
tion based on 2D images has been thoroughly investigated
in the literature [17, 19, 28, 32, 33]. However, in light of the
1https://github.com/itailang/SCOOP
*The work was done during an internship at Google Research.
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Figure 1. Flow accuracy on the KITTI benchmark vs. the train
set size. Our method is trained on one or two orders of magnitude
less data while surpassing the performance of the competing tech-
niques [4, 13, 14, 16, 21, 24, 30, 31] by a large margin. Please see
Table 1 for the complete details of the evaluation settings.

recent proliferation of 3D sensors, such as LiDAR, there is a
surge of interest in scene flow methods that operate directly
on the 3D data [10, 13, 16, 21, 34].

Liu et al. [16] were among the first to pursue this
research avenue. They proposed FlowNet3D, a fully-
supervised neural network that learned to regress the flow
between 3D point clouds and showed remarkable perfor-
mance improvement over image-based techniques [1, 19,
29]. Since their method required ground-truth flow anno-
tations, which are scarce for real-world data, they turned to
training on a large synthetic dataset that compromised the
generalization capability to real-world LiDAR data.

Follow-up works devised self-supervised learning
schemes [13, 21] and narrowed the domain gap by training
on unannotated LiDAR point cloud pairs. However, similar
to Liu et al. [16], they used a regression approach in which
the model should learn to compute the flow in the free 3D
space. This task is extremely challenging, given the irreg-
ular nature of point clouds, and requires a large amount of
training data for the network to converge.

In another line of work [8, 11, 24], researchers leveraged
point cloud correspondence for scene flow prediction. In
this approach, the flow is computed as the translation of
a point in the first point cloud (source) to its softly corre-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Comparison of scene flow approaches. Given a pair of point clouds, FlowNet3D [16] learns to regress the flow in the free
3D space, and the trained model is frozen for testing. FLOT [24] concurrently trains two network components: one that computes point
correspondence and another that regresses a correction to the resulting correspondence flow. Neural Prior [15] optimizes the flow between
the point clouds from scratch without learning. In contrast to previous work, we take a hybrid approach. We train a pure correspondence
model without flow regression, which serves for flow initialization. Then, we directly optimize only the flow refinement at the test-time.

sponding point in the second one (target). The softly cor-
responding point is a weighted sum of target points based
on point similarity in a learned latent space. Thus, rather
than the challenging regression problem in the 3D ambi-
ent space, the flow estimation task boils down to point
feature learning and is reduced to the convex combination
space [26] of existing target points. However, to relax this
constraint, another network component is trained to regress
flow corrections. The joint training of point representation
and flow refinement burdens the learning process and re-
tains the reliance on large datasets with flow supervision.

Another emerging approach is an optimization-only flow
computation [15, 23]. In this case, no training data is in-
volved, and the flow is optimized at run-time for each scene
separately. Despite the high accuracy such a dedicated op-
timization achieves, it requires a long processing time.

We present SCOOP, a hybrid flow estimation method
that can be learned from a small amount of training data.
SCOOP consists of two parts: a self-supervised neural net-
work for point cloud correspondence and a direct flow re-
finement optimization module. During the training phase,
the network learns to extract point features for soft point
matches, which initialize the flow between the point clouds.
In contrast to previous work, our network is focused on
learning just the point embeddings, allowing its training on
a very small dataset, as shown in Figure 1. Additionally,
we consider the confidence of the network in the computed
correspondences to guide the learning process better.

Then, instead of training another network for regress-
ing flow updates, we define an optimization problem and
directly optimize residual flow refinement vectors at run-
time. The optimization objective encourages a coherent
flow field while retaining the translated source points close
to the target point cloud. Our design choices improve the
accuracy compared to learning-based methods and reduce
the processing time with respect to the optimization-only
approach [15, 23]. For both correspondence learning and
refinement optimization, we use a self-supervised distance
objective and a smoothness prior instead of ground-truth

flow labels. Figure 2 presents the difference between our
approach and leading previous ones.

