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Abstract

Temporal action detection aims to predict the time inter-

vals and the classes of action instances in the video. Despite

the promising performance, existing two-stream models ex-

hibit slow inference speed due to their reliance on compu-

tationally expensive optical flow. In this paper, we intro-

duce a decomposed cross-modal distillation framework to

build a strong RGB-based detector by transferring knowl-

edge of the motion modality. Specifically, instead of direct

distillation, we propose to separately learn RGB and motion

representations, which are in turn combined to perform ac-

tion localization. The dual-branch design and the asymmet-

ric training objectives enable effective motion knowledge

transfer while preserving RGB information intact. In addi-

tion, we introduce a local attentive fusion to better exploit

the multimodal complementarity. It is designed to preserve

the local discriminability of the features that is important

for action localization. Extensive experiments on the bench-

marks verify the effectiveness of the proposed method in en-

hancing RGB-based action detectors. Notably, our frame-

work is agnostic to backbones and detection heads, bring-

ing consistent gains across different model combinations.

1. Introduction

With the popularization of mobile devices, a significant

number of videos are generated, uploaded, and shared ev-

ery single day through various online platforms such as

YouTube and TikTok. Accordingly, there arises the impor-

tance of automatically analyzing untrimmed videos. As one

of the major tasks, temporal action detection (or localiza-

tion) [56] has attracted much attention, whose goal is to find

the time intervals of action instances in the given video. In

recent years, a lot of efforts have been devoted to improving

the action detection performance [28–30, 36, 37, 74, 79, 84].

Most existing action detectors take as input two-stream

data consisting of RGB frames and motion cues, e.g., opti-

cal flow [21, 66, 78]. Indeed, it is widely known that differ-
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Figure 1. Comparison between conventional distillation and ours.

Framework Method
Average mAP (%)

RGB+OF RGB ∆

Anchor-based G-TAD [74] 41.5 26.9 −14.6

Anchor-free
AFSD [34] 52.4 43.3 −9.1

Actionformer [80] 62.2 55.5 −6.7

DETR-like TadTR [42] 56.7 46.0 −10.7

Proposal-free TAGS [47] 52.8 47.9 −4.9

Table 1. Impact of motion modality. We measure the average mAP

under the IoU thresholds of [0.3:0.7:0.1] on THUMOS’14.

ent modalities provide complementary information [6, 24,

58, 69]. To examine how much two-stream action detec-

tors rely on the motion modality, we conduct an ablative

study using a set of representative models1. As shown in

Table 1, regardless of the framework types, all the mod-

els experience sharp performance drops when the motion

modality is absent, probably due to the static bias of video

models [11, 27, 31, 32]. This indicates that explicit motion

cues are essential for accurate action detection.

However, two-stream action detectors impose a cycle of

dilemmas for real-world applications due to the heavy com-

putational cost of motion modality. For instance, the most

popular form of motion cues for action detection, TV-L1

optical flow [66], is not real-time, taking 1.8 minutes to

process a 1-min 224 × 224 video of 30 fps on a single

GPU [58]. Although cheaper motion clues such as temporal

gradient [63, 70, 85] can be alternatives, two-stream models

still exhibit inefficiency at inference by doubling the net-

1Each model is reproduced by its official codebase.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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work forwarding process. Therefore, it would be desirable

to build strong RGB-based action detectors that can bridge

the performance gap with two-stream methods.

To this end, we focus on cross-modal knowledge distilla-

tion [12,16], where the helpful knowledge of motion modal-

ity is transferred to an RGB-based action detector during

training in order to improve its performance. In contrast to

conventional knowledge distillation [19, 20, 46, 52] where

the superior teacher guides the weak student, cross-modal

distillation requires exploiting the complementarity of the

teacher and student. However, existing cross-modal distil-

lation approaches [12,13] fail to consider the difference and

directly transfer the motion knowledge to the RGB model

(Fig. 1a), as conventional distillation does. By design, the

RGB and motion information are entangled with each other,

making it difficult to balance between them. As a result,

they often achieve limited gains without careful tuning.

To tackle the issue, we introduce a novel framework,

named decomposed cross-modal distillation (Fig. 1b). In

detail, our model adopts the split-and-merge paradigm,

where the high-level features are decomposed into appear-

ance and motion components within a dual-branch design.

Then only the motion branch receives the distillation signal,

while the other branch remains intact to learn appearance in-

formation. For explicit decomposition, we adopt the shared

detection head and the asymmetric objective functions for

the branches. Moreover, we design a novel attentive fusion

to effectively combine the multimodal information provided

by the two branches. In contrast to existing attention meth-

ods, the proposed fusion preserves local sensitivity which

is important for accurate action detection. With these key

components, we build a strong action detector that produces

precise action predictions given only RGB frames.

