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Abstract

Cameras and image-editing software often process im-

ages in the wide-gamut ProPhoto color space, encompass-

ing 90% of all visible colors. However, when images are

encoded for sharing, this color-rich representation is trans-

formed and clipped to fit within the small-gamut standard

RGB (sRGB) color space, representing only 30% of visi-

ble colors. Recovering the lost color information is chal-

lenging due to the clipping procedure. Inspired by neu-

ral implicit representations for 2D images, we propose a

method that optimizes a lightweight multi-layer-perceptron

(MLP) model during the gamut reduction step to predict

the clipped values. GamutMLP takes approximately 2 sec-

onds to optimize and requires only 23 KB of storage. The

small memory footprint allows our GamutMLP model to be

saved as metadata in the sRGB image—the model can be

extracted when needed to restore wide-gamut color values.

We demonstrate the effectiveness of our approach for color

recovery and compare it with alternative strategies, includ-

ing pre-trained DNN-based gamut expansion networks and

other implicit neural representation methods. As part of

this effort, we introduce a new color gamut dataset of 2200

wide-gamut/small-gamut images for training and testing.

1. Introduction

The RGB values of our color images do not represent

the entire range of visible colors. The span of visible colors

that can be reproduced by a particular color space’s RGB

primaries is called a gamut. Currently, the vast majority of

color images are encoded using the standard RGB (sRGB)

color space [7]. The sRGB gamut is capable of reproducing

approximately 30% of the visible colors and was optimized

for the display hardware of the 1990s. Close to 30 years

later, this small-gamut color space still dominates how im-

ages are saved, even though modern display hardware is ca-

pable of much wider gamuts.

Interestingly, most modern DSLR and smartphone cam-

eras internally encode images using the ProPhoto color

space [12]. ProPhoto RGB primaries define a wide gamut

capable of representing 90% of all visible colors [33].
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Figure 1. (A) shows a wide-gamut (ProPhoto) image that has

been converted and saved as a small-gamut (sRGB) image; color

clipping is required to fit the smaller sRGB gamut (as shown in

the chromaticity diagrams). (B) Standard color conversion back

to the wide-gamut color space is not able to recover the clipped

colors. (C) Conversion back to the wide-gamut RGB using our

lightweight GamutMLP (23 KB) can recover the clipped color val-

ues back to their original values.

Image-processing software, such as Adobe Photoshop, also

uses this color-rich space to manipulate images, especially

when processing camera RAW-DNG files. By process-

ing images in the wide-gamut ProPhoto space, cameras

and editing software allow users the option to save an

image in other color spaces—such as AdobeRGB, UHD,

and Display-P3—that have much wider color gamuts than

sRGB. However, these color spaces are still rare, and most

images are ultimately saved in sRGB. To convert color val-

ues between ProPhoto and sRGB, a gamut reduction step

is applied that clips the wide-gamut color values to fit the

smaller sRGB color gamut. Once gamut reduction is ap-

plied, it is challenging to recover the original wide-gamut

values. As a result, when images are converted back to a

wide-gamut color space for editing or display, much of the

color fidelity is lost, as shown in Figure 1.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. An overview of the gamut reduction stage in our framework. This phase shows the gamut reduction step, where the wide-gamut

ProPhoto is converted to the small-gamut sRGB. While saving the sRGB image, an MLP is optimized based on the original and clipped

ProPhoto color values. The MLP is embedded in the sRGB image as metadata.

Contribution We address the problem of recovering the

RGB colors in sRGB images back to their original wide-

gamut RGB representation. Our work is inspired by

coordinate-based implicit neural image representations that

use multilayer perceptrons (MLPs) as a differentiable im-

age representation. We propose to optimize a lightweight

(23 KB) MLP model that takes the gamut-reduced RGB

values and their spatial coordinates as input and predicts

the original wide-gamut RGB values. The idea is to opti-

mize the MLP model when the ProPhoto image is saved to

sRGB and embed the MLP model parameters in the sRGB

image as a comment field. The lightweight MLP model is

extracted and used to recover the wide-gamut color values

when needed. We describe an optimization process for the

MLP that requires ∼2 seconds per full-sized image. We

demonstrate the effectiveness of our method against several

different approaches, including other neural image repre-

sentations and pre-trained deep-learning-based models. As

part of this work, we have created a dataset of 2200 wide-

gamut/small-gamut image pairs for training and testing.

