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Abstract

3D traffic scene comprises various 3D information about
car objects, including their pose and shape. However,
most recent studies pay relatively less attention to recon-
structing detailed shapes. Furthermore, most of them treat
each 3D object as an independent one, resulting in losses
of relative context inter-objects and scene context reflect-
ing road circumstances. A novel monocular 3D pose and
shape reconstruction algorithm, based on bi-contextual at-
tention and attention-guided modeling (BAAM), is proposed
in this work. First, given 2D primitives, we reconstruct
3D object shape based on attention-guided modeling that
considers the relevance between detected objects and ve-
hicle shape priors. Next, we estimate 3D object pose
through bi-contextual attention, which leverages relation-
context inter objects and scene-context between an object
and road environment. Finally, we propose a 3D non-
maximum suppression algorithm to eliminate spurious ob-
jects based on their Bird-Eye-View distance. Extensive
experiments demonstrate that the proposed BAAM yields
state-of-the-art performance on ApolloCar3D. Also, they
show that the proposed BAAM can be plugged into any
mature monocular 3D object detector on KITTI and sig-
nificantly boost their performance. Code is available at
https://github.com/gywns6287/BAAM.

1. Introduction
3D traffic scene understanding provides enriched de-

scriptions of the dynamic objects, e.g., 3D shape, pose,
and location, compared to representing objects as bounding
boxes. 3D visual perception is crucial for the autonomous
driving system to develop downstream tasks such as mo-
tion prediction and planning, and aids to faithfully recon-
∗Corresponding author
†These authors contributed equally to this work.
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Figure 1. Reconstructed 3D scene with rough bounding box (right
up) and with detailed shape (right down). For better 3D recon-
struction, detailed 3D shapes are needed rather than the simple 3D
bounding boxes.

struct the traffic scene from recorded data. To acquire pre-
cise 3D information, some prior arts have relied on specific
devices such as LiDAR [3,10,42] and stereo vision [26,44].
However, as the system becomes complex and costly, it
quickly reaches the limit to scalability. To contrary, areas
of study about 3D perception using monocular vision have
been receiving attention due to its simplicity and cost effi-
ciency [4, 7, 19, 29, 33, 50, 51].

Monocular 3D perception is an ill-posed problem in that
projective geometry inherently loses depth information. In
particular, traffic scene contains partially observable ob-
jects, and shows fine-grained classes which are visually
confusing. Pseudo-LiDAR [49] presents a feasible solution
of the image based 3D object detection. To reconstruct 3D
poses of the objects, many studies [25, 27, 30, 33, 40, 41, 50,
51] focus on using geometry constraints between 2D and
3D. Yet, it is less studied in the line of research that leverage
relative context among the objects and global scene context
depending on road environment.

Figure 1 compares the reconstructed 3D scene with 3D
bounding boxes and detailed 3D shapes. With a detailed 3D
shape, we render the traffic scene in realistic and provide
intuitive representations of the objects. Despite scale ambi-
guity of the monocular 3D perception, 3D mesh provides a
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strong clue to align instances’ scales and orientations. Con-
currently, there have been many attempts [8, 20, 22, 31, 45,
46] to reconstruct the 3D shape of human objects. These
methods mainly focus on learning PCA-basis to represent
human shapes. Inspired by human shape reconstruction,
recent methods [21, 24] also design PCA-basis for vehicle
shape reconstruction. However, as pointed out in [1, 34],
PCA-basis often loses object details and thus leads to un-
satisfactory reconstruction.