We conduct extensive experiments on the popular bench-

marks, THUMOS’14 [22] and ActivityNet1.3 [4]. Experi-

mental results show that the proposed framework enables

effective cross-modal distillation by separating the RGB

and motion features. Consequently, our model largely im-

proves the performance of RGB-based action detectors, ex-

hibiting its superiority over conventional distillation. The

resulting RGB-based action detectors effectively bridge the

gap with two-stream models. Moreover, we validate our ap-

proach by utilizing another motion clue, i.e., temporal gra-

dient, which has been underexplored for action detection.

To summarize, our contributions are three-fold: 1) We

propose a decomposed cross-modal distillation framework,

where motion knowledge is transferred in a separate way

such that appearance information is not harmed. 2) We de-

sign a novel attentive fusion method that is able to exploit

the complementarity of two modalities while sustaining the

local discriminability of features. 3) Our method is gener-

alizable to various backbones and detection heads, showing

consistent improvements.

2. Related Works

2.1. Temporal Action Detection

Temporal action detection requires predicting tempo-

ral intervals as well as action categories for all action in-

stances occurring in the video. Conventional methods adopt

the two-stage pipeline (i.e., proposal-and-classification) and

generate proposals by either sliding windows [7, 55, 72,

76, 77, 86] or predicting the per-frame starting and ending

probabilities [33, 36, 37, 84]. Besides, several methods fo-

cus on proposal refinement to improve the detection per-

formance [49, 79, 88]. Meanwhile, analogous to one-stage

object detection [39, 50], anchor-free models are proposed

for efficient action detection [34, 80]. Inspired by the re-

cent success of DETR [5], query-based action detectors

are also designed to streamline the complicated detection

pipeline [42,53,60]. In an orthogonal direction, some works

showcase the benefit of end-to-end training of video back-

bones for temporal action detection [10, 40, 73].

Most of the current action detectors leverage two-stream

inputs for accurate action localization. However, the optical

flow takes heavy computations, suggesting the necessity of

RGB-based action detection models. In this paper, we pro-

pose a novel distillation framework to build a strong RGB-

based action detector by transferring motion knowledge.

2.2. Cross­modal Knowledge Distillation

Knowledge distillation [20] is originally devised to

transfer the knowledge of large-scale models (teachers) to

smaller ones (students). Existing approaches can be catego-

rized into three groups based on what types of knowledge

are distilled: responses, features, and relations. Response-

based methods encourage the student to produce similar

predictions to those of the teacher [3,9,20,81]. Meanwhile,

feature-based distillation methods pursue the matching of

intermediate features between students and teachers [46,52,

57, 65]. Lastly, relation-based models focus on aligning the

inter-sample relationship between the teacher and the stu-

dent [43, 48, 61]. In practice, the three types of distillation

are often used in a combinational form [14, 81, 87].

As a subset, cross-modal knowledge distillation aims to

transfer knowledge of one modality to another modality.

Generally, the model taking the superior modality on the

target task is selected as the teacher and guides the inferior

modality model [51, 83]. On the other hand, in the regime

of action analysis, there is no dominant modality, and it is

crucial to grasp the complementarity of different modali-

ties [6, 58]. However, existing works [12, 13, 16, 45] ig-

nore this property and directly inject motion knowledge into

the RGB model, leading to entangled representations. In

contrast, we propose a decomposed distillation framework,

where different modality information is separately learned

and recomposed for effective action detection.
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3. Method

Problem formulation. The input of temporal action de-

tection models is a video V ∈ R
T×3×H×W consisting of a

total of T frames with the size of H ×W . Here the video

length T can vary across input videos. Since most of the

action detectors are based on two-stream inputs, the optical

flow maps are additionally extracted from each pair of con-

secutive RGB frames. We denote the optical flow maps by

F ∈ R
T×2×H×W , where each map Ft is composed of two

channels that respectively estimate the displacements of x

and y axes. During training, the input video is labeled with

its corresponding annotation Ψ = {(φm,ym)}Mm=1
, where

ym is the category label of the m-th action instance and

φm = (tsm , tem) indicates its starting and ending times-

tamps. Typically, the class label ym ∈ R
C is a one-hot

vector, where C indicates the number of categories. In the

test phase, a two-stream action detector localizes the action

instances based on both V and F . Differently, to bypass

time-consuming optical flow extraction and inefficient in-

ference, we aim to build an RGB-based action detector that

takes only V as input. To this end, we leverage a pre-trained

motion model as the teacher and transfer its knowledge to

the RGB-based action detector in a decomposed way.