2. Related work

The following discusses three areas related to our work:

(1) gamut reduction and expansion, (2) RAW image recov-

ery methods, and (3) coordinate-based implicit neural func-

tions.

Gamut reduction/expansion When converting between

color spaces, it is necessary to address the gamut mismatch.

There are many strategies for gamut reduction and expan-

sion in the literature (e.g., [1, 18, 20, 21, 28]). The most

common approach for both gamut-reduction and gamut-

expansion uses absolute colorimetric intent, where the goal

is to minimize color distortion between the two gamuts.

For example, in the case of gamut reduction from ProPhoto

to sRGB, colorimetric errors are minimized by projecting

(and clipping) out-of-gamut (OG) ProPhoto color values to

the boundary of the sRGB space, as shown in Figure 1.

When converting back from sRGB to ProPhoto, the abso-

lute colorimetric strategy minimizes color error by leaving

the clipped values untouched. Absolute colorimetric reduc-

tion and expansion is a common strategy used by consumer

cameras and image-editing software, such as Adobe Light-

room, DarkTable, and RawTherapee. Correcting the loss

of color fidelity for color expansion is the goal of this pa-

per. A less common approach for reduction and expansion

is to use soft-clipping [20], where the out-of-gamut values

in ProPhoto are compressed to fit within a specified region

in the sRGB gamut. For example, instead of clipping out-

of-gamut ProPhoto values, they are compressed to fit within

the outer 10% of the sRGB gamut. On gamut expansion,

the compressed region is expanded back to fill the ProPhoto

gamut. While soft-clipping helps restore wide-gamut color

values, it incurs colorimetric error during the gamut reduc-

tion to sRGB; as a result, most cameras and software do not

use this. Recent work by Le et al. [16] proposed a DNN-

based network to learn gamut-expansion based on a large

dataset of ProPhoto and sRGB images. While this can im-

prove gamut expansion, we show that our MLP optimiza-

tion outperforms such pre-trained DNN networks by a wide

margin.

RAW recovery/derendering Also related to our task are

approaches for sRGB derendering, where the goal is to

recover the original RAW sensor image from an sRGB

input. Early approaches to this problem carefully mod-

eled the in-camera rendering process to perform derender-

ing [4, 5, 10, 13], while recent methods train DNN-based

models for this task [17, 23]. Our method is similar to

works that save small amounts of specialized metadata in

the sRGB image to assist in the recovery problem. Such

metadata can be in the form of a parametric model [25, 26]
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Figure 3. This figure provides an overview of the gamut expansion phase in our framework. In particular, the MLP network is extracted

and used to recover the clipped ProPhoto values.

or RAW pixel samples [24, 29]. While having access to a

reconstructed RAW image would allow it to be re-rendered

back to a wide-gamut ProPhoto format, such rendering re-

quires camera-specific photo-finishing parameters that are

often not readily available. Instead, we compare our method

with that of [15], which proposed to store out-of-gamut

ProPhoto samples as metadata in the sRGB. The out-of-

gamut samples were used to estimate a polynomial func-

tion for gamut expansion. We show that our MLP-based

approach provides significantly better results than those ob-

tained by [15] with a smaller memory footprint.

Neural implicit functions Finally, our approach is also in-

spired by recent advances in neural implicit functions, such

as Fourier features [35], SIREN [32], and NeRF [19]. We

show that SIREN works well for this task, but requires a

much larger model and slower optimization time.

3. GamutMLP for color recovery

We begin with a high-level overview of our gamut recov-

ery framework in Section 3.1. Details on the MLP architec-

ture and optimization are provided in Section 3.2.

3.1. Framework overview

Figure 2 and Figure 3 show illustrations of our frame-

work’s two steps: gamut reduction and gamut expansion.

Gamut reduction The gamut reduction step is performed

when the image is being converted from ProPhoto to sRGB,

either on a camera or image editing software. We assume

the input to be a wide-gamut ProPhoto RGB image de-

noted as IPP ∈ R
3×N , where N is the number of pixels.

Gamut reduction is performed using the absolute colorimet-

ric intent described in the previous section. The original

ProPhoto image is transformed to the unclipped sRGB im-

age using a 3×3 matrix such that the in-gamut sRGB values

fall within the range [0, 1]. Out-of-gamut sRGB values are

then clipped and processed with a gamma encoding to pro-

duce the final sRGB image. This procedure can be written

as:

IsRGB = g(clip(MIPP,min = 0,max = 1)), (1)

where M is the matrix that maps between ProPhoto and the

unclipped sRGB, clip() is the clipping operation, and g is

the gamma-encoding for sRGB [7].