In summary, we propose a hybrid flow prediction ap-
proach for point clouds based on self-supervised correspon-
dence learning and direct run-time residual flow optimiza-
tion. Using well-established datasets in the scene flow liter-
ature, we show that our approach yields clear performance
improvement over existing state-of-the-art methods while
using a fraction of the training data and without employing
any ground-truth flow supervision.

2. Related Work

Flow regression. A common approach for scene flow
estimation on point clouds is to train a flow regression
model [4,10,16,31,34]. It is a neural network that computes
the flow vectors between the point clouds in the ambient
3D space. Liu et al. [16] proposed FlowNet3D, which en-
coded the point clouds into a latent space, mixed point fea-
tures with a flow embedding layer, and regressed the scene
flow by decoding the mixed point features. FlowNet3D was
trained in a fully-supervised manner, using an l2 loss with
respect to ground-truth flow annotations.

Liu et al. [16] inspired a line of follow-up works [4,
13, 21, 30, 31]. Wang et al. [31] added spatial and tem-
poral attention layers to FlowNet3D’s architecture. In Bi-
PointFlowNet [4], the authors propagated features from
each point cloud bidirectionally, augmenting the point fea-
ture representation. Mittal et al. [21] discarded flow su-
pervision by utilizing a self-supervised nearest neighbor
loss and cycle consistency between the forward and reveres
scene flows, and Li et al. [13, 14] extracted flow labels for
training from the data itself. Similar to the latter methods,
we also refrain from ground-truth flow supervision in our
training scheme. However, rather than flow regression, we
base our technique on soft point matches in the scene, which
simplifies the flow estimation problem.

Point cloud correspondence. Finding correspondences
is widely applied to various vision tasks [12, 24, 35, 37].
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Several methods have been proposed for dense mapping be-
tween non-rigid point cloud shapes [7, 9, 12, 36]. Recently,
Lang et al. [12] suggested constructing one point cloud by
the other using latent space similarity and the point coor-
dinates themselves rather than regressing the correspond-
ing point cloud [9, 36]. Inspired by Lang’s work, we do
not use flow regression in our model and concentrate the
learning process on point feature representation. However,
while Lang et al. operated on complete shapes with one-
to-one correspondence, our method accommodates scenes
with partial objects where a perfect match may not exist.

Researchers have taken the correspondence approach to
the scene flow problem as well [8,11,24]. FLOT [24] com-
puted an optimal transport plan that served for an initial flow
between the point clouds and further regressed flow refine-
ment with a series of learned convolutions. Our work builds
on FLOT but differs from it in three main aspects. First, we
exclude flow regression from our training scheme and in-
stead apply direct run-time optimization to refine the initial
correspondence-based flow. Second, we use the model’s
confidence in the computed point matches to improve the
point feature learning. Third, we do not use any ground-
truth flow annotations, neither for the correspondence train-
ing nor for the refinement optimization, whereas FLOT re-
lies on fully-supervised scene flow data.

Optimization-based scene flow. Pontes et al. [23] sug-
gested a scene flow estimation technique that does not in-
volve learning. Instead, the flow was optimized completely
at run-time, such that the warped source is close to the tar-
get point cloud while demanding the flow to be “as-rigid-
as-possible”. Pontes et al. encoded this prior by minimiz-
ing the graph Laplacian defined over the source points. In
follow-up work [15], the explicit graph was replaced by
a neural prior, which implicitly regularized the optimized
flow field. In contrast to these papers, we initialize the flow
with a learned correspondence model and optimize only the
residual flow refinement at run-time.

3. Method

A point cloud is a set of unordered 3D points X ∈ Rn×3,
where n is the number of points. Given a pair of point
clouds of a scene, denoted as X,Y ∈ Rn×3 and referred
to as source and target, respectively, our goal is to estimate
a flow field F ∗ ∈ Rn×3 describing the per-point motion
from X to Y .