Motion modality. Conventionally, optical flow is utilized

as the motion modality for action detection [7, 37]. Mean-

while, another form of the motion modality, i.e., tempo-

ral gradient, has recently been explored for action recogni-

tion [70,71]. Inspired by this, we explore temporal gradient

for temporal action detection for the first time. The tem-

poral gradient maps G ∈ R
T×3×H×W is defined by the

residual difference between two consecutive frames, i.e.,

Gt = Vt − Vt−1, which implicitly captures motion infor-

mation such as camera moving, object moving, etc. Fig. 2

exemplifies an RGB frame and the corresponding optical

flow and temporal gradient. Although vulnerable to noises

like environmental changes, the temporal gradient can be

obtained on-the-fly and thus have the potential to be utilized

as a weak form of motion modality. Indeed, it is shown in

the experiments that its motion knowledge helps to improve

the action detection performance. In the following, we will

elaborate on our framework using optical flow maps F as

the motion modality by default, but they can be replaced by

temporal gradient maps G without loss of generality.

3.1. Motion Teacher Training

In this section, we describe the training of the motion

teacher. Given the input optical flow F , the video back-

bone extracts 1D spatially pooled features zmot ∈ R
T/rT×C ,

where rT indicates the temporal downsampling rate and C

is the channel dimension. Here rT can vary depending on

the backbone choices. The extracted features go through

the action detection head, resulting in a set of predicted

action boundaries and scores Ψ̂mot = {(φ̂mot
n , ŷmot

n )}Nn=1
,

(a) RGB frame (b) Optical flow (c) Temporal gradient

Figure 2. An example of an RGB frame and the corresponding

optical flow map and temporal gradient map.

where φ̂mot
n = (t̂mot

sn , t̂
mot
en ) is the predicted action propos-

als, N is the number of predictions, and ŷn is the class

probability with Sigmoid activation. We leave the model ar-

chitecture and the detailed prediction process to be abstract

since our framework can be applied to any framework type,

e.g., anchor-based [44, 74], anchor-free [34, 80], query-

based [42, 60]. We show in experiments that our approach

brings consistent improvements for different types of heads.

The action predictions are grouped by positive and negative

sets based on pre-defined principles; some works perform

thresholding the intersection-over-union (IoU) with ground

truths [7, 55], while other query-based methods rely on the

Hungarian matching [40]. We denote the positive and neg-

ative sets by Ψ̂mot
P and Ψ̂mot

N , respectively. The predictions

in the positive set are labeled by the best-matched ground-

truth intervals and classes {(φn,yn)}
|Ψ̂mot

P
|

n=1
. On the other

hand, the predictions in the negative set are annotated as the

background class. Despite minor differences, the training

objective of action detectors generally consists of a classifi-

cation loss, a regression loss, and a completeness loss.

1) The classification loss is defined by a weighted sum

of the focal binary cross-entropy function as follows.

Lcls =
αP

|Ψ̂mot
P |

∑

ŷn∈Ψ̂
mot
P

ℓfocal(ŷn,yn) +
αN

|Ψ̂mot
N |

∑

ŷn∈Ψ̂
mot
N

ℓfocal(ŷn,0),

(1)

where ℓfocal(ŷ,y) denotes the focal binary cross-entropy

loss [38], α∗ is the term for balancing between positive and

negative samples, and 0 ∈ R
C is the C-dimensional zero

vector indicating the background class.

2) The regression loss is defined by the L1-distance be-

tween ground truths and the predicted offsets as follows.

Lreg =
1

|Ψ̂mot
P |

∑

ϕ̂n∈Ψ̂
mot
P

ℓ1(φ̂n, φn), (2)

where ℓ1(φ̂, φ) denotes the (smooth) L1 distance between

the two offsets. It is worth noting that the regression loss is

computed only for the positive set.

3) The completeness loss is utilized to maximize the

IoUs between ground truths and the predicted proposals.

Lcomp =
1

|Ψ̂mot
P |

∑

ϕ̂n∈Ψ̂
mot
P

(

1−
|φ̂n ∩ φn|

|φ̂n ∪ φn|

)

. (3)

The completeness loss is defined only for the positive set.
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The overall objective function is a weighted sum of the

above losses: λclsLcls + λregLreg + λcompLcomp. After train-

ing, the motion model Mmot is able to extract discriminative

motion features and will serve as the teacher for distillation.

3.2. Decomposed Cross­modal Distillation

Motivation. Previous cross-modal knowledge distillation

frameworks [12,13] transfer motion knowledge to the RGB

model in a direct way, so that the RGB model is encour-

aged to produce similar predictions with the motion model.

Such an approach, however, would result in sub-optimal so-

lutions, as the complementarity of the two modalities is not

considered. To handle the challenge, we design a novel de-

composed distillation framework, where RGB and motion

information are separately learned and later fused to effec-

tively exploit their complementarity. The training process

of our distillation framework is illustrated in Fig. 3a.

Similar to the motion model, given RGB frames V ,

the video backbone first produces the spatiotemporal fea-

tures zRGB ∈ R
T/rT×C . The representation zRGB is pro-

jected into two different spaces, i.e., motion and appear-

ance spaces. The projections are implemented by a series

of 1D convolutional layers, and we denote this process by

ϕapp(z
RGB), ϕmot(z

RGB) ∈ R
T/rT×D, respectively. After-

ward, the projected features serve as input to the subsequent

separate branches to predict the temporal intervals of action

instances. In the following, we describe how the separated

features learn their own representations.

