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Abstract
Visual localization refers to the process of recovering

camera pose from input image relative to a known scene,
forming a cornerstone of numerous vision and robotics sys-
tems. While many algorithms utilize sparse 3D point cloud
of the scene obtained via structure-from-motion (SfM) for
localization, recent studies have raised privacy concerns by
successfully revealing high-fidelity appearance of the scene
from such sparse 3D representation. One prominent ap-
proach for bypassing this attack was to lift 3D points to
randomly oriented 3D lines thereby hiding scene geome-
try, but latest work have shown such random line cloud
has a critical statistical flaw that can be exploited to break
through protection. In this work, we present an alternative
lightweight strategy called Paired-Point Lifting (PPL) for
constructing 3D line clouds. Instead of drawing one ran-
domly oriented line per 3D point, PPL splits 3D points into
pairs and joins each pair to form 3D lines. This seemingly
simple strategy yields 3 benefits, i) new ambiguity in fea-
ture selection, ii) increased line cloud sparsity and iii) non-
trivial distribution of 3D lines, all of which contributes to
enhanced protection against privacy attacks. Extensive ex-
perimental results demonstrate the strength of PPL in con-
cealing scene details without compromising localization ac-
curacy, unlocking the true potential of 3D line clouds.

1. Introduction

Visual localization is the fundamental problem of esti-
mating the camera pose from an input image with respect to
a known 3D scene. It plays a crucial role in many com-
puter vision and robotics applications, including human-
computer interaction based on augmented or mixed real-
ity (AR/MR), 3D reconstruction via structure-from-motion
(SfM) [1, 36, 37, 39] and autonomous navigation systems in
drones, self-driving vehicles, or robots using simultaneous
localization and mapping (SLAM) [5, 22, 26].

To this date, many practical visual localization algo-
rithms are still structure-based approaches [12], utilizing a
global sparse 3D model of the scene obtained from SfM
or SLAM. In such approaches, 2D-3D correspondences
are formed between 2D image points and the global 3D
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(a) Point cloud (b) Line cloud [40] (c) PPL (ours)

Figure 1. Visualization of different 3D scene representations and
respective image reconstruction results using InvSfM [30]. Images
in (b) and (c) are reconstructed by estimating the 3D point clouds
from line clouds via [3]. While images revealed from original line
clouds (OLC) [40] still contain basic scene details, those from the
proposed method (PPL) exhibit much degraded scene quality.

structure by comparing feature descriptors (e.g., SIFT [21],
ORB [34], or other alternatives [25, 43]), after which they
are used to perform robust camera pose estimation based on
geometric constraints and RANSAC [2, 8, 31]. While most
research over the last decade have made significant progress
in improving algorithm accuracy, scalability [19, 23, 35, 47]
and efficiency [12,20], the requirement that sparse 3D point
cloud and associated feature descriptors need to be persis-
tently accessible has largely remained unchanged.

Recently, it caught the research community by surprise
when Pittaluga et al. [30] showed sparse 3D point clouds
can retain enough scene details such as characters and tex-
tures that can be used to uncover a high-fidelity image of the
scene. Since this process only requires 2D projection of 3D
points and their respective feature descriptors, this raised
privacy concerns related to uploading sparse 3D models in
the cloud or storing them on the end-user device, both of
which are commonly found settings in visual localization.
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(a) Standard lifting with uniformly-distributed line directions [40] (b) Paired-point lifting (PPL) (ours)

Figure 2. Illustration of the previous standard lifting approach (also referred to as the original line cloud (OLC)) [40] and PPL (ours) for
constructing 3D line clouds from sparse 3D point clouds. In (a), each line passes through one 3D point with its direction uniformly sampled
on a unit sphere, carrying one descriptor. In (b), each line passes through two 3D points selected at random, carrying two descriptors.

One of the most notable approaches for addressing above
privacy attack on point clouds is geometric lifting, whereby
each 3D point is transformed into a randomly-oriented 3D
line passing through the respective point [40]. By sam-
pling each line direction uniformly on the unit sphere, the
approach aims to conceal the scene geometry and prevent
meaningful 2D projections of the sparse point cloud.