We tackle this problem via self-supervised soft corre-
spondence learning between the two point clouds and a
direct flow refinement optimization. An overview of the
method is shown in Figure 3. First, a deep neural net-
work is used to extract point features. Then, we calcu-
late a matching cost between points in the learned feature
space. Based on this cost, we solve an optimal transport

problem to compute a softly matched target point for each
source point, where the difference between the two is re-
garded as the correspondence-based flow. Finally, we refine
the flow field by demanding its consistency across neigh-
boring source points and obtain our estimated scene flow.
In both correspondence learning and flow refinement, no
ground-truth flow labels are employed.

3.1. Matching Cost

The cost of matching a point xi ∈ X to a point yj ∈ Y
is determined based on the point representation learned by a
deep neural network. The network consumes the raw point
clouds X , Y and computes point features ΦX ,ΦY ∈ Rn×d,
where d is the per-point feature dimension. The network’s
architecture is based on PointNet++ [25]. Its details are
given in the supplemental material.

Inspired by previous work [12, 13, 24], we first compute
the cosine similarity in the learned feature space:

Sij =
Φi

X · (Φj
Y )

⊤

||Φi
X ||2||Φj

Y ||2
, (1)

where Φi
X ,Φj

Y ∈ Rd are the i’th and j’th rows of ΦX and
ΦY , respectively. Then, the cost is set to

Cij = 1− Sij (2)

for points with a Euclidean distance less than 10 meters and
to ∞ otherwise to avoid flow between points too far apart.

3.2. Soft Correspondence

Finding correspondence between the source and target
point clouds can be modeled as an optimal transport prob-
lem, where each source point is assigned with a mass 1

n
that is transported to the target points [13, 24]. Similar to
FLOT [24], we use the relaxed transport problem:

T ∗ =argmin
T∈Rn×n

+

∑
ij

(CijTij + ϵTij(log Tij − 1))

+ λ(KL(T1n,
1

n
1n) + KL(T⊤1n,

1

n
1n)),

(3)

where Cij ≥ 0 is the matching cost from Equation 2 and
Tij ≥ 0 is the amount of mass transported between points.
The parameters ϵ, λ ≥ 0 control the relaxation of the prob-
lem. 1n ∈ Rn is a vector with all entries equal 1. KL is
the Kullback-Leibler divergence used for soft preservation
of the transported mass between the point clouds.

The second term in the summation operation in Equa-
tion 3 is an entropic regularization, which enables solving
the problem efficiently by the Sinkhorn algorithm [5,6]. We
use this algorithm to estimate the optimal transport matrix
T ∗ from C to represent the soft correspondence between
the point clouds. The complete derivation of the transport
problem and the Sinkhorn algorithm’s details are given in
the supplementary material.
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3.3. Correspondence-Based Flow

We leverage the optimal transport plan T ∗ to compute
correspondence weights for the source and target points
for an initial estimate of the scene flow. Different from
FLOT [24], which includes all the target points as candi-
dates for each source point, we consider only target points
with maximal transport amount from the source point. This
design choice focuses our flow estimation pipeline on the
most relevant target candidates and improves the method’s
results.

For a point xi ∈ X , the matching weights are calculated
as follows:

wij =
eT

∗
ij∑

l∈NY (xi)
eT

∗
il
, (4)

where NY (xi) is a neighborhood containing the ks indices
of the {yj} points with the top mass transport {T ∗

ij}. The
softly corresponding point ŷxi

to xi is:

ŷxi
=

∑
j∈NY (xi)

wijyj , (5)

and the initial estimated flow for the point xi is:

fi = ŷxi
− xi. (6)

Note that if we define T̂ ∗
ij = wij for j ∈ NY (xi) and 0

otherwise, we get the initial flow field as:

F = T̂ ∗Y −X = Ŷ −X, (7)

where Ŷ ∈ Rn×3 contains the points {ŷxi
}.