3.2.1 Motion branch

The motion branch is supposed to learn motion informa-

tion from the RGB frames. For this purpose, the pre-trained

motion model Mmot (teacher) explicitly guides the motion

branch (student) by distilling its knowledge. A variety of

distillation approaches can be applied to our framework,

and we adopt two representative methods in the following.

1) The response-based distillation loss [9,20] utilizes the

teacher’s predictions as pseudo-ground truths and encour-

ages the student to mimic the behavior of the teacher.

Lrespon = λclsL
cls
respon + λregL

reg
respon,

where Lcls
respon =

1

|Ψ̂|

|Ψ̂|
∑

n=1

ℓfocal(ŷn, ŷ
mot
n )

and Lreg
respon =

1

|Ψ̂|

|Ψ̂|
∑

n=1

ℓ1(φ̂n, φ̂
mot
n ).

(4)

where (φ̂mot
n , ŷmot

n ) is the corresponding teacher’s predic-

tions of the student’s ones. Here ℓfocal and ℓ1 are defined

as same in Eq. 1 and 2, respectively.

2) The feature-based distillation loss [52] encourages the

matching of the intermediate features from the student and
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Figure 3. Overall workflow of the proposed framework. (a) During

training, our model performs decomposed cross-modal distillation

by explicitly separating motion and appearance branches. Here

the detection heads of two branches are shared. (b) At inference,

our model takes as input only RGB frames and precisely localizes

action instances based on multimodal information.

the teacher, which is formulated as:

Lfeat =
1

T

T
∑

t=1

∥ϕmot(z
RGB
t )− zmot

t ∥2
2
, (5)

where the projection layer ϕmot(·) can be viewed as an

adaptation layer [8] that helps to ease the feature match-

ing between different modality features. Note that although

this equation represents the matching of backbone features,

other features from any intermediate layer can be aligned.

To summarize, the total training objective function of the

motion branch is defined by the weighted sum of the distil-

lation losses: Ldistill = Lrespon+λfeatLfeat. With the guidance

of the pre-trained motion model, the motion branch learns

motion representations given RGB frames as inputs. Note

that our framework is general and can utilize other improved

distillation methods, but it is beyond the scope of this paper.

3.2.2 Appearance branch

On the other side, to prevent the model from losing rather

static RGB information during distillation, we train the ap-

pearance branch jointly with the motion branch. The train-

ing objective is the same with the motion teacher Mmot,
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except that the input is RGB frames. Here we define the

training objective of the appearance branch as: Lapp =
λclsLcls + λregLreg + λcompLcomp. Being trained with the

conventional detection loss, the appearance branch is able

to keep the appearance information intact during distillation

which is useful for action detection.

3.2.3 Discussion

Our decomposed distillation model contains two separate

branches with different design purposes. Specifically, the

motion branch needs to imitate the behavior of the mo-

tion teacher, while the appearance branch is supposed to

learn the original appearance information from the same

RGB inputs. To achieve this goal, we propose to endow

the branches with conflicting training objectives. However,

the two branches may reach a degenerate solution, learn-

ing similar representations without distinction and relying

solely on the powerful detection head to produce differ-

ent predictions. To tackle the potential issue, we make the

branches share the weights of the classifier and the regres-

sor in the detection heads. With these two key designs, we

can lead the two branches to learn the different information

of RGB and motion modalities, thus achieving their com-

plementarity of theirs in the subsequent fusion stage.

3.3. Local Attentive Fusion

Provided that the appearance and motion features have

learned the expected information, the next question is how

to fuse the different information from them. An intuitive

way would be to perform concatenation before feeding

them to the joint detection head, also known as early fu-

sion [23]. However, we argue that such a naive way does

not help much since erroneous predictions of one modality

can propagate to the other. Instead, we utilize an attentive

fusion mechanism to maximize the harmonizing effect of

the two different modalities.

Our motivation is that one modality can enhance the

other by highlighting the agreement between different

modalities. One can try applying cross-attention for that

purpose, where features of one modality aggregate informa-

tion from those of the other modality based on feature sim-

ilarity. Although the cross-attention proves to be effective

in various fields [18,67], we experimentally find that it does

not help much to improve the action detection performance.

We conjecture that this is because the cross-attention ham-

pers local discriminability of the features by gathering in-

formation along the temporal dimension, i.e., feature over-

smoothing, which is also observed in the literature [17, 60].

To bypass the issue, we propose a new attentive fusion that

sustains locally discriminative features for action detection.