In this work, we propose a novel 3D pose and shape
estimation algorithm, utilizing bi-contextual attention and
attention-guided modeling (BAAM). Given a monocular
RGB image, the proposed BAAM first extracts various 2D
primitive features such as appearance, position, and size.
And it constructs object features to embed internal object
structures by aggregating primitive features. For detailed
object shapes, we introduce shape priors consisting of the
mean shape and various template offsets to represent de-
tails of vehicle shapes. Then, BAAM reconstructs objects’
3D shapes as mesh structures with attention-guided mod-
eling, which combines shape prior and individual object
features based on their relevance. For accurate pose es-
timation, we present the notion of bi-contextual attention
consisting of relation-context and scene-context, which de-
scribe the relationship inter objects and between object and
road environment, respectively. Based on this rich infor-
mation, BAAM integrates object features to predict ob-
jects’ 3D poses through a carefully designed bi-contextual
attention module. Finally, we proposed a novel 3D non-
maximum suppression (NMS) algorithm that effectually re-
moves spurious objects based on Bird-Eye-view (BEV) ge-
ometry. Extensive experiments on Apollocar3D [43] and
KITTI [12] datasets demonstrate the effectiveness of the
proposed BAAM algorithm. Also, experiments show that
the proposed method significantly outperforms state-of-the
arts [21, 43] in both pose and shape estimation. The main
contributions of our work are four folds:

• We propose the attention-guided modeling that recon-
structs objects’ shapes based on the relevance between
objects and vehicle shape priors.

• We proposed the bi-contextual attention module that
estimates objects’ pose by exploiting relation-context
inter objects and scene-context between an object and
road environment.

• We also develop the novel 3D non-maximum suppres-
sion algorithm to remove spurious objects based on
their Bird-Eye-view distance.

• The proposed BAAM algorithm achieves the state-of
the art performance on ApolloCar3D [43]. Also, ex-
periments on KITTI [12] show that the proposed al-
gorithm can significantly improve the performance of
existing monocular 3D detectors.

2. Related Work
Monocular 3D object detection. Monocular 3D object de-
tection aims to estimate 3D bounding boxes of objects in a
given image. Existing monocular 3D object detection meth-
ods are roughly categorized into depth-assisted and image-
only methods. The depth-assisted approach uses a pixel-
wise depth map to aid 3D object detection by training a
monocular depth estimator. Pseudo-LiDAR [36, 49] meth-
ods transform estimated depth maps into 3D point clouds
and feed them into the existing LiDAR-based 3D detec-
tors. PatchNet [35] takes advantage of CNNs by represent-
ing transformed 3D information in images. DDMP-3D de-
signs the message passing block to transfer depth informa-
tion to 3D detectors. DD3D [39] pre-train depth estimator
and fine-tune it for 3D object detection. In [40], DID-M3D
decouples object depth into visual and attribute depth. Al-
though these depth-assisted methods [35,36,39,40,49] have
the advantage of improving 3D detection quality, they have
limitations in that they require additional information.

Due to the lack of depth information, many image-
only methods focus on exploiting geometry priors.
Deep3DBox [38] introduces MultiBin loss for rotation es-
timation and solves the translation by geometrical relation-
ship between 2D-3D boxes. GUPNet [33] combines ge-
ometry priors and uncertainty modeling to infer depth dis-
tribution. MonoFlex [50] decouples truncated objects and
formulates the depth estimation as an uncertainty-guided
depth ensemble. MonoGround [41] introduced the notion
of ground plane to convert the ill-posed 2D to 3D mapping
into a well-posed problem with a unique solution. In [51],
Zhang et al. developed the dimension-aware embedding for
more accurate geometric constraints. However, these meth-
ods are limited in that they do not fully consider rich context
in monocular images, which gives additional cues for depth
estimation. In contrast, MonoPair [7] adopts the pair-wise
relationship between neighboring objects to post-optimize
object translation. In [14], Gu et al. presented the homogra-
phy loss to constrain mutual locations of objects in the 3D
scene. Both methods concentrate on the geometrical asso-
ciation between predicted objects. On the contrary, the pro-
posed BAAM algorithm considers object relation in feature
space, which implies various cues for 3D pose.
Monocular 3D pose and shape reconstruction. Joint 3D
pose and shape regression has been actively studied for hu-
man objects [8, 20, 22, 31, 45, 46]. Inspired by human shape
reconstruction, there have been many attempts to restore
vehicle shape for 3D traffic scene understanding. Deep-
MANTA [5] adopts a coarse-to-fine retrieval strategy to re-
construct pose and skeleton shape. 3D-RCNN [24] and Roi-
10D [37] render 3D shapes as PCA parameters, which are
decoded to coarse voxel shape representation. In [43], the
direct-based approach extends 3D-RCNN to utilize atten-
tion mask and offset flow. GSNet [21] presents a divide-
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Figure 2. Overview of the proposed BAAM. The input image is sent to the network to extract box features, 2D box, and keypoints. Given,
the informative 2D representation, BAAM estimates the shapes using attention-guided modeling. 3D rotation is directly regressed by the
fully connected layers and 3D translation is faithfully predicted through the bi-contextual attention module.