3.4. Training Objective

To learn point representation suitable for scene flow
without ground-truth supervision, we apply the flowing loss
terms. First, for a tractable flow estimation, we would like
each softly corresponding point ŷxi

to have a nearby target
point yj . It may be achieved by the nearest-neighbor dis-
tance term, as done by Mittal et al. [21]:

D =
1

|X|
∑
xi∈X

min
yj∈Y

||ŷxi − yj ||22. (8)

However, the correspondence quality for the source points
can vary. For example, points on a flat region will have
less distinctive correspondences than points with geometri-
cally unique features. Thus, we augment the distance term
in Equation 8 with the matching confidence of each point.

The confidence measure is based on the correspondence
similarity that we define as:

sxi
=

∑
j∈NY (xi)

wijSij . (9)
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Figure 3. The proposed method. SCOOP includes two com-
ponents: a learned point cloud correspondence model and a flow
refinement module. The model learns deep point embeddings
ΦX ,ΦY to establish soft point matches based on a matching cost
C in the latent space. The initial flow F from the training phase is
the difference between the softly corresponding point cloud Ŷ and
the source point cloud X . At the test-time, we freeze the trained
model and optimize a residual flow refinement R∗ to produce a
smooth and consistent scene flow F ∗ between the point clouds.

The value of sxi is in the range [−1, 1]. To get a confidence
value between 0 and 1, we trim the negative values, set the
matching confidence of xi to be pxi

= max(sxi
, 0), and

use pxi
to define our confidence-aware distance loss:

Ldist =
1

|X|
∑
xi∈X

pxi min
yj∈Y

||ŷxi − yj ||22. (10)

The loss term Ldist can be minimized by either minimiz-
ing pxi or the distance between ŷxi and its nearest neighbor
yj ∈ Y . To avoid the degenerate solution of pxi

= 0 for all
xi ∈ X , we add a confidence loss term:

Lconf =
1

|X|
∑
xi∈X

1− pxi
, (11)

which penalizes the degenerate solution.
Additionally, to preserve the geometric structure of the

source point cloud, we would like the flow field to be
smooth. That is, neighboring source points should have a
similar flow prediction. Thus, we regularize the learning
process with a flow smoothness loss [11]:

Lflow =
1

|X|kf

∑
xi∈X

∑
l∈NX(xi)

||fi − fl||1, (12)

where NX(xi) is the Euclidean neighborhood of xi in X\xi

of size kf . The overall training objective is:

Ltotal = Ldist + αconfLconf + αflowLflow, (13)

where αconf and αflow are hyperparameters, balancing the
contribution of the different loss terms.
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3.5. Flow Refinement Optimization

The advantage of the correspondence-based flow, pre-
sented in Equation 7, is that the softly matching points are
in the vicinity of the surface of objects in the target scene.
However, it limits the flow to the convex hull [26] of points
in the target point cloud. We enable the flow to deviate from
this constraint by a flow refinement optimization step at run-
time.

Instead of training an additional neural network part to
regress flow corrections, as done by Puy et al. [24], we di-
rectly optimize a flow refinement component R∗ ∈ Rn×3

using the self-supervised distance and smoothness losses
defined in Equations 10 and 12, respectively. An illustra-
tion of these losses is depicted in Figure 4.

The optimization problem for the flow refinement takes
the form:

R∗ = argmin
R∈Rn×3

1

|X|
∑
xi∈X

min
yj∈Y

pxi
||xi + (fi + ri)− yj ||22

+λflow
1

|X|kf

∑
xi∈X

∑
l∈NX(xi)

||(fi + ri)− (fl + rl)||1,

(14)

where ri ∈ R is the flow refinement for point xi, and the
refined scene flow is F ∗ = F + R∗. Our flow refinement
module further preserves the structure of the source point
cloud, where the target points {yj} are used as anchors to
guide the refined flow and keep the proximity to the under-
lying target surface.