Nevertheless, a recent work by Chelani et al. [3] showed
3D lines whose directions are uniformly drawn from a unit
sphere carry an unintended statistical characteristic that the
original 3D points are likely to be near the high-density re-
gions of the closest points between lines. This property can
be exploited to reveal the scene geometry (see §2), and to
the best of our knowledge, the only suggested option for
mitigating this attack so far is to use sparser point clouds,
which comes at the cost of reduced localization accuracy.

In this work, we argue that the privacy-preserving prop-
erty of 3D line clouds can be enhanced by applying a differ-
ent line-construction approach. Specifically, we propose to
yield 3D lines by joining random pairs of 3D points. This
approach, which we call Paired-Point Lifting (PPL), is mo-
tivated by the three key observations listed below:

1. confusion over feature descriptors: each line carries
two feature descriptors, so assigning the correct de-
scriptors to each of two 3D points requires guesswork,

2. line cloud sparsification: PPL results in 50% more
sparse line clouds, thus degrading the accuracy of 3D
scene point recovery using [3], which relies on a suffi-
cient number of neighboring lines, and

3. non-trivial distribution of lines: the finding from [3]
that the original 3D point is likely to be near the high-
density region of closest points to other lines is plagued
by the presence of extra 3D point in each line and non-
uniformly distributed line directions.

We illustrate in §3 and §5 that each of the above factors
adds a layer of difficulty in revealing the scene geometry
and image-level details, synergistically enhancing privacy-
preserving visual localization (partly shown in Fig. 1) with-
out compromising camera localization accuracy.

Overall, our contributions can be summarized as follows:
+ a new strategy called paired-point lifting (PPL) for

constructing 3D line clouds with each line concealing
two 3D points from the respective sparse point clouds,

+ careful empirical analysis of success factors in PPL
through an ablation study using synthetic and real data,

+ improving the 3D point recovery algorithm in [3] to
allow handling PPL-based line clouds and locate two
3D points in each line for a fairer comparison,

+ a subsequent upgrade of PPL called PPL+ to address
potential drawback of PPL with planar scenes, and

+ extensive experimental evaluation of both PPL and
PPL+ against other baselines on a range of public
datasets using different point recovery techniques.

2. Related work
Revealing images from feature descriptors: Initial
study dates back to the work of Weinzaepfel et al. [46],
which fused patches obtained through retrieval from a pool
of image patches for each SIFT descriptor [21]. Vondrick et
al. [45] visualized images from the histogram of gradients
by applying paired dictionary learning, and Kato et al. [13]
reconstructed images by computing a histogram of visual
words and optimizing their spatial arrangement. Mahen-
dran et al. [24] and Dosovitskiy et al. [6] adopted CNNs
to invert feature descriptors to images. Yet, none of these
approaches yields detailed photorealistic images.

The real possibility of privacy leak was first raised by Pit-
taluga et al. [30] who showed sparse point clouds projected
to 2D with SIFT keypoints, depth and color information can
reveal photorealistic images of the scene using a cascaded
U-Net [32]. This work was later extended by Dangwal et
al. [4] who enabled reconstruction of photorealistic images
without RGB or depth information. Current literature in
privacy-preserving visual localization attempts to lower the
quality of images reconstructed from these approaches.
Privacy-preserving localization: Two main approaches
exist for visual localization addressing the above privacy at-
tack, namely feature encoding and geometric lifting.
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Figure 3. Simulated qualitative analysis of sources-of-errors in re-
vealing images from a paired-point lifting (PPL)-based line cloud.
Along the rows, we simulate errors in estimating 3D points from
line clouds by [3] (top-no error, bottom-2% N (0, 1) perturba-
tions in 2D keypoints). Along the columns, we simulate the effect
of feature confusion by randomly swapping SIFT descriptors be-
tween randomly selected pairs of 3D points (left-0%, middle-50%
and right-100% swapped descriptors respectively). Both sources-
of-errors contribute towards worse image reconstruction quality.

Feature encoding attempts to modify each point’s feature
descriptor to be less invertible by discarding excess scene
details without hurting camera relocalization accuracy. This
has the benefit that the same point-based geometry can be
applied for visual localization. Dusmanu et al. [7] embed-
ded each feature descriptor within an affine subspace, mak-
ing it difficult to recover images, but this comes at the cost
of lowered camera localization accuracy. Ng et al. [27]
trained a MLP-based descriptor-concealing network and a
U-net based scene-inversion network in an adversarial fash-
ion to discard excess details of the scene for each descriptor,
but this requires to be individually trained for each type of
feature descriptors and may overfit to training datasets.