Let us call the modality to be enhanced the target modal-

ity and the other the reference modality. At first, we build a

𝑸𝒖𝒆𝒓𝒚
Target modality

features 𝑓𝑡𝑎𝑟𝑔𝑒𝑡
𝝈𝝈𝝈𝝈𝝈𝑲𝒆𝒚𝒔

Enhanced target 

modality features

𝑓𝑡𝑡𝑎𝑟𝑔𝑒𝑡

𝑓𝑡𝑟𝑒𝑓
Reference modality

features

෩𝑓𝑡𝑡𝑎𝑟𝑔𝑒𝑡
Channel attention

weights

A𝝈
𝑽𝒂𝒍𝒖𝒆𝒔

: Aggregation

: Sigmoid activation

: Element-wise

multiplication
A

Figure 4. Illustration of the proposed local attentive fusion.

single representative feature for the target modality by ag-

gregating the whole features along the temporal dimension,

i.e., f target = ψ(f target
1

, . . . , f
target
T ) ∈ R

D, where the ag-

gregation function can be implemented by various pooling

methods. Thereafter, it serves as the query and the individ-

ual features from the assistant modality are deemed as the

key. Then, the query-key matching process is defined by:

ωt = σ
[

(W⊤
queryf

target)⊙ (W⊤
keyf

ref
t )

]

, (6)

where Wquery,Wkey ∈ R
D×D respectively indicate the pro-

jection matrices for the query and keys, ⊙ denotes the

Hadamard product, and σ(·) is the sigmoid activation. Here

the resulting weight ωt ∈ [0, 1]D can be viewed as the chan-

nel attention weights that are derived from the similarity

between the two modalities. Therefore, we can suppress

erroneous predictions of the target modality and emphasize

the mutually agreed information by applying the weight to

the features of the target modality, i.e., f̃
target
t = ωt · f

target
t .

The overall process of our attentive fusion is illustrated in

Fig. 4. Importantly, our attentive fusion does not fuse infor-

mation of different temporal points and thus can preserve

the local sensitivity of the features. The advantage of our

local attentive fusion over the conventional cross-attention

will be verified in Sec. 4. After enhancing the appearance

and motion features based on each other, we concatenate

and put them into the joint detection head. The detection

head is trained to perform the action detection given the en-

hanced multimodal features. The loss function of the de-

tection head is the same as that of the appearance branch:

Ljoint = λclsLcls + λregLreg + λcompLcomp.

3.4. Joint Training and Inference

Our framework is trained in an end-to-end manner. The

total training objective of our model is defined as Ltotal =
Lapp + Ldistill + Ljoint. At inference, we discard the detec-

tion heads of the branches and predict action intervals and

classes using the joint head, as depicted in Fig. 3b. It is note-

worthy that our model takes only RGB frames as input and

localizes action instances based on multimodal information.
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distillation
local attn.

mAP@IoU (%)
AVG

conven. decomp. 0.3 0.4 0.5 0.6 0.7

✗ ✗ ✗ 62.3 55.2 46.2 33.8 20.4 43.6

✓ 62.5 55.7 47.3 35.1 21.8 44.5

✓ 63.3 56.2 47.9 36.1 22.9 45.2

✓ ✓ 64.4 58.0 49.0 37.5 24.1 46.6

Table 2. Ablation study on the effect of each component. The

comparative methods are evaluated on THUMOS’14.

4. Experiments

4.1. Experimental Setups

Datasets. We evaluate our framework on the two most

popular benchmarks for temporal action detection: THU-

MOS’14 [22] and ActivityNet1.3 [4]. THUMOS’14 con-

sists of 200 and 213 videos respectively for training and

testing with 20 action categories. It is a challenging dataset

since it contains frequent action instances, e.g., 15 instances

per video on average. Therefore, we utilize it as the main

dataset for experiments. On the other hand, ActivityNet1.3

is a relatively large-scale dataset containing 10,024, 4,926,

and 5,044 videos respectively for training, validation, and

testing. As the ground truths of the test set are unavailable,

we evaluate the comparative models on the validation set.

Evaluation metrics. The standard protocol for evaluating

action detectors is mean average precisions (mAPs) at dif-

ferent intersection-over-union (IoU) thresholds. Following

the convention [7, 41, 74], we set the thresholds to [0.3:0.7]

with a step size of 0.1 for THUMOS’14 and [0.5:0.95] with

a step size of 0.05 for ActivityNet1.3.

Implementation details. Our framework is agnostic to the

choices of backbones and action detection heads. To con-

firm the generalizability of the proposed method, we con-

duct experiments using different combinations. The video

backbones are TSM18 [35], TSM50, I3D [6], and Slow-

fast50 [15]. For the detection head, we utilize the represen-

tative models of three different detector types: anchor-based

(GTAD [74]), anchor-free (Actionformer [80]), and query-

based (TadTR [42]). For model implementation and hyper-

parameter settings, we strictly follow the official codebases.