4. Experiments
In this section, we evaluate SCOOP’s performance us-

ing widely spread datasets and compare it with recent state-
of-the-art (SOTA) works on scene flow estimation. Addi-
tionally, we demonstrate the influence of the flow refine-
ment module, analyze the performance and run-time dura-
tion, and verify our design choices with an ablation study.

4.1. Experimental Setup

Datasets. We adopt two common datasets in the scene
flow literature, FlyingThings3D [18] and KITTI [19, 20].
Originally, these benchmarks did not include point cloud
data. They were processed to a point cloud format by Liu et
al. [16] and denoted as FT3Do and KITTIo, respectively.

FT3Do is a large-scale synthetic dataset with
18,000/2,000 train/validation scene examples of ran-
domly moving objects from the ShapeNet collection [3].
Each example contains a pair of point clouds and ground-
truth flow vectors. Since the objects’ motion is randomized,
they may appear or disappear from the view of the scene
and create occlusions. The dataset also includes a mask for
points whose flow is invalid due to occlusions.

Flow before refinement Distance loss Smoothness loss Flow after refinement

Source Target Soft correspondence

Figure 4. Illustration of the flow refinement objective. The ini-
tial flow {fi} stems from the translation of the source points {xi}
(red) to their softly corresponding ones {ŷxi} (magenta). The flow
is refined with a distance loss that keeps the proximity of the trans-
lated points to the target points {yj} (green) and a smoothness loss
that encourages similar flow vectors (dashed purple) for neighbor-
ing points. The optimization process results in a flow field {f∗

i }
(blue) that preserves the structure of the source point cloud and
warps it close to the implicit surface of the target point cloud.

The KITTIo dataset contains 150 real-world LiDAR
scenes. Every scene includes source and target point clouds
with flow annotations for the source points. Ground points
are removed, and the source points are considered to have
a valid flow [16]. KITTIo was further split by Mittal et
al. [21] into sets of 100 and 50 examples, marked as KITTIv
and KITTIt, respectively, for fine-tuning experiments. Li et
al. [13] also built a large unlabeled LiDAR dataset for self-
supervised learning on real-world data. They took raw Li-
DAR scans from the KITTI scenes [19,20], disjoint from the
KITTIo data, and created a training set of 6,068 instances
denoted as KITTIr.

Evaluation metrics. We use well-established evalua-
tion metrics from previous works [16, 21, 24]: End-Point-
Error EPE [m], Strict Accuracy AS [%], Relaxed Accuracy
AR [%], and Outliers Out. [%]. These metrics are based on
the point error ei and the relative error ereli :

ei = ||f∗
i − fgt

i ||2, ereli =
||f∗

i − fgt
i ||2

||fgt
i ||2

, (15)

where f∗
i and fgt

i are the predicted and ground-truth flow
for point xi, respectively. The EPE is the average point
error, measured in meters; AS is the percentage of points
whose ei < 0.05 [m] or ereli < 5%; AR is the percentage of
points for which ei < 0.1 [m] or ereli < 10%; and Out. is
the percentage of points with ei > 0.3 [m] or ereli > 10%.

Implementation details. SCOOP is implemented in Py-
Torch [22], where the publicly available PointNet++ [25]
implementation is adapted for our point feature embed-
ding. The model is trained on n = 2,048 points, sam-
pled at random from the source and target point clouds of
the scene examples. Only the 3D coordinates of the points
are used as input to the model. The parameters ϵ and λ
from Equation 3 are defined as learnable variables and op-
timized as part of the learning process. The point feature
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Method Supervision Train data Test dataa EPE ↓ AS ↑ AR↑ Out.↓

