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Figure 1. Shape-aware consistent video editing. Our method enables consistent text-guided video editing with both appearance and
shape changes. The top row shows the input frames. The second and third rows present editing results from two text prompts: “running
sports car” and “running minivan”, respectively. Note that text-driven editing involves both texture and structure editing on the
foreground object. Our method performs consistent edits on sequential frames while preserving the object motion in the input video.

Abstract

Temporal consistency is essential for video editing appli-
cations. Existing work on layered representation of videos
allows propagating edits consistently to each frame. These
methods, however, can only edit object appearance rather
than object shape changes due to the limitation of using
a fixed UV mapping field for texture atlas. We present
a shape-aware, text-driven video editing method to tackle
this challenge. To handle shape changes in video editing,
we first propagate the deformation field between the in-
put and edited keyframe to all frames. We then leverage
a pre-trained text-conditioned diffusion model as guidance
for refining shape distortion and completing unseen regions.
The experimental results demonstrate that our method can
achieve shape-aware consistent video editing and compare
favorably with the state-of-the-art.

1. Introduction

Image editing. Recently, image editing [19, 20, 24, 34,
40, 44] has made tremendous progress, especially those
using diffusion models [19, 20, 40, 44]. With free-form
text prompts, users can obtain photo-realistic edited images
without artistic skills or labor-intensive editing. However,
unlike image editing, video editing is more challenging due
to the requirement of temporal consistency. Independently
editing individual frames leads to undesired inconsistent
frames, as shown in Fig. 2a. A naı̈ve way to deal with tem-
poral consistency in video editing is to edit a single frame
and then propagate the change to all the other frames. Nev-
ertheless, artifacts are presented when there are unseen pix-
els from the edited frame in the other frames, as shown in
Fig. 2b.

Video editing and their limitations. For consistent video
editing, Neural Layered Atlas (NLA) [18] decomposes a
video into unified appearance layers atlas. The layered de-
composition helps consistently propagate the user edit to
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(a) Multi-frame editing with frame interpolation [42]

(b) Single-frame editing with frame propagation [17]

(c) Text2LIVE [2] with prompt “sports car”

Figure 2. Limitation of existing work. Compare these results from baseline methods with our “sports car” result in Fig. 1. (a)
Multiple frames are edited independently and interpolated by frame interpolation method [42]. Such an approach shows realistic
per-frame results but suffers from temporal flickering. (b) Extracting a single keyframe for image editing, the edits are propagated to each
frame via [17]. The propagated edits are temporally stable. However, it yields visible distortions due to the unseen pixels from the
keyframe. (c) The SOTA Text2LIVE [2] results demonstrate temporally-consistent appearance editing but remain the source shape
“Jeep” instead of the target prompt “sports car” by using the fixed UV mapping of NLA.

individual frames with per-frame UV sampling association.
Based on NLA, Text2LIVE [2] performs text-driven editing
on atlases with the guidance of the Vision-Language model,
CLIP [39]. Although Text2LIVE [2] makes video editing
easier with a text prompt, it can only achieve appearance
manipulation due to the use of fixed-shape associated UV
sampling. Since per-frame UV sampling gathers informa-
tion on motion and shape transformation in each frame to
learn the pixel mapping from the atlas, shape editing is not
feasible, as shown in Fig. 2c.

Our work. In this paper, we propose a shape-aware text-
guided video editing approach. The core idea in our work
lies in a novel UV map deformation formulation. With a se-
lected keyframe and target text prompt, we first generate an
edited frame by image-based editing tool (e.g., Stable Diffu-
sion [44]). We then perform pixel-wise alignment between
the input and edited keyframe pair through a semantic cor-
respondence method [51]. The correspondence specifies the
deformation between the input-edited pair at the keyframe.
According to the correspondence, the shape and appearance
change can then be mapped back to the atlas space. We can
thus obtain per-frame deformation by sampling the defor-
mation from the atlas to the original UV maps. While this
method helps with shape-aware editing, it is insufficient due
to unseen pixels in the edited keyframe. We tackle this by

further optimizing the atlas texture and the deformation us-
ing a pretrained diffusion model by adopting the gradient
update procedure described in DreamFusion [38]. Through
the atlas optimization, we achieve consistent shape and ap-
pearance editing, even in challenging cases where the mov-
ing object undergoes 3D transformation (Fig. 1).
Our contributions.

• We extend the capability of existing video editing
methods to enable shape-aware editing.

• We present a deformation formulation for frame-
dependent shape deformation to handle target shape
edits.