On the other hand, standard geometric lifting [40] trans-
forms each 3D point into a randomly oriented line whose
direction follows a uniform distribution on the unit sphere.
Speciale et al. [40] showed it is possible to estimate camera
poses from such original line cloud (OLC) by formulating
the problem as finding the relative pose between two general
cameras [42]. Successive works inspired by this approach
include privacy-preserving SfM and SLAM [9, 10, 38].
While geometric lifting is straightforward to implement and
can be universally applied across different types of feature
descriptors, the method has recently been shown to be par-
tially reversible by Chelani et al. [3] as illustrated below.

Revealing sparse point cloud from line cloud: Chelani
et al. [3] showed aforeillustrated geometric lifting may not
sufficiently conceal the scene geometry if each line direc-
tion is sampled uniformly from the unit sphere when con-
structing a line cloud from the sparse point cloud.

In their work, recovering the 3D point cloud P = {xj}
from input line cloud L = {lj} is formulated as maximizing

(a) Initial PPL lines (b) Orange point moved (c) Different pairs

Figure 4. A 2D toy example demonstrating the effect of changes in
point locations and pairing arrangements change on the estimated
location of the point (peak). (b) and (c) illustrate that the PPL-
based line directions are directly determined by the location of the
3D points and their pairing arrangement.

the posterior probability P (P|L), where xj ∈ R3 is the j-
th 3D point in the sparse point cloud and lj ∈ R6 is the
corresponding lifted line for xj . By applying Bayes’ rule:

P (P|L) = P (L|P)P (P)

P (L)
∝ P (L|P)P (P) (1)

For standard lifting [40], the line direction is drawn uni-
formly from the unit sphere, so P (L|P) = ΠN

j=1P (lj |xj)
where P (lj |xj) is constant if lj passes through the point xj ,
or zero otherwise. The likelihood P (L|P) remains even for
different point clouds as long as they are equal in size.

Subsequently, Chelani et al. [3] attempted to find the
points maximizing the prior P (P) under the constraints that
each point xj lies on the corresponding line lj . The method
is motivated by the empirical observation that, when two ar-
bitrary 3D points x1 and x2 are lifted to random 3D lines
l1 and l2 respectively and we compute the closest points
between the two lines, denoted as x⊥

1 for l1 and x⊥
2 for l2

respectively, it is around 80% likely that the distance be-
tween x1 and x⊥

1 is shorter than that between the original
points x1 and x2. For the case of random multiple lines, this
constraint is satisfied by each pair of lines, and one can sub-
sequently construct a histogram of closest-points-to-other-
lines for each line li. Chelani et al. [3] proposed to estimate
the 3D point xi by finding the peak of this histogram.

The work showed recovery of the scene from line clouds
is possible across various scenes but the results are limited
to the case of uniformly distributed line directions, provid-
ing a motivation for our proposed method.

Peak finding: Peak finding is the process of estimating
peaks in the probability density function (PDF). Chelani et
al. [3] devised an efficient single-peak finding (SPF) algo-
rithm by running iterative Kuiper’s test [16] on the cumu-
lative distribution function (CDF). One drawback of SPF is
that it provides an accurate peak value only when the func-
tion is unimodal. Since our approach in §3 promotes non-
unimodal and often bimodal distribution of closest-points-
to-other-lines, we have devised a Two-peak finding (TPF)
algorithm to encourage better recovery of bimodal peaks
aiming towards fairer comparison (see details in §5).
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(a) Ground truth point cloud (b) OLC [40](SPF) (c) PPL (SPF) (d) PPL(TPF) (e) PPL+(TPF)

Figure 5. Visualization of the point clouds recovered from different line-lifting methods and different recovery algorithms. (b) shows the
point cloud recovered from the original line cloud (OLC) [40] via single-peak finding (SPF) [3], (c) and (d) are the point clouds revealed
from the PPL-based line cloud via SPF [3] and two-peak finding (TPF, refer to §5) respectively, and (e) is the result from PPL+ via TPF.