When converting sRGB colors back to ProPhoto RGB

using the inverse transforms, the clipped color values will

not be recovered. We refer to this clipped ProPhoto image

as IClippedPP ∈ R
3×N . Pixels with clipped values are il-

lustrated in red in Figure 2. We express the mapping from

sRGB to clipped ProPhoto as:

IClippedPP = M
−1g−1(IsRGB), (2)

where g−1(·) is a de-gamma function for the input sRGB

image, and M
−1 is the inverse transform to convert the

sRGB image back to the ProPhoto color space.

Applying Eqs. 1 and 2, we have the original ProPhoto

image, IPP, and its clipped IClippedPP. We also know which

values were clipped. Using these two images, we opti-

mize a lightweight MLP (GamutMLP) to predict a residual

value that, when added to the IClippedPP recovers IPP. The

GamutMLP model parameters are embedded in the sRGB

image when it is saved. Since the parameters of our MLP

require only 23 KB of memory, this can easily be embedded

as a comment field in the image.

Gamut expansion step Given an sRGB image with an

embedded GamutMLP model, we extract the model and

perform the standard color space conversion described in

Eq. 2 to compute IClippedPP. The extracted model predicts

the residuals of all pixels and adds them to the IClippedPP to

recover the color values as shown in Figure 3.

The following section provides details of the GamutMLP

model architecture and its optimization.
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Figure 4. This figure shows the GamutMLP architecture. Given the clipped ProPhoto image, we optimize the MLP using samples from

in-gamut and out-of-gamut pixels. The 5D coordinate and color input (x, y,R′, G′, B′) is encoded as a 120D-feature vector before passing

it to the MLP. The MLP has three linear layers, with the final layer predicting a residual to add to the R′, G′, B′ input. The loss is computed

against the original ProPhoto image R,G,B values.

3.2. GamutMLP model and optimization

Figure 4 shows a diagram of the GamutMLP architec-

ture. When converting from ProPhoto to sRGB, we keep

track of the transformed RGB values that lie outside the

sRGB gamut. These pixel locations are denoted in the out-

of-gamut mask in Figure 4. Out-of-gamut pixels will be

clipped to fit within the sRGB gamut.

The MLP input is a 5D vector of a pixel’s spatial

coordinates (x, y) and color value (R′, B′, G′) from the

clipped wide-gamut ProPhoto image. GamutMLP predicts

the residual that needs to be added to IClippedPP to re-

cover the wide-gamut original (R,G,B). We can express

GamutMLP as follows:

ÎPP(x) = fθ(x, IClippedPP(x)) + IClippedPP(x), (3)

where fθ represents the GamutMLP, θ is the model’s pa-

rameters, and ÎPP is the final recovered ProPhoto image.

The MLP’s input values (x, y,R′, G′, B′) are normalized

to the range [−1, 1], and then pass to the encoding func-

tion γ. The use of an encoding function has been shown

effective in improving neural implicit representations opti-

mization [19,30]. Prior neural implicit representations tend

to have only 2D coordinates as input, while we apply the

encoding function to both spatial coordinates and RGB val-

ues. We found the following mapping worked well for our

task:

γ(m) = (sin(20πm), cos(20πm), ..., sin(2K−1πm), cos(2K−1πm)), (4)

where m is a spatial coordinate or RGB value. In our exper-

iment, we choose K = 12. The γ function projects each of

the 5D input values to a 24-dimension encoding, resulting in

a final 120D feature vector for each input. The GamutMLP

has three linear layers. The first two are fully connected

ReLU layers with 32 output features. The last layer outputs

three values and has no activation function. Our MLP is

optimized with an L2 loss function computed between the

predicted ProPhoto image and the original ProPhoto image:

Lgamut =
∑

x

||(ÎPP(x)− IPP(x))||
2

2
. (5)

Pixel sampling and standard optimization We describe

two optimization strategies: standard and fast. For our stan-

dard optimization, model parameters are randomly initial-

ized. At optimization time, we know which pixels are out-

of-gamut (OG) and which are in-gamut (IG). We found that

training the MLP on both out-of-gamut pixels and in-gamut

(non-clipped) pixels gave the best result. We optimized our

model by sampling 2% of the IG pixels and 20% of the OG

pixels uniformly over their spatial coordinates. For all re-

ported results, the model was optimized for 9,000 iterations

with a learning rate of 1e−3 using the Adam optimizer [14].