• We demonstrate the use of a pre-trained diffusion
model for guiding atlas completion in layered video
representation.

2. Related Work

Text-driven image synthesis and editing. Recent years
have witnessed impressive progress in text-guided image
synthesis and manipulation using GANs [24, 25, 27, 41, 43,
55,56,61]. On text-to-image generation, DALL-E [41] first
demonstrates the benefits of training text-to-image models
using a massive image-text dataset. Most recent text-to-
image generators [6, 30] use a pre-trained CLIP [39] as the
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guidance. On text-to-image manipulation/editing, recent
methods also take advantage of the pretrained CLIP embed-
ding for text-driven editing [9,36,58]. These methods either
pretrain the model with CLIP embedding as inputs or use a
test-time optimization approach [2, 8, 21].

Recently, diffusion models [7, 14, 50] have shown re-
markable success in both text-guided image generation [1,
35, 44–46] and editing [12, 35, 44] tasks. Stable Diffu-
sion [44] performs a denoising diffusion process in a latent
space and achieves high-resolution text-to-image genera-
tion and image-to-image translation results. In particular,
the release of the model trained on large-scale text-image
pair dataset [47] facilitates various creative applications
from artists and practitioners in the community. Our work
leverages the state-of-the-art text-to-image model, Stable
Diffusion [44], and extends its semantic image editing ca-
pability to consistent video editing.

Video generation. Building upon the success of photoreal-
istic (text-driven) image generation, recent work has shown
impressive results on video generation, with a focus on gen-
erating long video [5, 11, 49, 60] and videos from free-form
text prompts [13, 48, 52]. Unlike video generation meth-
ods, our work differs in that we perform text-driven video
editing for real videos.

Video editing. In contrast to the breakthrough of image
editing, video editing methods are faced with two core chal-
lenges: 1) temporal consistency and 2) computational com-
plexity of the additional dimension. To attain temporally
consistent editing effects, EbSynth [17] utilizes keyframes
and propagates the edits to the entire video with opti-
cal flows computed from consecutive frames. Such flow-
based techniques have been applied in other tasks such as
video synthesis [3], video completion [10,15,26], and blind
video consistency [22, 23]. Several studies address tem-
poral inconsistency in the latent space via GAN inversion
[29, 54, 57]. However, current GAN-based models can only
model datasets with limited diversity (e.g., portrait or ani-
mal faces). Another line of approaches [18, 28, 32, 33, 59]
decomposes a video into unified layer representation for
consistent editing. Neural Layered Atlas (NLA) [18] per-
forms test-time optimization on a given input video to learn
the canonical appearance layer and per-frame UV mapping
using video reconstruction loss. With layer decomposi-
tion, one can use text-driven image editing techniques to
the unified layers to consistently broadcast the edits to each
frame. The work most relevant to ours is Text2LIVE [2]
and Loeschcke et al. [31]. Both methods build upon NLA
to perform text-driven editing on the learned atlases. A pre-
trained CLIP is used for each input video to guide the atlas
editing via a test-time optimization framework. Yet, limited
by the formulation of NLA, they only allow appearance ed-
its due to the fixed UV mapping from the atlas to frames.
The mapping fields store the original shape information in

each frame so that the fixed UV mapping restricts the free-
dom of shape editing in [2, 18, 31]. Our work also builds
upon NLA for achieving temporally consistent video edit-
ing. In contrast to existing methods [2, 31], we extend the
capability of text-driven editing to enable shape editing.

3. Method
Given an input video Is

1..N and a text prompt, our pro-
posed shape-aware video editing method produces a video
It

1..N with appearance and shape changes while preserving
the motion in the input video. For maintaining temporal
consistency, our method uses the pre-trained video decom-
position method, NLA [18], to acquire the canonical atlas
layer Is

A and the associated per-frame UV map Ws
A→1..N per

motion group. For simplicity, we assume a single moving
object in an input video so that there are two atlases Is,FG

A
and Is,BG

A for foreground and background contents, respec-
tively. The edits in Is,FG

A can be consistently transferred to
each frame with UV mapping. To render the image Is

j back,
we use the Ws

A→t and an alpha map αs
t to sample and blend:

Is
j = Is,FG

j ∗α
s
j +Is,BG

j ∗ (1−α
s
j),

Is,g
j =Ws,g

A→ j ⊗Is,g
A ,g ∈ {FG,BG},

(1)

where ⊗ denotes the warping operation. Following our
shape deformation introduction, we focus on the foreground
atlas and will omit FG from Is,FG for simplicity.