3. Paired-point lifting
To overcome the shortcomings of the original line cloud

(OLC) [40], we propose a different strategy for sampling
lines in line clouds. Our approach named paired-point lift-
ing (PPL) is straightforward to implement—randomly as-
sign non-overlapping pairs of 3D points from the sparse
point cloud and then join each pair of points to create a line
cloud. A detailed algorithm chart can be found in [18].

As each line passes through two 3D points (with the ex-
ception of an ideal situation where three or more points are
lined up), this results in N number of 3D lines, where 2N
denotes the number of 3D points. As shown in Fig. 2, the
major difference between standard lifting [40] and PPL is
the number of 3D points concealed in each line—standard
lifting conceals one 3D point per line, while PPL hides two
points per line. As briefly mentioned in §1, having an extra
3D point for each line results in added ambiguity in descrip-
tor selection, a reduced number of lines in the line clouds,
and non-uniformly distributed line directions. The effect of
each component is illustrated in the forthcoming sections.
Pose estimation: Before discussing the above benefits of
PPL, we emphasize that the PPL-based line clouds only dif-
fer from the original line clouds (OLCs) in terms of line di-
rections. This implies the PPL-derived line clouds are com-
patible with the minimal solver (P6L [40]) for OLC. Table 1
and §5 report similar degree of accuracy in camera pose es-
timation for both OLC and PPL-based line clouds.

3.1. Effect of additional feature descriptor per line

We start by analyzing the effect of having an extra fea-
ture descriptor for each line. We will assume two 3D points,
A and B, are concealed in a single PPL-based line.

The current approach for estimating the point cloud from
the line cloud [3] (see §2) is purely geometry-based, using
the statistics of the closest points to other neighboring lines.
Hence, even if this approach is extended to allow estimation
of two points per line ( [3] is limited to single peak finding),
we have an ambiguity over which peak corresponds to A
and which corresponds to B. Hence, there is only a 50%
chance of locating the descriptors correctly for each line.

As above probability is independent for each line, the
number of lines with correct assignments is a binomial ran-

dom variable X ∼ B(N, 0.5) where N is the total number
of lines. This has two implications—first, the probability of
correctly assigning descriptors for all lines is 0.5N and thus
quickly diminishes to 0 for large N . Second, the expected
number of X is 0.5N with standard deviation 0.5

√
N , so

we can expect the number of correctly assigned lines to be
roughly 0.5N for sufficiently large line clouds.

Since the quality of images revealed by InvSfM [30] de-
pends on correct feature descriptors, above ambiguity in bi-
nary feature selection adds another layer of difficulty in re-
vealing scenes from the sparse line cloud. This is empiri-
cally demonstrated through simulated examples in Fig. 3.

3.2. Effect of reduced line cloud density

As discussed in [3], recovering the point cloud from line
cloud (reviewed in §2) requires sufficient number of lines
to accurately estimate the peak of each line’s histogram of
closest-points-to-other-lines. It is also shown in [3], §5 and
Table 1 that reducing the line cloud density from 100% to
50% for OLCs [40] results in higher 3D point estimation
errors and subsequently lower image reconstruction quality.

As PPL lifts two points to a line, the PPL-based line
clouds are 50% sparser than the OLCs [40] (see Fig. 1),
indicating they are more difficult to reveal scene geometry.

3.3. Effect of non-uniform line directions

We first illustrate that the line directions induced by PPL
is no longer uniformly distributed on the unit sphere. For
this purpose, we again define the set of original 3D points
as P = {xj} where xj ∈ R3 is the j-th point in the point
cloud. The corresponding lifted lines form a set L = {lj}
where each lj ∈ R6 consists of the line direction and offset.