All the backbones are pre-trained on Kinetics-400 [6]. Fol-

lowing the previous works [34, 37, 80], we use the TV-L1

algorithm [1] to extract dense optical flow. Since only the

I3D model has pre-trained weights on the optical flow, we

utilize it as the teacher network in the distillation setting

of optical flow. Besides, we also conduct experiments us-

ing the temporal gradient as the motion modality, where the

identical backbone networks serve as the teacher to guide

the RGB model. We follow Liu et al. [40] for data pro-

cessing, where the input is a video with the size of 96×96

and the length of 25.6 seconds. Our model is trained in an

end-to-end fashion using the Adam optimizer [26] with the

learning rate of 1e-4 for 20 epochs.

Fusion
mAP@IoU (%)

AVG
0.3 0.4 0.5 0.6 0.7

concat. 63.3 56.2 47.9 36.1 22.9 45.2

sum. 62.6 56.1 47.5 36.1 23.0 45.1

self-attn. 63.8 56.3 46.7 34.2 21.9 44.6

cross-attn. 63.1 54.5 46.4 35.4 21.7 44.2

diff.-attn. 61.8 54.8 46.3 32.6 21.0 43.3

local attn. (Ours) 64.4 58.0 49.0 37.5 24.1 46.6

Table 3. Ablation study on the fusion mechanism. The compara-

tive methods are evaluated on THUMOS’14.

4.2. Analysis

4.2.1 Effect of each component

To analyze the impact of each component, we conduct an

ablation study on THUMOS’14 in Table 2. For this study,

we utilize TSM18 [35] and Actionformer [80] as the back-

bone and the detection head, respectively. We first set our

baseline using the pure RGB-based action detector, whose

average mAP is 43.6 %. On top of it, we apply two different

types of distillation with temporal gradient as the motion

modality, namely the conventional and decomposed ones.

For the decomposed distillation, we simply concatenate fea-

tures from the two branches and feed them to the joint

branch for action detection. As a result, the conventional

distillation achieves a limited performance gain, while our

decomposed distillation greatly boosts the detection perfor-

mance (2nd-3rd rows). This indicates that the way of di-

rectly transferring the motion knowledge to the RGB model

is prone to a sub-optimal solution due to entangled informa-

tion. When adopting the proposed local attentive fusion, our

model better grasps the multimodal complementarity and

shows a further performance gain of 1.4 % (4th row), indi-

cating the importance of information fusion. The resulting

distilled RGB model improves the baseline by 3.0 %, which

clearly verifies the effectiveness of the proposed methods.

4.2.2 Ablation study on fusion

To verify the effectiveness of the proposed local attentive

fusion, we compare it with a variety of fusion methods. In

specific, we employ two naı̈ve fusion methods, i.e., con-

catenation and summation, and three attention-based ap-

proaches [62,75], i.e., self-, cross-, and difference-attention.

The results are shown in Table 3, where we observe that the

naive fusion shows decent performance, while the attention-

based methods perform even poorer than the naı̈ve ones.

We conjecture that this is due to the over-smoothing of the

features, which are known to be a side effect of attention-

based methods [17, 54, 60], leading to less discriminability

in action boundary detection. On the contrary, the proposed

local attentive fusion successfully preserves the local sensi-

tivity of features during multimodal information exchange,

thereby achieving the best action localization performance.
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RGB model:

Motion model:

(Ours)

Distilled model:
61.1’’

51.7’’ 55.8’’

53.1’’ 54.9’’

52.5’’

51.8’’ 55.7’’

Billiards

Billiards

Billiards

93.2’’ 96.9’’

94.4’’ 97.1’’

93.5’’ 97.6’’

93.2’’ 97.3’’

TennisSwing

TennisSwing

TennisSwing

(a) An example video with TennisSwing action (b) An example video with Billiards action

Figure 5. Qualitative results on THUMOS’14.

Backbone Distill.
mAP@IoU (%)

AVG
0.3 0.4 0.5 0.6 0.7

TSM18 [35]

✗ 62.3 55.2 46.2 33.8 20.4 43.6

TG 64.4 58.0 49.0 37.5 24.1 46.6 (+3.0)

OF 65.3 59.5 50.9 39.6 25.5 48.2 (+4.6)

TSM50 [35]

✗ 65.0 59.2 50.0 38.2 25.0 47.5

TG 68.1 61.8 52.4 41.7 27.5 50.3 (+2.8)

OF 66.5 62.3 55.3 44.5 32.9 52.3 (+4.8)

I3D [6]

✗ 53.8 47.0 38.6 30.0 19.9 37.9

TG 57.6 51.4 42.5 32.9 22.1 41.3 (+3.4)

OF 57.7 52.1 44.6 34.9 24.0 42.6 (+4.7)

Slowfast50 [15]

✗ 67.4 62.9 56.8 46.8 35.0 53.8

TG 68.9 64.1 58.1 48.2 35.6 55.0 (+1.2)

OF 70.5 65.8 59.2 50.1 38.2 56.8 (+3.0)

Table 4. Experiments with different backbones on THUMOS’14.