Faster MLP optimization To speed up our optimization,

we used the recent methods proposed by [9, 22] to im-

prove optimization time. We also incorporated a meta-

learning strategy [27] to pre-train a generic GamutMLP

whose model parameters can be used for initialization.

Such initialization has been shown to help coordinate-based

MLPs converge faster during optimization [34].

To pre-train a meta-MLP model, we used images from

our training dataset described in the following section.

For each meta epoch, the meta-MLP fits each image with

10,000 iterations using a larger learning rate 1e− 2 and the

SGD optimizer. When a per-image GamutMLP is initial-

ized with this pre-trained MLP, our optimization requires

only 1,200 iterations instead of 9,000. Combining our meta-

MLP for initialization with [9,22] significantly reduced op-

timization time.

4. Dataset and results

We first describe our dataset generation for evaluating

this work. Our dataset images are used to train our meta-

GamutMLP model (for weight initialization) and competing

DNN-based methods and to test results.
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Figure 5. (Left) Examples from our dataset showing different amounts of out-of-gamut pixels (OG pixels are white in the masks). (Right)

A histogram of our dataset in terms of percentage of out-of-gamut pixels.

4.1. Dataset

To prepare wide-gamut ProPhoto images, we followed

a procedure used in our prior work [16] that processed

RAW images from the MIT-Adobe FiveK [3], RAISE [8],

Cube+ [2], and NUS [6] public datasets. There are 16,599

RAW images from these four datasets, representing a wide

range of scene content. We use Adobe Camera RAW

(ACR) to mimic a camera ISP to render the RAW images

to 16-bit wide-gamut ProPhoto images. ACR can apply

different photo-finishing styles when rendering RAW im-

ages. We use four picture styles—Adobe Standard, Adobe

Landscape, Adobe Color, and Adobe Vivid—to generate

ProPhoto images with vivid colors. These are saved in their

original full resolution size, ranging from 2000×3000 to

4000×6000.

From these rendered images, we chose 2000 images for

the training set and 200 for the testing set. Images were se-

lected such that they have at least 10% out-of-gamut pixels.

Figure 5 shows a sample of the images from our dataset and

a plot of the percentage of out-of-gamut pixels in each im-

age in the dataset. The minimum number of out-of-gamut

pixels for an image in our testing set is over a million pixels.

The final breakdown of images selected from the starting

datasets is: 11% Adobe FiveK, 62% RAISE, 12% Cube+,

and 15% NUS.

4.2. Comparisons

The following describes methods used for comparisons

against the GamutMLP approach.

Conventional methods The two baseline methods are clip-

ping and soft-clipping [20], described in Section 2. Clip-

ping is currently the de facto method for gamut reduction.

While soft-clipping aids in gamut expansion, it is not com-

monly used because it distorts the colors in the sRGB.

Pre-trained deep networks As described in Section 2,

GamutNet [16] is a DNN-based method targeting gamut

recovery. For the sake of completeness, we also com-

pare against several image-to-image-translation methods:

pix2pix [11], pix2pixHD [36], and ASAPNet [31]. We can

consider our problem of clipped-ProPhoto to ProPhoto con-

version as a special application for image-to-image transla-

tion methods. For all methods that need to be pre-trained,

we train them with 512×512 crops from training images

(clipped ProPhoto and ProPhoto pairs). Cropping is per-

formed such that at least 10% of the cropped image has out-

of-gamut pixels. At inference time, the DNN-based meth-

ods are applied to the full-sized testing images.

Per-image optimization We also compare with [15], an-

other metadata approach that uniformly samples pixels

(135KB) of the original ProPhoto image for recovery using

polynomial color correction functions. We also compare

with several variants of the SIREN [32] coordinate-based

neural implicit function. In particular, we start with the

original SIREN, which uses 2D coordinates for input, and

has five fully connected linear layers, each with 256 chan-

nels and periodic activation functions; the last linear output

layer has only three channels for RGB values. The SIREN

model requires 796 KB. We optimize a SIREN-residual

variant that predicts the residual between the clipped and

ground-truth ProPhoto images. Finally, we try a variant of

SIREN-residual that is limited to a small model size (69

KB) to mimic a smaller model. The SIREN models are op-

timized based on the loss Lgamut described in Equation 5.