As shown in Fig. 4, the line directions are determined
(up to a sign ambiguity) given the point locations P and
their pairing arrangement S := {(i, j)} where (i, j) de-
notes point i and point j form a pair. Hence, we can write
P (L|S,P) = δ(L−LS) where LS is the set of PPL-based
lines created by joining pairs of points as prescribed in S.
Assuming each arrangement S is equally likely (i.e. same
P (S|P)∀S ∈ Ω), the likelihood can be written as:

P (L|P) =
∑
S∈Ω

P (L|S,P)P (S|P) =
1

|Ω|
∑
S∈Ω

δ(L− LS)
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(a) Grouth truth point cloud (b) Histogram of closest points (cross-plane) (c) Histogram of closest points (same plane)

Figure 6. Visualization of distributions of closest-points-to-other lines formed using paired-point lifting (PPL) in two extreme cases.
(a) is the ground truth 3D point cloud comprising two noisy planes, (b) shows the distribution of closest-points-to-other-lines (along a
hypothetical line parallel to the x-axis for visualization) when PPL samples pairs of points from different planes and (c) shows the same
distribution (along the same hypothetical line for visualization) when PPL samples pairs of points from the same plane. In practice, both
effects may be co-visible, hence lines created by joining planar points should be avoided. This provides motivation for PPL+ in §4.

where Ω denotes the set of all possible pairing arrangements
of the 3D points and |Ω| is the total number of possible pair-
ing arrangements. Hence, P (L|P) is non-uniform and dif-
ferent from the piecewise uniform likelihood exhibited by
each line in the original line cloud (OLC) [40].

Effect on peak finding: Regarding Equation (1), the
single-peak finding (SPF) algorithm in [3] can be seen as
approximately finding the 3D points maximizing the poste-
rior P (P|L) by maximizing the prior P (P) subject to each
xj lying on its corresponding line lj . This is based on the
assumption that the likelihood P (L|P) is piecewise con-
stant since the line directions are uniformly distributed.

For PPL, P (P|L) ∝ P (P)(
∑

S∈Ω δ(L − LS)), so we
need to maximize P (P) subject to the points lying on their
respective PPL-sampled lines. However, this cannot be ef-
ficiently addressed by SPF for the following reasons:

1. due to the non-uniform distribution of line directions,
the peak may arise in a location far from the actual
positions of points (see Fig. 6b for an example), and

2. even if the line directions end up closely following a
uniform distribution for a particular point cloud, the
histogram of closest-points-to-other-lines may result in
two peaks as we conceal two points per line. While we
attempt to partially address this by implementing a ba-
sic two-peak finding (TPF) algorithm in §5, estimating
two peaks is fundamentally a non-trivial task.

Above statements are based on our empirical observations,
and we leave detailed analysis of these for future work.

3.4. Limitations

Despite the aforementioned advantages of PPL, there are
two potential limitations associated with PPL.

Potential recovery of planes: Fig. 6 shows a corner case
of PPL where the location of 3D points from PPL can be
recovered accurately by locating two peaks along the distri-
bution of closest-points-to-other lines if the scene contains
two planes and each pair of points is sampled from the same
plane. We make efforts to avoid this corner case in §4.

Inferring structure directly from PPL-based line clouds:
As shown in Fig. 1, it is normally difficult to infer the scene
geometry just from the PPL-based line cloud itself. For cer-
tain planar scenes (e.g., a long corridor), however, there
could be concerns that the basic outline of the underlying
scene geometry may be revealed. In our opinion, details of
the underlying structure are still indistinguishable in most
real-world planar scenes (more discussions in [18]).

4. Improving PPL by rejecting lines on planes

In this section, we propose a simple extension of paired-
point lifting to overcome its limitation described in §3.4 re-
garding potential recovery of planar points.

Our extension called PPL+ is motivated by Fig. 6c,
which shows the lines lifted on planes by joining points
from the same plane, can provide an undesirable clue to
recover the points, as well as Fig. 6b, demonstrating that
removing lines on planes further obfuscates the distribution
of closest-points-to-other lines by shifting the peak to an
incorrect location.

PPL+ performs rejection sampling of 3D lines to dis-
courage them from lying on planar regions of the point
cloud. In summary, PPL+ scans through each point xj in
the point cloud, and checks whether the xj’s corresponding
line direction is nearly parallel to the plane or not.

For this purpose, PPL+ follows the procedures below:

1. Sample a point xj from the point cloud.
2. Find the K-nearest neighboring 3D points of xj ,

{xj1, · · · ,xjK} and compute the normalized dis-
placement vectors D := [d1,d2, · · · ,dK ] between
these points and xj such that each dk := xjk − xj .