and-conquer strategy, which generates 3D shapes by blend-
ing multiple meshes from different PCA-basis. However,
the PCA-basis often lose the details of object shape [1, 34].
To overcome these limitations, we construct shape priors
to hold these details. We then propose an attention-guided
modeling, which can reconstruct object shapes adopting rel-
evance between object and shape prior.

3. Methods
3.1. Problem Statement

Suppose that there exist n objects in an RGB image. We
define each object pose as 3D translation pt = {x, y, z}
and 3D rotation pr = {α, β, γ}. Also, we represent an ob-
ject shape as 3D mesh m ∈ R3v in [21], where v is the
number of vertices, and each vertex has its 3D coordinates.
Therefore, a monocular 3D pose and shape reconstruction
aims to estimate all objects’ translation Pt ∈ Rn×3, rota-
tion Pr ∈ Rn×3, and their shape M ∈ Rn×3v .

3.2. Model Overview
Figure 2 illustrates the overall architecture of BAAM.

The proposed BAAM extends Mask R-CNN [16] to extract
2D primitive features: bounding box (region of interest,
RoI), bounding box feature, keypoints, and keypoint visi-
bility. Given primitive 2D features, it first conveys visibil-
ity information to keypoints. Then, it concatenates three
types of features to construct object features for 3D pose
and shape estimation. Also, it extracts the global feature to
encode scene context indicating the road environment. Af-
ter that, the proposed BAAM predicts objects’ poses and
shapes based on global and object features. First, it uses
attention-guided modeling (AGM) which leverages the rel-
evance between objects and the shape prior about vehicles
to estimate object shapes. Second, it faithfully predicts ob-
ject translation through bi-contextual attention (BCA) in-

cluding relation-aware attention between each object and
scene-aware attention between objects and the road scene.
Third, it takes object features to regress their rotation.

3.3. 2D Feature Construction
Object feature. A bounding box denotes object center co-
ordinates (bx, by) and its width bw and height bh in image
space. Since image formation is closely related to camera
parameters [15], it is essential to aggregate camera informa-
tion into bounding boxes for 3D pose and shape estimation.
Hence, we transform bx, by , bw, bh from image space to b̃x,
b̃y , b̃w, b̃h in camera space:

b̃x =
bx − cx
fx

, b̃y =
by − cy
fy

, b̃w =
bw
fx
, b̃h =

bh
fy

(1)

where fx, fy are camera focal lengths and cx, cy are cam-
era principal points. We then feed the transformed boxes
into two fully-connected layers. A bounding box feature,
obtained using RoIAlign [16], contains useful information
about object appearance. We further process this feature
using three convolution operations to reduce its spatial res-
olution for the object feature construction.

We estimate keypoint coordinates and visibility for each
object defined in [43]. Here, the visibility of each point
is a Bernoulli variable that indicates whether that point is
visible in the input image. Since keypoints are in image
space, we transform them into camera space in the same
way as Equation (1), and process them using two different
fully-connected layers. Then, we multiply their elements
to aggregate visibility information to keypoints. Note that
keypoints give not only location and size cues but also shape
cues, which are essential in shape estimation, because they
involve local structural information of vehicles. Finally,
we construct object features Xo ∈ Rn×c by concatenat-
ing bounding boxes, bounding box features, and keypoints,
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Figure 3. Attention-guided modeling for 3D shape estimation. The
shape-aware attention can explore the relevance between the ob-
ject features and learnable template features to estimate object off-
set and to generate attention score.

where c is concatenated feature dimension. As a combina-
tion of primitive features, object features can provide rich
2D information including shape, position, and size about
individual objects for faithful 3D estimation.