For the other hyperparameters, we adopt default settings for

image-fitting tasks from SIREN [32]. Unfortunately, we

could not use the fast implementation of MLP [9, 22] for

the original SIREN and variants since the fast implementa-

tion API does not support the sinusoidal activation function

used by SIREN.

For our GamutMLP approach, we show the results of our

MLP variants with encoded inputs (i.e., Equation 4), and

with and without optimization plus the meta-GamutMLP

initialization. The pre-trained DNNs methods and MLP-

based approaches are trained or optimized using a NVIDIA

Quadro RTX 6000.

4.3. Quantitative results

Table 1 summarizes the performance of the tested meth-

ods. Results are reported as the average root mean square

error (RMSE) and peak signal-to-noise ratio (PSNR) be-

tween the predicted and ground truth test images. Metrics
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Method Metadata↓ RMSE↓ RMSE OG↓ PSNR↑ PSNR OG↑ Optim. Time↓
Conventional

Clip - 0.0069 0.0126 43.22 37.98 -

Soft Clip - 0.0039 0.0042 48.17 47.54 -

Pre-trained DNN

Pix2pix [11] - 0.0087 0.0167 41.24 35.55 -

Pix2pixHD [36] - 0.0157 0.0314 36.08 30.07 -

ASAPNet [31] - 0.0518 0.0993 25.72 20.06 -

GamutNet [16] - 0.0052 0.0088 45.75 41.08 -

Optimized per image

ProPhoto-Sampled [15] 135 KB 0.0032 0.0051 49.78 45.90 -

SIREN [32] 796 KB 0.0648 0.0421 23.77 27.52 115.67 mins

SIREN-residual 796 KB 0.0033 0.0044 49.72 47.20 118.98 mins

SIREN (small)-residual 69 KB 0.0040 0.0052 47.98 45.66 94.62 mins

MLP + enc. (no optimization) 48 KB 0.0021 0.0031 53.57 50.17 37.05 sec

MLP (53KB) + enc. 53 KB 0.0021 0.0030 53.73 50.33 16.29 sec

MLP (23 KB) + enc. 23 KB 0.0021 0.0031 53.65 50.04 16.32 sec

MLP (53KB) + enc. + meta init. 53 KB 0.0021 0.0032 53.40 50.00 1.94 sec

MLP (23 KB) + enc. + meta init. 23 KB 0.0021 0.0032 53.36 49.93 1.90 sec

Table 1. This table shows results on various methods used for wide-gamut color recovery. The reported numbers are the average results

computed against the 200 16-bit ProPhoto ground-truth full-size images. RMSE and PSNR are provided for the whole image and out-

of-gamut (OG) pixels. For the per-image methods, we provide associated metadata (size in KB) and optimization time. For pre-trained

DNNs, we compare with Pix2pix [11], Pix2PixHD [36], ASAPNet [31], and GamutNet [16]. For the per-image methods, we compare with

ProPhoto-Sampled [15], SIREN [32] variants, and our GamutMLP variants: MLP (no optimization), sizes (53 KB) and (23 KB), and with

“meta” initialization.

are provided for the entire image and for only out-of-gamut

(OG) pixels. We provide the associated metadata size (KB)

and optimization times for the relevant methods.

The table reveals that simple image-to-image transla-

tion does not work well for this task. Pix2pix [11]

gives better results than Pix2pixHD [36], since Pix2pix

is a general-purpose method for image-to-image transla-

tion, while Pix2pixHD was designed to synthesize images

from semantic label maps. The DNN-based GamutNet [16]

method explicitly designed for gamut recovery performs

better than the clipping baseline. The best results are ob-

tained from the per-image optimized methods. In particu-

lar, the full-sized SIREN-residual MLP model produces re-

sults similar to ours. However, the model requires 796KB

and is slow to optimize even compared with our equiva-

lent standard optimized MLP. Our GamutMLP with fea-

ture encoding and pre-trained initialization gives the best

results and the fastest optimization performance. Note that

the ProPhoto-sampled method [15] is optimized per im-

age; however, the computationally intensive component is

during the gamut expansion phase instead of the reduction

phase. In addition, the method’s implementation uses Mat-

lab and runs on CPU, so we do not include its running time

since the comparison is unfair.