FlowNet3D [16] Full FT3Do (18,000) KITTIo 0.173 27.6 60.9 64.9
FLOT [24] Full FT3Do (18,000) KITTIo 0.107 45.1 74.0 46.3
FESTA [31] Full FT3Do (18,000) KITTIo 0.094 44.9 83.4 -
3DFlow [30] Full FT3Do (18,000) KITTIo 0.073 81.9 89.0 26.1
BiPFN [4] Full FT3Do (18,000) KITTIo 0.065 76.9 90.6 26.4
SCOOP (ours) Self FT3Do (1,800) KITTIo 0.063 79.7 91.0 24.4
SCOOP+ (ours) Self FT3Do (1,800) KITTIo 0.047 91.3 95.0 18.6

JGF [21] Full + Self + Self FT3Do (18,000) + nuScenes (700) + KITTIv (100) KITTIt 0.105 46.5 79.4 -
SPF [13] Self + Self KITTIr (6,068) + KITTIv (100) KITTIt 0.089 41.7 75.0 -
RigidFlow [14] Self KITTIr (6,068) KITTIt 0.117 38.8 69.7 -
SCOOP (ours) Self KITTIv (100) KITTIt 0.052 80.6 92.9 19.7

Graph Prior [23] Self N/A (optimization-only) KITTIt 0.082 84.0 88.5 -
Neural Prior [15] Self N/A (optimization-only) KITTIt 0.036 92.3 96.2 -
SCOOP+ (ours) Self KITTIv (100) KITTIt 0.039 93.6 96.5 15.2

Table 1. Quantitative comparison. We compare scene flow evaluation metrics for different supervision settings, train data, and test
data. The number of training examples is indicated in parentheses. EPE, AS, AR, and Out. stand for End-Point-Error, Strict Accuracy,
Relaxed Accuracy, and Outliers, respectively. The symbol + indicates an evaluation using all the points in the test point clouds, as done
for the optimization-only methods [15, 23]. While other baselines apply fully-supervised training, our method yields better performance
without employing ground-truth flow labels. Besides, SCOOP can be trained only on KITTIv, with as few as 100 training instances. In
contrast, alternative learning-based methods use additional training data, such as nuScenes, or a large dataset, such as KITTIr. Please see
further details in subsections 4.1 and 4.2.

dimension is d = 128. For the neighborhood sizes we use
ks = 64, kf = 32, and the losses’ hyperparameters are set
to αconf = 0.1, αflow = 10.

As in previous work [14,16,21,24], we evaluate SCOOP
on point clouds of 2,048 points randomly sampled from the
source and target. However, the full point clouds of KITTIo
and KITTIt are an order of magnitude larger and have differ-
ent cardinality. Thus, for a complete evaluation of the entire
scene flow, we also utilize our method (denoted as SCOOP+

for this case) to exploit the whole point cloud information
and test the performance for the original resolution. Addi-
tional implementation details appear in the supplementary.

Baseline methods. Our method is contrasted with the re-
cent methods FlowNet3D [16], FLOT [24], FESTA [31],
3DFlow [30], and BiPFN [4]. These methods require
ground-truth flow supervision. Additionally, we compare
our results with the recent self-supervised flow models of
Mittal et al. [21] and Li et al. [13,14], and the optimization-
based techniques Graph Prior [23] and Neural Prior [15].

4.2. Scene Flow Results

Cross-dataset evaluation. We demonstrate the general-
ization power of SCOOP by training it on the FT3Do and
testing its performance on KITTIo. Table 1 summarises
the results. The alternative methods [4, 16, 24, 30, 31] are
trained on FT3Do in a fully-supervised fashion: their mod-
els are learned with the ground-truth flow information, and
the points with an occluded flow are excluded from the

training objective using the mask provided in the dataset.
In contrast, our model is trained in a completely self-

supervised manner. We assume no knowledge of the flow
annotations nor the occlusion mask and do not use them
in our losses. Additionally, we use only 1,800 randomly
selected examples from FT3Do, while the competitors em-
ploy all 18,000 scene instances. Still, SCOOP improves
over the SOTA method BiPFN [4] in all the evaluation met-
rics. Moreover, utilizing the entire point cloud data further
increases our performance.