Global feature. Different from object features, which de-
scribe individual objects, global features represent various
scene contexts. Specifically, we feed backbone feature
maps into three convolutional layers. We then sequentially
apply global average pooling and reshape operator to con-
struct global features Xg ∈ Rg×c. Here, the number of
global contexts g is fixed to 8.

3.4. Attention-guided modeling

Shape prior. Since a vehicle is a rigid object, we take ad-
vantage of prior knowledge about vehicle shapes for 3D
shape estimation. To build shape prior, we adopt p = 79
mesh templates in [21], in which each template is composed
of v = 1352 vertices to describe a representative vehicle
shape in ApolloCar3D dataset [43]. As shown in Figure 3,
we divide them into the mean shape m̄s ∈ R3v and template
offsets Os ∈ Rp×3v indicating the difference between the
mean shape and templates.

Shape-aware attention. We decompose an object shape
into three components: mean shape, template offsets, and
object offset. Let M̄s ∈ Rn×3v be the mean shape matrix,
whose rows are m̄s, and Oo ∈ Rn×3v be the object offset
matrix, whose rows contain offset for each object. Then We

define all objects’ shapes as

M = M̄s + AOs + Oo (2)

where A ∈ Rn×p denotes all objects’ attention scores, of
which rows indicate templates’ contribution to represent-
ing each object shape. Therefore, the shape-aware attention
aims to estimate all objects’ attention scores A and object
offsets Oo ∈ Rn×3v by exploiting the relationship between
objects and shape priors. This decomposition simplifies the
original problem, which should directly determine vertex
coordinates. Note that since cars are rigid bodies, the range
of possible object offsets is limited.

As shown in Figure 3, we first represent template off-
sets to template features Xs ∈ Rp×c using the standard
learnable embedding scheme [9, 48], to measure relevance
between an object and templates. We then predict ob-
ject offsets using multi-head cross-attention (MCA). MCA’s
mechanism is similar to standard multi-head self-attention
(MSA) [48]. The only difference is that MCA takes queries
and key-value pairs from different sources. Specifically, we
project object features to queries and template features into
keys and values. Thus, object offsets are given by

Õo = Xo + MCA(LN(Xo),Xs) (3)

Oo = MLP(Õo) (4)

where LN(·) is a layer normalization [2], MLP(·) contains
two fully-connected layers with GELU non-linearity [18].
Note that attention scores A, which present the similarities
between objects and shape priors, are available in the MCA
block for object offsets.

3.5. Bi-contextual attention
Given the object features Xo, we directly regress it to

the 3D rotation Pr with 3 fully connected layers. This is be-
cause the object feature encodes the internal object structure
giving meaningful cues for rotation estimation. On the other
hand, it is not straightforward to restore 3D translation from
the object feature. Note that 2D images have already lost
depth due to the image formation process. Thus, we attempt
to use an external object structure to compensate for it. Fig-
ure 4 illustrates the bi-contextual attention (BCA) module to
estimate 3D translation. Specifically, relation-aware atten-
tion is designed to consider the relevance between objects
based on a multi-head self-attention mechanism. Thus, the
relation-aware feature Xr is given by

Xr = MSA(LN(Xo)) (5)

On the other hand, scene-aware attention is presented to ex-
ploit scene context from global features. More precisely,
we design it based on the MCA mechanism in which ob-
ject features give queries and global features give keys and
values:

Xc = MCA(LN(Xo), LN(Xg)) (6)
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Figure 4. Bi-contextual attention module for 3D translation esti-
mation. Relation-aware attention extracts object’s relative infor-
mation from the object’s individual features, while scene-aware
attention interfuses various scene contexts into each object.

where Xc is the scene-aware feature. Next, we construct
translation features Xt by integrating these external cues
into object features:

X̃t = Xo + XrΛr + XcΛc (7)

Xt = X̃t + MLP(LN(X̃t))Λt (8)

where Λr, Λc, Λt are c× c learnable diagonal matrices [47]
to scale the contribution of feature channels. Given transla-
tion features Xt, the last fully-connected layer regresses 3D
translations Pt.