We first select a single source keyframe Is
k to pass into a

text-driven image editing tool (e.g., Stable Diffusion [44]).
The edits in target It

k will then be propagated to It
1..N

through the atlas space with the mapping of Ws
A→1..N . Yet,

the UV mapping cannot work when the edits involve shape
changes since Ws

A→1..N are specifically for reconstructing
the original shapes in the input video. Hence, to associate
the target shape correctly, we propose a UV deformation
formulation (Sec. 3.2) to transform each Ws

A→ j into W t
A→ j

according to the deformation between (Is
k,It

k). In other
words, the keyframe deformation Ds→t

k between (Is
k,It

k)
serves as the bridge between input and output videos for
changing into the edited target shape while preserving the
source motion in the input. Note that the edits and keyframe
deformation Ds→t

k alone are insufficient due to some unob-
served areas from the viewpoint of image Is

k . Therefore, to
acquire a complete and consistent editing result, we lever-
age a pre-trained diffusion model to optimize the editing
appearance and deformation parameters in the atlas space
in Sec. 3.3. The process produces the final edited video
It

1..N with desired object shape and appearance changes.

3.1. Keyframe editing

With the given text prompt, we edit a representative
keyframe Is

k (e.g., the middle frame of the video) by a
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Figure 3. Method overview. Given an input video and a target edit text prompt, our method first bases on a pre-trained NLA [18] to
decompose the video into unified atlases with the associated per-frame UV mapping. Aside from video decomposition, we use the
text-to-image diffusion model to manipulate a single keyframe in the video (Sec. 3.1). Subsequently, we estimate the dense semantic
correspondence between the input and edited keyframes for shape deformation. The shape deformation of the keyframe serves as the
bridge between input and output videos for per-frame deformation through the UV mapping and atlas. Our deformation module (Sec. 3.2)
transforms the UV map with the semantic correspondence to associate with the edits for each frame. To address the issues of unseen
pixels from the single keyframe, we optimize the edited atlas and the deformation parameters guided by a pre-trained diffusion model
with the input prompt (Sec. 3.3).

pre-trained Stable Diffusion [44] to obtain target edited
keyframe It

k. Afterward, we leverage a pre-trained semantic
correspondence model [51] to associate the correspondence
between two different objects. The pixel-level semantic cor-
respondence is the deformation that transforms the target
shape in It

k to the source shape in Is
k .

3.2. Deformation formulation

With the estimated semantic correspondence, we can
obtain the pixel-level shape deformation vectors, Dt→s

k ∈
RH×W×2. The target shape in It

k are then deformed into the
source shapes in Is

k via Dt→s
k :

It→s
k =Dt→s

k ⊗It
k. (2)

With the aid of Dt→s
k , the edited object can be back-

projected to the atlas to form an edited atlas, It→s
A , by

Ws
k→A. Since it maintains the original shape, we cannot

directly map the edited It
k to the atlas with Ws

k→A.
Given the edited atlas It→s

A , the appearance edits can al-
ready be propagated to each frame with Ws

A→1..N in source
shapes. However, this needs improvement since our goal is

to generate a new video with the target shape. In addition
to propagating the edited appearance via the atlas space, we
spread the displacement vectors to each frame to obtain per-
frame deformation by back projecting keyframe deforma-
tion Dt→s

k into atlas space A with Ws
k→A to get Dt→s

A . Yet,
simply warping into the new image space is insufficient as
the coordinate system also got transformed by the warping
operation. Therefore, we formulate a shape deformation
vector transformation matrix, MW , to handle the deforma-
tion vectors w.r.t. the original coordinate system by a warp
field W:

D′(x′,y′)T = MWD(x,y)T , (3)

where (x,y) and (x′,y′) represent the corresponding pixels
in the source and target images, respectively, by the warping
field, W (i.e., (x′,y′) =W(x,y)). For pixel-level deforma-
tion, we compute a per-pixel deformation vector MW for
each pixel (x,y) by:

MW =

[
W(x+∆x,y)−W(x,y)
W(x,y+∆y)−W(x,y)

]T [1/∆x
1/∆y

]
, (4)
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semantic correspondence

(a) Original UV sampling (b) Shape-aware UV sampling

Warping field

(c) shape deformation vector transform

warping operation

shape deformation vector transform

atlas deformation map

atlas appearance map

Figure 4. Deformation formulation. Given the semantic correspondence between the input and edited keyframes, we map the edits back
to the atlas via the original UV map (in the shape of the original atlas). Meanwhile, we transform the per-pixel deformation vectors into
the atlas space with the same UV mapping field by (c). Consequently, the UV map samples the color and the deformation vectors onto
each frame to deform the original UV map respecting the edited shape.