FlowNet3D [16], FESTA [31], 3DFlow [30], and
BiPFN [4] are regression-based networks that predict the
flow in the 3D ambient space. The models adapt to the char-
acteristics of the synthetic training set, and the generaliza-
tion to the real-world test data is limited. FLOT [24] lever-
ages point cloud correspondence based on learned point fea-
tures, which eases the flow prediction problem. However, it
also jointly learns to regress a flow correction component
that burdens the point representation training process.

SCOOP, on the other hand, is focused only on learning
point embeddings suitable for scene flow estimation, guided
by our self-supervised losses. It extracts discriminative fea-
tures, which transfer well across the FT3Do and KITTIo
datasets, and enables to compute the correspondence-based
flow between the point clouds. In contrast to FLOT, we del-
egate the flow refinement process to the test phase, directly
optimize it in a self-supervised fashion, and surpass their
flow estimation performance.

Figure 5 shows a visual comparison between the results
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SCOOP (ours) FLOT 

Figure 5. Visual comparison of scene flow results for a KITTIo example scene. The training was done on the FT3Do dataset. The source
and target point clouds are shown in red and green, respectively. The warped source point cloud by FLOT [24] (left) and by our method
(right) is presented in blue. While the result of FLOT deviates from the surface of the target, SCOOP preserves the source point cloud’s
structure and computes its accurate flow.

of FLOT and our method. The warped source point cloud
by FLOT is noisy, and the structure of objects in the scene
is compromised. On the contrary, SCOOP produces a co-
herent flow field across neighboring points, preserves their
local geometry, and accurately predicts the scene flow. Ad-
ditional visualizations are presented in the supplementary.

Training on a small dataset. Since our model does not
include a flow regression component and has to learn only
point features, it can be trained on a very limited amount of
data. To demonstrate this ability, we train it from scratch on
the 100 point cloud pairs of KITTIv and use KITTIt for test-
ing. The results of this experiment are presented in Table 1.

Different from our work, the competing methods of Mit-
tal et al. [21] and Li et al. [13,14] are based on flow regres-
sion and require a large amount of training data. Mittal et
al. utilize a fully-supervised pre-training on FT3Do, and the
additional outdoor flow dataset nuScenes [2], before fine-
tuning on KITTIv. Li et al. [13, 14] train their model on
the large KITTIr dataset. Our SCOOP outperforms these
other methods while being trained only on KITTIv, which
is almost two orders of magnitudes smaller than KITTIr.

The pure optimization methods [15,23] find the solution
per scene separately, which might lead to sub-optimal local
minima. In contrast, we leverage the correspondence statis-
tics learned from the data and adapt the initial flow to the
scene at hand by our residual run-time optimization. The
initial correspondence flow serves as a good starting point
for the optimization phase, yielding a similar or better final
result compared to the optimization-only alternatives.

The influence of flow refinement. Our flow results be-
fore and after refinement are presented in Figure 6. Posing
the learning part of SCOOP as a correspondence problem
enables its effective training on a small dataset. However,
the flow predictions from the training phase are confined to
a linear combination of existing target points, which may
not represent the exact flow of the scene. Moreover, wrong
matches for the source points can occur and cause flow er-
rors. In such cases, our refinement module comes into play.

Given the output flow from the trained correspondence
model, the refinement module optimizes correction vectors
subject to two objectives: a warped source point should be
close to a target point; neighboring source points should
have a similar flow. These objectives help fixing inconsis-
tencies in the flow field and increase the flow accuracy. As
seen in Figure 6, our refinement step improves the initial
flow estimation and results in an accurate flow field, which
is similar to the ground-truth scene flow.

4.3. Performance and Time Analysis

We analyze the performance-time trade-off in Figure 7
by recording the EPE and inference time for different
methods. The measurements were done on an Nvidia Titan
Xp GPU for computing the flow for complete point clouds
of the KITTIt dataset.