3.6. 3D Non-Maximum Suppression
Figure 5 shows a failure example of standard non-

maximum suppression (NMS) in 2D image space. How-
ever, it also shows that spurious detection can be removed
in Bird’s eye view (BEV). Here, we propose a simple 3D
NMS algorithm working on BEV as a post-processing step.
As shown in Figure 5, our NMS identifies duplicated de-
tection by comparing the x and z distances with thresholds
λx and λz . It then iterates the procedure, which selects one

Figure 5. 3D non-maximum suppression to remove spurious ob-
jects based on their Bird-Eye-view distance.

detection with the highest detection score and removes du-
plicated detections.

For accurate 3D NMS, we introduce the 3D detection
score based on depth uncertainty [33]. Note that restoring
depth by inverting the image formation process is an ill-
posed problem. And there exists inevitable uncertainty in
estimated depth. Thus, it is essential to consider this un-
certainty to make a certain decision using estimated depth.
Specifically, we predict depth uncertainty u through the last
fully-connected layer in Figure 4. We then define the 3D
detection score considering depth uncertainty as

s3D = s2D · exp(−u) (9)

where s2D is 2D detection score by Mask R-CNN [16].

3.7. Loss functions
Regression losses. We define the translation loss Ltrans as

Ltrans = |x− x̂|+ |y − ŷ|+
√

2

u
|z − ẑ|+ log(u) (10)

where x̂, ŷ, ẑ are ground-truth translation coordinate. The
last two terms are the uncertainty regression loss [7, 33].
Note that due to inevitable uncertainty in depth estimation,
difficult or noise-labeled objects often produce large errors
causing unstable training. The uncertainty regression loss
prevents it by inducing larger uncertainty for such cases.
Also, we employ the rotation loss Lrot in [21], which con-
strains the range of rotation pr to [−π, π].

Lrot =

{
|pr − p̂r| if |pr − p̂r| ≤ π
|2π − |pr − p̂r|| if |pr − p̂r| > π

(11)

where p̂r is ground-truth rotation vector. For the shape
Lshape loss, we simply adopt L2-loss between predicted and
ground-truth ones.
Detection loss. The detection loss Ldet constrains inaccu-
rate bounding boxes and keypoints. More specifically, we
define it as

Ldet = Lrpn + Lbbox + Lkpts (12)
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A3DP-Abs A3DP-Rel
Method Detailed shape

mean c-l c-s mean c-l c-s

DeepMANTA [5] 7 20.10 30.69 23.76 16.04 23.76 19.80
Keypoints-based [43] 7 20.40 31.68 24.75 16.53 24.75 19.80

3D-RCNN [24] 3 16.44 29.70 19.80 10.79 17.82 11.88
Direct-based [43] 3 15.15 28.71 17.82 11.49 17.82 11.88
GSNet [21] 3 18.91 37.42 18.36 20.21 40.50 19.85

BAAM-ResNet101 3 23.80 45.62 21.92 21.00 44.24 17.88
BAAM-Res2Net 3 25.19 47.31 23.13 22.85 46.21 20.31

Table 1. Performance comparison with state-of-the-art methods for the monocular 3D pose and shape reconstruction on ApolloCar3D
dataset [43]. No detailed shape methods use retrieval strategy, which searches a 3D shape to best match its 2D observation. We highlight
the best and second best results in bold and underline.