where ∆x and ∆y denote small scalar shifts to form the local
coordinate system in the source space. In practice, to avoid
discrete sampling of warping, we use thin-plate spline [4] to
approximate the warping field smoothly. We illustrate the
transformation of the shape deformation vector in Fig. 4c.
With the transformation for the vector, we can obtain the
corresponding deformation in the target warped space with
the warp function W , which is the UV map in the atlas
framework. Thus, the deformation map Dt→s

k is propagated
to each It

j by:

Dt→s
A = MWs

k→A
⋆ (Ws

k→A ⊗Dt→s
k )

Dt→s
j = MWs

A→ j
⋆ (Ws

A→ j ⊗Dt→s
A ),

(5)

where ⋆ denotes the per-pixel matrix multiplication for the
deformation map. Hence, we can deform the UV map
Ws

A→ j into W t
A→ j by W t

A→ j = Ds→t
j ⊗Ws

A→ j. Note that
the alpha map for blending the target-shape object is also
deformed in the same manner by α t

j = Ds→t
j ⊗αs

j . Finally,
the edited It

j with initial deformation on the foreground ob-
ject can be obtained by:

It
j =W t

A→ j ⊗It→s
A ∗α

t
j +IBG

A ∗ (1−α
t
j). (6)

3.3. Atlas optimization

Through the deformation formulation in Sec. 3.2, we can
already obtain an edited video with the corresponding shape
changes if the semantic correspondence, i.e., Dt→s

k , is reli-
able. However, the estimated semantic correspondence is
often inaccurate for shape deformation. As a result, it would
yield distortions in some frames. Moreover, the edited atlas
could be incomplete since it only acquires the editing pixels

from the single edited keyframe so the unseen pixels from
the keyframe are missing. Hence, these incomplete pixels
produce visible artifacts in other frames.

To address these issues, we utilize an additional atlas
network FθA and semantic correspondence network FθSC to
fill the unseen pixels and refine the noisy semantic corre-
spondence via an optimization. Here, the atlas network FθA
takes the initial appearance and deformation of the fore-
ground atlas (It→s

A ,Dt→s
A ) as input and outputs the refined

(Ĩt→s
A ,D̃t→s

A ). Similarly, the semantic correspondence Dt→s
k

is approximated by a thin-plate spline. We feed the con-
trol points into the semantic correspondence network FθSC
to obtain the refined D̃t→s

k .
We select several frames that capture different view-

points for optimization. Our training of synthesizing
the edited frames, It , is guided by a pre-trained Vision-
Language model with the target prompt. Inspired by
DreamFusion [38], we leverage a pre-trained diffusion
model [44] to provide pixel-level guidance by backpropa-
gating the gradient of noise residual to the generated im-
ages (without backpropagating through the U-Net model).
Adding a noise ε on It as the input, the pretrained diffusion
UNet outputs a predicted noise ε̂ . The gradient of the noise
residual ε̂ − ε is backpropagated to update θ :

∇θLdi f f (It)≜ Ei,ε [w(i)(ε̂ − ε)
∂It

∂θ
], (7)

where i stands for the time step for the diffusion model and
the parameter set θ = {θA,θSC}. We update the unified in-
formation in the atlas space to maintain the temporal consis-
tency of the editing appearance and deformation with only
training on a few generated frames It .

In addition to the guidance of the diffusion model on
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multiple frames, we also apply several constraints to the
learning of the refinement networks, FθA and FθSC , to pre-
serve the editing effects as in the target edited keyframe It

k.
To ensure that the deformation through the atlas can suc-
cessfully reconstruct the original edited It

k, the keyframe
loss, Lk, measures the error between the original It

k and the
reconstructed Ĩt

k by L1 loss:

Lk = |Ĩt
k −It

k|. (8)

Besides, we also apply a total variation loss to encourage
the spatial smoothness of the refined appearance in the atlas.
The atlas loss is as follows:

LA = Ltv(Ĩt→s
A ). (9)

During the optimization, we also refine the semantic cor-
respondence D̃t→s

k of the keyframe pair. An ideal seman-
tic correspondence matches semantically-similar pixels and
perfectly transforms the target shape into the source shape.
Therefore, we compute the errors of the deformed target and
the source object masks, Mt

k and Ms
k:

LSC = |(D̃t→s
k ⊗Mt

k)−Ms
k|. (10)

The total loss function L = Ldi f f + λkLk + λALA +
λSCLSC, λk,λA,λSC = 106,103,103. The optimized parame-
ters θ ∗ are then used to generate the final edited video It∗

1..N .
Implementation details.