3. Compute the singular value decomposition (SVD) of
D and choose the basis vector with the largest singular
value as a basis vector of the plane vp.

4. Compute the pseudo-normal vectors of the plane by
computing vp×D, and perform SVD and use the basis
vector with the largest singular value to estimate the
plane normal vo.
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(a) OLC [40] (SPF [3]) (b) PPL (SPF [3]) (c) PPL (TPF) (d) PPL+ (TPF)

Figure 7. Bird’s-eye view of 3D points recovered from different types of line cloud constructions using different point estimation (peak-
finding) approaches. The line clouds are denoted by blue lines, the ground truth point cloud is shown as red dots and the revealed 3D
points are represented as purple dots. (a) shows OLC [40] can be well recovered by SPF [3] while (b) demonstrates applying SPF [3] on
PPL-based line cloud incurs geometric uncertainty in 3D points. (c) shows the PPL-based line clouds can be better inverted to point clouds
via our two-peak finding algorithm (TPF) in §5, but this can be ameliorated through PPL+ (§4) by rejecting lines on planes as shown in (d).

5. Compute the cosine similarity between vo and lj to get
an angle between two vectors, and subtract from 90◦

in order to acquire the angle between the plane and the
lifted line lj . If the smaller angle is < 20◦, reject the
line as it is nearly on the plane.

6. Move to step 1 unless all 3D points are visited.
7. Randomly form pairs between rejected points and re-

peat steps 1–7 (for changed lifted lines and respective
3D points) for 1000 iterations.

In practice, vo can be stored and re-used such that we just
need to re-run steps 5 to 7 iteratively for newly formed pairs.
More details are provided in [18]. We also provide a toy
example of a room in Fig. 7 demonstrating PPL+ can inten-
tionally mislead the estimated location of 3D points.

Limitation: We note PPL+ with over-strict threshold (e.g.
< 5◦ instead of < 20◦) may trigger an undesirable effect of
yielding degenerate quasi-parallel lifted lines that can de-
grade pose estimation accuracy. An appropriate hyperpa-
rameter needs to be selected for desired performance.

5. Experimental results

In this section, we present extensive qualitative and
quantitative results demonstrating the effectiveness of
paired-point lifting in terms of three metrics, namely quality
of estimated point clouds, quality of recovered image and
camera relocalization accuracy, all of which are essential
metrics related to privacy-preserving visual localization.

Datasets: As described in [3], all experiments were car-
ried out on two widely-used public datasets called Cam-
bridge Landmarks [14, 15] and Energy Landscape [44].
We mostly followed the protocols suggested in [40]: for
each scene, we constructed a sparse 3D point cloud using
COLMAP [36] across all images, and discarded all 2D-to-
3D correspondences for query images in order to maintain
an accurate 3D map while simulating localization from an
unseen image (see [18]). The TrinityGreatCourt and Street
sequences contained excessive number of outliers and sub-
sequently were excluded from comparison.

Peak-finding algorithms: We provide results of estimat-
ing points from line clouds using both the single-peak find-
ing (SPF) [3] (in §2) and two-peak finding (TPF) algo-
rithms. TPF is designed to handle the case of bimodal distri-
bution of closest-points-to-other-lines frequently exhibited
by PPL as shown in Fig. 6. It utilizes kernel density estima-
tion (KDE) [28, 33], which can be used to detect multiple
peaks via thresholding. TPF is introduced to demonstrate
that the PPL’s performance gain is not simply due to the
limitation of SPF [3] not being able to pick up two peaks.

Regarding algorithmic details, we set the number of it-
erations for refinement to 3 for SPF as in [3]. For TPF, we
excluded refinement procedures as the estimation result did
not converge. The width of the Gaussian kernel estimator
was set to 0.07 found through our empirical investigation.
More algorithmic details can be found in [18].

5.1. Comparing quality of revealed point clouds

In order to quantify the geometric uncertainty induced by
different line-sampling approaches, we compared the errors
between the ground truth point cloud and the point clouds
revealed from the line clouds via peak finding.

As shown in Table 1, the 3D point errors of PPL and
PPL+ are larger than those of OLC (100%), indicating the
combined effect of sparsity and non-uniform distribution
of lines prevent accurate reconstruction of the point cloud.
When comparing against OLC with 50% sparsity, our meth-
ods still produce larger point reconstruction errors, and we
anticipate this is due to the non-trivial distribution of line
directions making peak finding difficult.