where Lrpn, Lbbox, Lkpts are standard losses in [16] for RPN,
2D box head, and 2D keypoints head, respectively.
3D space loss. Even though objects’ translation, rotation,
and shape are interdependent in 3D space, the regression
losses consider them independently. To emphasize their
structure, we employ the 3D loss [13] that penalizes the
mean vertex error between predicted and ground-truth ver-
tices on the world space. Let R ∈ R3×3 be the rotation ma-
trix corresponding to the estimated object rotation pr. Using
the rotation matrix and the translation vector t = pt, we can
transform 3D mesh vertices in the camera space to the world
space by mworld = Rm∗ + t. Here, m∗ ∈ R3×v is the
reshaped matrix of the estimated 3D mesh m. Moreover,
we consider additional 3D spaces, rotation, and translation
spaces, to clarify the ambiguous contributions of the trans-
lation and rotation. Thus, we define 3D mesh vertices in
these spaces by mrot = Rm∗ and mtrans = m∗ + t. Then,
the 3D loss is given by

L3D =
∑
l∈S

|ml − m̂l| (13)

where S = {world, trans, rot} is the 3D space set.

4. Experiments
4.1. Datasets and Metrics
ApolloCar3D [43]. It contains 4036, 200, and 1041 high-
resolution images for training, validation, and testing. How-
ever, we only use the training and validation sets for our
experiments because the ApolloCar3D test server is not ser-
viced. ApolloCar3D images contain an average of 11.7 car
objects described by 2D keypoints, 3D translation, and rota-
tion labels. Each object is one of 79 car classes (e.g. sedan,
coupe, SUV, and so on). For the ground-truth car shape,
we adopt 3D mesh models in [21]. For the detection loss,
we define a pseudo 2D bounding box since ApolloCar3D
does not provide a 2D bounding box label. Specifically, we

project object meshes to image space using camera param-
eters and their 3D translation and rotation. We then define
a tight 2D box surrounding a projected mesh mask, as the
pseudo 2D bounding box.
KITTI [12]. It is the widely used dataset in monocular 3D
object detection. It consists of 7,481 images for training and
7,518 images for testing. As done in [6], we split the train-
ing data into a training set (3,712 images) and a validation
set (3,769 images). Then, we conduct experiments on this
split to validate the scalability of the bi-contextual attention
module on 3D object detection.
Evaluation Metrics. For ApolloCar3D experiments, we
adopt the average 3D precision (A3DP) [43], which jointly
measures 3D translation, rotation, and shape reconstruc-
tion accuracy. According to the 3D translation error mea-
surement scheme, we denote A3DP metrics with an abso-
lute translation error and a relative one as A3DP-Abs and
A3DP-Rel, respectively.

4.2. Implementation Details
Inference. We employ Res2Net [11] as our backbone, pre-
trained on the COCO 2017 dataset [28]. We then perform
2D box and keypoints detection through Mask R-CNN [16].
After that, we estimate the 3D pose and shape for all detec-
tions. Finally, we conduct the proposed 3D NMS to remove
spurious detections.
Training. We train the proposed BAAM network in two
stages. First, we train BAAM with the detection loss Ldet
for 10 epochs. For this stage, we employ AdamW opti-
mizer [32] with a learning rate of 0.0001. Second, we train
BAAM with the total loss L = Ldet +Ltrans +Lrot +Lshape +
L3D for 30 epochs. Here, we balance the contribution of
losses with scales of 1, 0.5, 1, 3, and 0.01, respectively.
Also, we use AdamW optimizer with an initial learning rate
of 0.0001 and divide it by 10 at the 20 epoch. For the train-
ing, we use a mini-batch of size 4. The training is performed
with an RTX A6000 GPU.
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Figure 6. Qualitative results of BAAM on ApolloCar3D. Note how precisely BAAM estimates car 3D pose and shape.