Network-only methods [13, 14, 21] tend to be fast but
with limited accuracy. Optimizing the flow prediction sepa-
rately for each scene [15] results in a low EPE. However,
it takes a long time. Our hybrid method bridges the trade-off
gap between these two approaches. SCOOP+ offers a work-
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Before refinement After refinement Ground-truth flow 

Figure 6. The flow refinement effect. We demonstrate the ef-
fect on data from KITTIt. The source point cloud is in red, and
the target is in green. Our correspondence model was trained on
the KITTIv dataset, and its flow estimation before refinement is
shown in magenta (left). The optimized refined flow is presented
in blue (center). We also show the ground-truth scene flow in pur-
ple for reference (right). The refined flow better covers the target
point cloud (top center ellipse). It also breaches the convex hull of
the given target points and enables computing the correct flow for
source points whose target is missing (bottom center ellipse).

ing point with more than 50% error reduction over the feed-
forward models and about 8× faster inference time than the
optimization-only Neural Prior work. SCOOP+ also enables
a different balance between time and performance, as seen
in Figure 7. By reducing the number of run-time optimiza-
tion steps, the user can shorten the inference time, achieving
a working point closer to that of the network-only models.

4.4. Ablation Study

The design choices in our method are verified by abla-
tion experiments presented in Table 2. We change one ele-
ment each time and keep all the others the same. The fol-
lowing ablative settings were examined: (a) use all target
points for soft correspondence instead of the ones with the
highest transport amount (Equation 5); (b) ignore the point
matching confidence by setting pxi

= 1 in Equation 10 and
αconf = 0 in Equation 13; (c) exclude the smoothness flow
loss Lflow from Equation 13; and (d) turn off the flow re-
finement module.

The ablation study validates the contribution of the pro-
posed components to the method’s performance. Consider-
ing a subset of target points for correspondence enables the
model to concentrate on the most relevant candidates for
flow estimation. The matching confidence emphasizes the
influence of the more confident points in our confidence-
aware distance loss Ldist. The smoothness loss term is im-
portant for regularizing the point representation learning to
obtain similar features across neighboring points. Lastly,
our flow refinement optimization improves the consistency
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Figure 7. Flow estimation error vs. inference time for the
KITTIt dataset. SCOOP+ has a lower error than the network-
only models and a shorter inference time than the optimization-
only methods. It also allows different balances along the error and
time trade-off, as presented by the blue curve.

Setting EPE ↓ AS ↑

(a) All target points as candidates (ks = n) 0.047 91.1
(b) W/O confidence (pxi = 1, αconf = 0) 0.044 90.3
(c) W/O smoothness loss term (αflow = 0) 0.056 86.6
(d) W/O flow refinement (R∗ = 0) 0.115 43.8
Our complete method 0.039 93.6

Table 2. Component ablative settings. SCOOP was trained on
KITTIv and evaluated on KITTIt. The results show that the best
performance is obtained with our complete method. Additional
details about the ablation experiments are given in subsection 4.4.

of the flow field and reduces the EPE substantially. In the
supplementary material, we provide an ablation study on
the FT3Do train set size and find that a 10% fraction of the
data suffices for our method to realize its potential.

5. Conclusions
This paper presented SCOOP, a novel self-supervised

scene flow estimation method for 3D point clouds based on
correspondence learning and flow refinement optimization.
Previous works suggested learning a flow regression model,
training a neural network that jointly learned point cloud
correspondence and flow refinement, or optimizing the flow
completely at run-time without learning.

In contrast, we split the flow prediction process into two
simpler problems. Our correspondence model is focused
only on learning point features to initialize the flow from
soft matches between the point clouds. Then, we directly
optimize a residual flow refinement at run-time. This ap-
proach enables SCOOP to be trained on a small set of point
cloud scenes without utilizing ground-truth supervision
while outperforming state-of-the-art fully-supervised and
self-supervised learning methods, as well as optimization-
based alternative techniques.
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