The difficulty of inverting a PPL-based line cloud to
point cloud is also qualitatively illustrated in Fig. 5 in which
the point clouds reconstructed from PPL/PPL+-based line
clouds are more sparse and noisy than that from the OLC.

One rather surprising result is that the point estimation
errors are higher for TPF than those for SPF. While this re-
quires further investigation, we cautiously think this is due
to mismatches between the location of peaks and the ground
truth 3D points rather than TPF failing to detect them. For
this purpose, we compared peaks found by humans against
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Dataset Energy landscape [44] Cambridge [15]
Scene representation PC OLC PPL PPL+ PC OLC PPL PPL+

Minimal solver P3P P6L P6L P6L P3P P6L P6L P6L
Original point used (%) 100 100 50 100 100 100 100 100 100 50 100 100 100 100

Line cloud used (%) - 100 50 50 50 50 50 N/A 100 50 50 50 50 50
Peak finding algorithm used - SPF SPF SPF TPF SPF TPF N/A SPF SPF SPF TPF SPF TPF

Proportion of revealed points (%) 100 100 50 50 100 50 100 100 100 50 50 100 50 100

Median 3D point error (m, ↑) - 0.046 0.055 0.056 0.224 0.056 0.227 - 0.752 0.854 0.973 2.845 0.948 2.858
Image quality (PSNR ↓) 15.70 13.30 12.84 10.42 11.21 10.44 11.22 14.00 12.67 12.40 11.20 11.43 11.22 11.40
Image quality (SSIM ↓) 0.514 0.402 0.388 0.356 0.325 0.355 0.323 0.433 0.331 0.320 0.296 0.283 0.297 0.283
Image quality (MAE ↑) 33.58 43.62 45.83 62.40 56.99 62.11 56.93 39.41 46.21 47.93 55.75 54.01 55.42 54.22

Mean rotation error (◦, ↓) 0.178 0.272 0.294 0.283 0.287 0.700 0.807 0.833 0.789 0.809
Mean translation error (m, ↓) 0.0071 0.0100 0.0108 0.0105 0.0106 0.141 0.184 0.195 0.193 0.195
Median rotation error (◦, ↓) 0.031 0.104 0.116 0.112 0.116 0.100 0.194 0.200 0.196 0.194

Median translation error (m, ↓) 0.0010 0.0032 0.0036 0.0035 0.0037 0.042 0.072 0.078 0.085 0.089

Table 1. Results obtained from different scene representations on two public datasets (PC: point cloud, OLC: original line cloud, PPL:
paired-point lifting and PPL+: PPL with rejection sampling). ↑ denotes higher values imply better privacy-preserving behavior, and vice
versa for ↓. Bold text denotes lowest image quality for each metric. Mean and median values are averaged across all views and sequences.

Figure 8. Pose estimation error versus image quality across different levels of point cloud sparsity for the scene ’Office1 manolis’. The
size of the marker in the graph represents the proportion of the sampled points in the following order: 100% 50% 25% 10% 5% cloud
density. The PPL class of approaches achieve lower PSNR and SSIM values and higher MAE values than those of OLC with comparable
camera pose estimation errors, suggesting PPL/PPL+ enhance the privacy-preserving visual localization performance.

those found by TPF, and the results in the supplementary
material [18] shows TPF mostly functions as expected.

5.2. Comparing quality of revealed images

We also compared the quality of revealed images from
different scene representations.

For a quantitative comparison, we reconstructed images
of the scenes by projecting a 3D point cloud (revealed via
peak-finding for line clouds) to 2D using the ground truth
camera poses and feeding this along with feature descrip-
tors to the InvSfM network [30]. We then computed the av-
erage PSNR, SSIM and MAE values of the revealed images
against the ground truth images.

Table 1 shows that the image quality of recovered images
from PPL and PPL+ are much lower than those from OLC
(100% and 50%), indicating improved privacy preserving
performance even without the effect of reduced cloud den-
sity. This trend is maintained even when SPF is replaced by

TPF, demonstrating the potential errors due to misassign-
ment of descriptors also affect image quality.