Method
3D@IOU=0.7 BEV@IOU=0.7 3D@IOU=0.5 BEV@IOU=0.5

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

GUPNet [33] 23.18 16.24 13.57 30.18 22.42 19.31 58.99 43.64 39.34 65.16 48.88 42.93
+ BCA 24.23 16.48 13.60 30.90 22.58 19.21 60.32 45.67 39.51 66.23 49.73 43.23
+ BCA + 3D NMS 24.33 16.55 13.66 31.00 22.66 19.26 60.60 44.66 38.29 65.36 49.99 43.40

DID-M3D [40] 25.41 17.07 14.05 33.94 23.22 19.52 64.47 48.32 41.75 70.34 52.34 45.47
+ BCA 25.96 17.66 14.57 33.97 24.21 20.69 64.56 48.82 42.49 70.73 53.00 47.75
+ BCA + 3D NMS 26.02 17.72 14.62 34.04 24.31 19.87 64.69 48.94 42.52 70.85 53.12 46.36

DEVIANT [23] 24.58 16.52 14.50 32.63 23.05 20.00 60.97 44.78 40.18 65.31 49.63 43.50
+ BCA 25.34 16.98 14.93 32.77 23.21 20.12 61.11 46.13 40.31 65.45 49.80 43.74
+ BCA + 3D NMS 25.40 17.03 14.95 32.80 23.32 20.15 61.29 45.01 40.34 65.64 49.99 43.73

Table 2. The effectiveness of bi-contextual attention (BCA) and 3D non-maximum suppression (NMS). We add BCA module before the
depth bias module of GUPNet [33] and DEVIANT [23], and attribute depth module of DID-M3D [40]. Also, we adopt 3D NMS in the
post-processing steps of all. For the baselines, we reproduce results with the officially released code and parameters. We highlight the best
and second best results in bold and underline.

4.3. Main Results

Results on ApolloCar3D. Table 1 compares the pro-
posed BAAM with recent state-of-the-art algorithms on
Apollo3D: DeepMANTA [5], Keypoints-based [43], 3D-
RCNN [24], Direct-based [43], and GSNet [21]. Note that
the proposed BAAM significantly outperforms the exist-
ing methods across the evaluation metrics. Compared to
GSNet, BAAM improves A3DP-Abs and A3DP-Rel scores
by 33% and 13%, respectively. For fair comparisons, we
also report the performance of BAAM with ResNet101 [17]
backbone, which is the same one with GSNet [21]. As
shown in Table 1, BAAM-ResNet101 still exceeds GSNet
with the improvement of 26% and 4% in terms of A3DP-
Abs mean and A3DP-Rel mean. Figure 6 shows qualitative
results on ApolloCar3D. The first row is the input images,
and the second row is the result of our BAAM. The third
row shows the reconstructed 3D space of BAAM in a dif-

ferent viewpoint. Corresponding car instances are depicted
in the same color. We see that BAAM faithfully places car
objects onto 3D space and estimates detailed object shapes.
Results on KITTI. We verify the scalability of the pro-
posed BCA module and 3D NMS algorithm. To this end,
we integrate our module into state-of-the-art algorithms
for monocular 3D object detection: GUPNet [33], DID-
M3D [40], and DEVIANT [23]. Table 2 reports the perfor-
mance of these algorithms on KITTI validation set. Note
that our BCA module improves their performances in all
settings with only one exception. In addition, our 3D
NMS algorithm further increases the overall performance
of monocular 3D object detectors.

4.4. Ablation Study
Next, we study the contribution of three components:

Attention-guided modeling (AGM); Bi-contextual attention
(BCA); 3D non-maximum suppression (3D NMS). For the
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Method
A3DP-Abs A3DP-Rel Rotate Trans Mesh

Mean c-l c-s Mean c-l c-s Error Error IOU

Baseline 21.08 41.98 18.36 16.68 36.29 12.84 14.00 7.35 84.71
Baseline + AGM 22.80 43.01 21.94 18.79 38.97 15.54 13.96 7.23 85.55
Baseline + AGM + BCA 24.74 45.86 23.21 22.42 45.15 20.04 11.96 6.33 85.41
Baseline + AGM + BCA + 3D NMS 25.19 47.31 23.13 22.85 46.21 20.31 11.96 6.33 85.41

Table 3. Results on ApolloCar3D with different combinations of BAAM components: AGM, BCA, and 3D NMS. Baseline directly
regresses mesh vertices and translation. We evaluate rotation error, translation error, and rendered mesh IOU with the ground truth boxes.