4.4. Qualitative results

We show qualitative visual outputs of selected ap-

proaches in Figure 6. See supplemental materials for addi-

tional results. For each method, the first row shows the pre-

dicted ProPhoto image. The second row shows an error map

of the RMSE of each pixel between the predicted and origi-

nal ProPhoto. The third row shows the out-of-gamut colors

after restoration on a CIE-xy chromaticity diagram. Simi-

lar to the quantitative results, we see our approach achieves

better results in terms of RMSE and PSNR. In addition, the

CIE-xy chromaticity diagram shows the recovered colors

appear more like the ground truth wide-gamut images.

While not the goal of our work, on careful observation,

it can be noticed that our method and the ProPhoto-sampled

method [15] provide a slight improvement in the in-gamut

pixels. This is attributed to a slight recovery of some of

the 16-bit values that were quantized when the image was

saved in 8-bit sRGB in the gamut reduction step. Recall

that this method includes in-gamut pixels in the optimiza-

tion and is applied by the GamutMLP to all pixels. Simi-

larly, the work [15] uniformly samples ProPhoto pixels, in-

cluding in-gamut and out-of-gamut pixels. The most signif-

icant improvements, however, are still with the clipped out-

of-gamut pixels, which incur the most error in the gamut

reduction step.
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Figure 6. Qualitative comparisons between the predicted ProPhoto full-size output of Clip, Soft Clip, Pix2pix [11], Pix2PixHD [36],

ASAPNet [31], GamutNet [16], PP-sampled [15], SIREN [32]-residual, and our optimized GamutMLP. Error maps of per-pixel RMSE

and plots of out-of-gamut (OG) colors on CIE-xy chromaticity diagram with the gamuts of sRGB and ProPhoto are shown.
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KB, 23 KB, and 11 KB).
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Figure 8. Ablation examining MLP model sizes. The 23 KB MLP

provided good results for model size.

4.5. Ablations

Input coordinates We trained our proposed MLP with var-

ious input types: only coordinates (x,y), only color values

(R,G,B), and our 5D vector (x,y,R,G,B) in Table 2. The use

of the coordinate and color values provides excellent results

with a small network.

Method RMSE↓ RMSE OG↓ PSNR↑ PSNR OG↑
MLP (23 KB) [xy] 0.0037 0.0048 48.57 46.38

MLP (23 KB) [RGB] 0.0028 0.0045 51.10 46.98

MLP (23 KB) [xyRGB] 0.0021 0.0031 53.65 50.04

Table 2. This table shows the results of our variant MLPs with

various types of inputs: xy, RGB, xyRGB. RMSE and PSNR for

the whole image as well as OG pixels are computed and averaged

over 200 test images.

GamutMLP model sizes Our goal was to find a model size

that was compact and had a reasonable optimization time.

In particular, we tried to vary the hidden features from 128,

64, 32 to 16, and their corresponding model sizes are 137

KB, 53 KB, 23 KB, and 11 KB. Figure 8 shows a plot of the

average PSNR computed over all these 200 test images for

each model. Results are shown for the entire image and out-

of-gamut pixels only. Figure 7 shows qualitative results on

a test image for the different model sizes. While the larger

model gave a slightly better performance, the 23 KB model

provided a comparable result, with memory size that can

easily be included as a comment field in an sRGB image.

The model below 23 KB performed poorly. See supple-

mental materials for additional ablations.

5. Discussion and concluding remarks

We have presented a framework to recover wide-gamut

color values lost due to the gamut reduction step applied

when converting a ProPhoto image to a sRGB image. We

cast our task as a restoration problem with the goal of restor-

ing the original color loss due to gamut clipping. By inte-

grating our approach into the gamut reduction step when

the image is converted to sRGB, we have the opportunity

to optimize a model directly against the known restoration

target—a luxury most restoration problems such as deblur-

ring and image sampling do not have. This allowed us to

use a lightweight MLP network to predict the original color

signal. Compared to the overall sRGB image size (typically

2–5 MB), the 23 KB memory overhead for the GamutMLP

model is negligible and means that the color fidelity recov-

ery is obtained virtually for free.

Our experiments show that per-image MLP optimization

provides much better results than pre-trained DNN mod-

els for color recovery. Furthermore, our small GamutMLP

provides comparable performance in PSNR compared with

larger MLP-based neural implicit functions but requires sig-

nificantly less memory size and optimization time (within

2 seconds). As part of this effort, we have also generated

a new dataset of 2200 images with high-color fidelity that

will be useful in advancing research in this area. Our code

and dataset can be found on the project website: https:

//gamut-mlp.github.io.
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