The detection head is fixed to Actionformer [80]. ‘TG’ and ‘OF’

denote temporal gradient and optical flow, respectively.

4.2.3 Generalizability

It is worth noting that our distillation framework is general

and can be applied to any video backbones and detection

heads. To analyze the generalizability of our method, we

conduct comprehensive experiments on THUMOS’14.

The experimental results on four different video back-

bones are presented in Table 4. We use Actionformer [80] as

the detection head for this experiment. It can be noticed that

regardless of the backbone choices, our decomposed dis-

tillation consistently improves the performance with large

gains. In addition, even the strong backbone, i.e., Slowfast,

benefits from the motion knowledge distillation, showing a

performance gain of 3.0 % when using optical flow as the

teacher modality. In addition, the results using different de-

tection heads are provided in Table 5, where TSM18 [35] is

employed as the backbone network. Again, it is noticeable

that all the heads benefit from the decomposed distillation to

a large extent. In detail, they show significant performance

boosts when being distilled the motion knowledge from the

optical flow. On the other hand, albeit being efficiently ob-

tained from RGB frames, the temporal gradient also brings

nontrivial performance gains, shedding light on its poten-

tial to serve as an efficient motion modality. To summarize,

these experiments clearly validate the generalizability of the

Head Distill.
mAP@IoU (%)

AVG
0.3 0.4 0.5 0.6 0.7

G-TAD [74]

✗ 51.4 44.7 36.0 26.4 16.8 35.1

TG 54.8 48.9 38.1 28.0 18.1 37.6 (+2.5)

OF 55.3 49.4 39.2 30.6 19.7 38.8 (+3.6)

TadTR [42]

✗ 62.8 56.7 47.5 37.3 25.5 46.0

TG 63.8 57.4 49.9 39.2 26.9 47.4 (+1.4)

OF 64.1 58.3 51.2 40.9 28.8 48.7 (+2.7)

Actionformer [80]

✗ 62.3 55.2 46.2 33.8 20.4 43.6

TG 64.4 58.0 49.0 37.5 24.1 46.6 (+3.0)

OF 65.3 59.5 50.9 39.6 25.5 48.2 (+4.6)

Table 5. Experiments with different detection heads on THU-

MOS’14. The backbone is fixed to TSM18 [35]. ‘TG’ and ‘OF’

indicate temporal gradient and optical flow, respectively.

proposed distillation framework.

4.3. Qualitative Results

To analyze where the performance gains come from, we

provide several qualitative comparisons in Fig. 5. Specif-

ically, we visualize the detection results from the RGB

baseline, the motion teacher, and the resultant RGB-based

model of our decomposed distillation. In both examples, it

can be observed that the RGB-based baseline shows unsat-

isfying performance, indicating the importance of motion

modality. Meanwhile, the motion teacher suffers from the

static video with tiny movements (Fig. 5b), resulting in in-

accurate localization results. On the other hand, our model

produces precise action proposals for both examples by suc-

cessfully fusing the multimodal information learned within

the decomposed distillation framework.

4.4. Comparison with State­of­the­arts

The state-of-the-art comparison of THUMOS’14 and

ActivityNet1.3 is shown in Table 6. For the comparison,

we utilize Slowfast50 [15] and Actionformer [80] for the

backbone and the detection head, respectively. To make the

comparison clear, we separate the entries based on whether

the models take as input two-stream data or not. The first

thing we can observe is that the RGB-based approaches

fall largely behind the two-stream approaches, especially on

THUMOS’14 compared to ActivityNet1.3. This is because
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Method Venue OF
THUMOS’14 ActivityNet1.3