In order to disentangle the effect of feature misassign-
ment and geometric uncertainty (induced by non-uniform
distribution of lines), we resort to the qualitative compari-
son of revealed images from different scene representations
and different peak finding algorithms. The comparison in-
cludes an oracle setting in which the effect of feature de-
scriptor misallocation in PPL is minimized to only visual-
ize the effect of non-uniformly distributed line directions
(mimicing 0% feature swap) by assigning descriptors based
on the two points’ proximity to ground truth points.

As shown in Fig. 9, image quality is disimproved by both
the effect of feature swap and non-uniformly distributed line
directions. Additionally, Fig. 9h and 9i demonstrate PPL+
further degrades the image reconstruction quality, enhanc-
ing the privacy preserving performance.
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(a) Ground truth (b) Point cloud (c) OLC [40] (d) PPL (SP-O) (e) PPL (TP-O) (f) PPL+ (TP-O) (g) PPL(SPF [3]) (h) PPL (TPF) (i) PPL+ (TPF)

Figure 9. Images revealed from various scene representations using InvSfM [30]. To disentangle the effect of feature swapping and geo-
metric uncertainty in PPL, we provide results for the “oracle” case (SP-O and TP-O) where the ground truth feature descriptor is assigned
for each revealed point based on the point’s proximity to ground truth points thereby minimizing the effect of descriptor misassignment.

5.3. Comparing camera relocalization accuracy

We also compared the camera pose estimation accuracy
when using different types of scene representations.

For this purpose, we estimated the absolute pose of the
query image from the constructed 3D point cloud maps.
This was carried out using the P3P solver [29] for point
clouds (PC) and the P6L solver [42] for line clouds (OLC,
PPL and PPL+). Our code implementation is based on
Poselib [17] maintained by Viktor Larsson, and we made a
few adjustments to accommodate the point-to-line distance
as the objective function, enforce a cheirality constraint for
P6L and add bundle adjustment for line clouds.

Following [40, 41], we evaluated the localization
accuracy by computing the rotational error ∆R =
arccos

(
Tr(R̂⊤R)− 1

)
/2 and the translation error ∆t =∥∥R̂⊤t̂− R⊤t

∥∥
2
, where (R, t) denote the ground truth abso-

lute rotation and translation of the query image and (R̂, t̂) are
the estimated absolute rotation and translation of the query
image. In order to yield translation error in meters, we mul-
tiplied a number to all camera translations in a sequence to
match the translation scale of the ground truth datasets pro-
vided in [14, 15, 44] (see [18] for details).

Table 1 shows visual localization on PPL/PPL+-based
line clouds show similar pose accuracy when compared
with OLC with standard lifting [40]. Specifically, the me-
dian rotation and translation errors of PPL/PPL+ are lower
or at least similar to those of OLC with 50% sparsity, which
have the same number of lines for pose estimation.

For a detailed comparison, we also plot pose estimation
accuracy against image reconstruction quality across differ-
ent scene representations and different peak finding algo-
rithms in Fig. 8. The plots confirm PPL/PPL+ are more ro-
bust to inversion attacks than OLC without compromising
camera relocalization accuracy.

6. Conclusion

This work was motivated by the major limitation of
the original line cloud (OLC) that the point cloud and
the respective scene details can be revealed by utilizing
the statistics of the 3D points and lines. To mitigate
this issue, we proposed a new lightweight strategy called
paired-point lifting (PPL), which creates line clouds by
joining random pairs of sparse points thereby concealing
two points per line. We illustrated three main benefits of
PPL, namely added uncertainty in descriptor assignment
for each line, increased sparsity of the cloud representation
and non-uniform distribution of line directions, all of which
were experimentally demonstrated to enhance the privacy-
preserving nature of the line clouds without trading off cam-
era localization performance. We also proposed an exten-
sion of PPL (PPL+) to avoid theoretical corner cases. We
put effort into comparing between different scene represen-
tations on a level playground by implementing a two-peak
finding algorithm to handle PPL-based line clouds.

An interesting avenue for future work includes devising
a more protective lifting approach or developing a faster re-
localization algorithm for line clouds (e.g. by combining
homotopy and deep learning such as in [11]) for real-time
applications in need of privacy-preserving measures.
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