Method Mesh Error Mesh IOU

Regression 8.58 82.61
PCA-basis 7.25 85.08
Divide-and-conquer [21] 7.71 84.60
AGM 6.82 85.41

Table 4. Results on ApolloCar3D with different shape estimation
methods. We measure rendered IOU, L1 distance error with re-
spect to the ground truth mesh. The L1 distance error is in units of
10−2.

ablation study, we design the baseline that excludes these
components from BAAM and directly regresses 3D pose
and shape through a single fully-connected layer. Table 3
reports the main results of ablation study on ApolloCar3D.
Impacts of AGM. In Table 3, AGM generates more accu-
rate 3D mesh by improving mesh IOU +0.76 from Baseline.
With a precise shape estimation, AGM increases A3DP-
Abs mean, c-l, and c-s by +1.71, +3.25, and +2.8, respec-
tively. Note that this result supports the importance of de-
tailed shape estimation. For a comprehensive analysis, we
replace AGM from our BAAM with different shape esti-
mation methods: Regression, PCA-basis, and divide-and-
conquer method [21]. The implementation details about
these alternative methods are available in the supplementary
material. Table 4 shows that the proposed AGM consider-
ably exceeds the other methods with the highest mesh IOU
and the lowest mesh error.
Impacts of BCA. As shown in Table 3, BCA significantly
boosts A3DP-Abs and A3DP-Rel scores. This is because
BCA effectively reduces translation errors by exploiting ex-
ternal object structures. Table 5 shows the contributions of
relation-aware attention and scene-aware attention. We ob-
serve that both A3DP-Abs and A3DP-Rel scores are signif-
icantly degraded if one of them is missing. This demon-
strates that the perception of both inter-object and road en-
vironments is critical to the 3D translation reasoning.
Impacts of 3D NMS. Table 3 shows that our 3D NMS fur-
ther improves A3DP scores on ApolloCar3D. Also, we see
that most best scores of state-of-the-arts on KITTI are ob-
tained with our 3D NMS. Both experiments demonstrate the

Method
A3DP-Abs A3DP-Rel

Mean c-l c-s Mean c-l c-s

RA 23.95 46.29 21.59 20.59 43.20 17.15
SA 23.66 45.59 21.84 20.59 42.64 17.15
RA+SA 25.19 47.31 23.13 22.85 46.21 20.31

Table 5. Results on ApolloCar3D with different combinations of
BCA components. RA and SA mean the relation-aware attention
and the scene-aware attention.

effectiveness of our 3D NMS. However, the improvement
on ApolloCar3D is relatively larger than KITTI. This is be-
cause the ApolloCar3D has far more cars (11.7) than the
KITTI (4.8) per image.

5. Conclusion
We proposed a novel algorithm, called BAAM, for

monocular 3D pose and shape reconstruction. The
main contributions of BAAM are bi-contextual attention,
attention-guided modeling, and 3D NMS algorithm. Given
various 2D primitives, BAAM reconstructs the object’s
shape as a mesh based on attention-guided modeling, which
exploits relevance between individual objects and vehicle
shape priors. Then, BAAM estimates the object’s pose us-
ing the carefully designed bi-contextual attention module
to consider relation-context inter objects and scene-context
between the object and road environment. Finally, the
3D NMS algorithm eliminates spurious objects based on
Bird-Eye-View geometry. Experiments demonstrated that
BAAM significantly outperforms conventional algorithms
on ApolloCar3D, and that BAAM improves monocular 3D
object detectors on KITTI as a plugged-in-plug module.
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