0.3 0.4 0.5 0.6 0.7 AVG 0.5 0.75 0.95 AVG

TAL-Net [7] CVPR’18 ✓ 53.2 48.5 42.8 33.8 20.8 39.8 38.23 18.30 1.30 20.22

BSN [37] ECCV’18 ✓ 53.5 45.0 36.9 28.4 20.0 - 46.45 29.96 8.02 30.03

BMN [36] ICCV’19 ✓ 56.0 47.4 38.8 29.7 20.5 38.5 50.07 34.70 8.29 33.85

P-GCN [79] ICCV’19 ✓ 63.6 57.8 49.1 - - - 48.26 33.16 3.27 31.11

G-TAD [74] CVPR’20 ✓ 54.5 47.6 40.2 30.8 23.4 39.3 50.36 34.60 9.02 34.09

BC-GNN [2] ECCV’20 ✓ 57.1 49.1 40.4 31.2 23.1 40.2 50.56 34.75 9.37 34.26

BU-MR [84] ECCV’20 ✓ 53.9 50.7 45.4 38.0 28.5 43.3 43.47 33.91 9.21 30.12

AFSD [34] CVPR’21 ✓ 67.3 62.4 55.5 43.7 31.1 52.0 52.38 35.27 6.47 34.39

MUSES [41] CVPR’21 ✓ 68.9 64.0 56.9 46.3 31.0 53.4 50.02 34.97 6.57 33.99

RTD-Net [60] ICCV’21 ✓ 68.3 62.3 51.9 38.8 23.7 49.0 47.21 30.68 8.61 30.83

VSGN [82] ICCV’21 ✓ 66.7 60.4 52.4 41.0 30.4 50.2 52.38 36.01 8.37 35.07

RCL [64] CVPR’22 ✓ 70.1 62.3 52.9 42.7 30.7 51.7 55.15 39.02 8.27 37.65

RefactorNet [68] CVPR’22 ✓ 70.7 65.4 58.6 47.0 32.1 54.8 56.60 40.70 7.50 38.60

TAGS [47] ECCV’22 ✓ 68.6 63.8 57.0 46.3 31.8 52.8 56.30 36.80 9.60 36.50

ReAct [53] ECCV’22 ✓ 69.2 65.0 57.1 47.8 35.6 55.0 49.60 33.00 8.60 32.60

Actionformer [80] ECCV’22 ✓ 82.1 77.8 71.0 59.4 43.9 66.8 53.50 36.20 8.20 35.60

CDC [55] CVPR’17 ✗ 40.1 29.4 23.3 13.1 7.9 22.8 45.30 26.00 0.20 23.80

GTAN [44] CVPR’19 ✗ 57.8 47.2 38.8 - - - 52.61 34.14 8.91 34.31

G-TAD* [74] CVPR’20 ✗ 52.5 45.9 37.6 28.5 19.1 36.7 49.22 34.55 4.74 33.17

AFSD* [34] CVPR’21 ✗ 57.7 52.8 45.4 34.9 22.0 43.6 - - - 32.90

TadTR* [42] TIP’22 ✗ 59.6 54.5 47.0 37.8 26.5 45.1 49.56 35.24 9.93 34.35

E2E-TAD [40] CVPR’22 ✗ 69.4 64.3 56.0 46.4 34.9 54.2 50.47 35.99 10.83 35.10

TAGS† [47] ECCV’22 ✗ 59.8 57.2 50.7 42.6 29.1 47.9 54.44 34.95 8.71 34.95

Actionformer† [80] ECCV’22 ✗ 69.8 66.0 58.7 48.3 34.6 55.5 53.21 35.15 8.03 34.94

Ours - ✗ 70.5 65.8 59.2 50.1 38.2 56.8 53.73 35.87 8.61 35.58

Table 6. Comparison with state-of-the-art methods. The average mAPs under the IoU thresholds 0.3:0.7 and 0.5:0.95 are reported respec-

tively for THUMOS’14 and ActivityNet1.3. Entries are grouped by whether the model relies on optical flow (OF) at inference time. The

results of models with asterisk (*) are taken from Liu et al. [40], while those with dagger (†) are the reproduced results by official code.

the THUMOS’14 benchmark contains frequent actions oc-

curring, e.g., 15 instances per video on average, and there-

fore the motion modality has a large impact on localizing

the actions. On the other hand, ActivityNet1.3 have sparse

and relatively long action instances, e.g., 1.5 instances per

video on average, and it is widely known that classifica-

tion rather than localization is important for the dataset due

to a large number of action classes. In the comparison re-

sults on THUMOS’14, our model achieves the state-of-the-

art performance among the RGB-based action detectors.

In addition, it surpasses many two-stream action detection

models even without relying on the motion modality dur-

ing inference. This signifies the efficacy of our distillation

framework that enables simulating two-stream predictions

by effectively distilling the motion knowledge and exploit-

ing the multimodal complementarity. On ActivityNet1.3,

our model also sets a new state-of-the-art among the RGB-

based detectors and shows comparable performance with

two-stream approaches.

5. Conclusion

In this paper, we have presented a new paradigm for

cross-modal distillation. Specifically, we pointed out that

existing distillation approaches inevitably entangle the RGB

and motion information during the distilling process. To

handle the issue, we propose a decomposed distillation

pipeline that enables separate learning of different modal-

ities. Furthermore, we design a local attentive fusion to

sustain the local discriminability of features during inte-

grating multimodal information, thereby accomplishing ac-

curate action detection. In the extensive experiments, we

verified the effectiveness of our distillation framework and

local attentive fusion. Moreover, our model successfully

bridges the gap between two-stream and RGB-based action

detectors while preserving efficiency at test time. Notably,

our framework is generalizable to various combinations of

video backbones and action detection heads, demonstrat-

ing consistent performance improvements. In the future, it

would be interesting to explore our decomposed distillation

framework for other multimodal tasks.
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