We implement our method in PyTorch. We follow the
video configuration in NLA with the resolution of 768×
432. We use a thin-plate spline to inverse a warping field
to prevent introducing holes by forward warping. The re-
finement networks, FθA and FθSC exploits the architecture of
Text2LIVE [2] and TPS-STN [16], respectively. The opti-
mization performs on 3 to 5 selected frames, including It

1, It
k,

and It
N , for 600 to 1000 iterations. The optimization process

takes 20 mins on a 24GB A5000 GPU. We further utilize
an off-the-shelf super-resolution model [53] to obtain sharp
details in the final edited atlases.

4. Experimental Results
Here we show sample editing results in the paper. We

include additional video results in the supplementary ma-
terial. We will make our source code and editing results
publicly available to foster reproducibility.

4.1. Experimental Setup

Dataset. We select several videos from DAVIS [37]. Each
video contains a moving object in 50 to 70 frames. We edit
each video with a prompt that describes a target object with
a different shape from the original one.
Compared methods. We compare our results with SOTA

and several baseline methods. For fair comparisons, all the
baseline methods use the same image editing method, Sta-
ble Diffusion [44].
• Multi-frame baseline: Multiple keyframes in a video are
edited individually. The nearby edited keyframes tempo-
rally interpolate the remaining frames with FILM [42].
• Single-frame baseline: We extract a single keyframe
from a video to be edited. The edited information is then
propagated to each frame with EbSynth [17].
• Text2LIVE [2]: The SOTA text-driven editing method
with NLA. Note that it utilizes a structure loss to preserve
the original shape. We compare the official Text2LIVE in
this section and show the comparison of removing structure
loss in our supplementary material.

4.2. Visual Comparison

We show a visual comparison with the baseline meth-
ods and Text2LIVE in Fig. 5. In the first example with
“blackswan→duck”, the multi-frame baseline shows
inconsistent editing in different frames. The single-frame
baseline suffers from inaccurate frame motion and thus
yields distortion during propagation. Text2LIVE shows
a promising target appearance with temporal consistency
but cannot change the shape that matches the target ob-
ject. In contrast, our method provides the desired appear-
ance and consistent shape editing. In the second example
with “boat→yacht”, the single-frame baseline shows an
inconsistent shape since the frame propagation relies on
the frame motion of the source shape. Consequently, it
cannot propagate the edited pixels correctly in a different
shape. In the third example with “dog→cat”, the in-
put video contains a non-rigid motion moving object. It
poses further challenges for multi- and single-frame base-
lines. Again, Text2LIVE demonstrates plausible cat ap-
pearance while remaining in the source dog shape. Our
shape-aware method maintains the object motion and ma-
nipulates the texture and shape corresponding to the desired
editing.

4.3. Ablation Study

We conduct an ablation study in Fig. 6 to validate the
effectiveness of the UV deformation and atlas optimiza-
tion. With fixed NLA UV mapping, the shape edits in
the keyframe cannot be adequately transformed through
the atlas to each frame (Fig. 6a). Therefore, by adding
a keyframe semantic correspondence to deform the target
into the source shape, the fixed UV maps the edits correctly
into the atlas but remains source shapes in the edited frames
(Fig. 6b). To restore the target shape, our deformation mod-
ule deforms the UV maps by the semantic correspondence
(Fig. 6c). However, the unseen pixels and inaccurate cor-
respondence yield artifacts in different views (e.g., in the
car’s roof and back wheel). We refine the edited atlas and
deformation with the atlas optimization (Fig. 6d).
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Input Ours Multi-frame baseline Single-frame baseline Text2LIVE [2]

Figure 5. Visual comparison with baselines and SOTA. We show three examples with edits of “blackswan →duck”, “boat
→yacht”, and “dog →cat”. The multi-frame baseline shows inconsistency in the edited objects. The single-frame method suffers
from the incomplete flow motion of the source object shape and thus could not propagate the edits properly. Text2LIVE demonstrates
consistent appearance editing corresponding to the target edits. Nevertheless, the shape remains the same as the original object. In
contrast, our proposed method outperforms the compared methods with consistent and plausible appearance and shape editing.

Input (a) fixed NLA (b) w/ semantic corres. (c) w/ UV deformation (d) w/ optimization (full)

Figure 6. Ablation study. We study the effects of removing the deformation and optimization components. (a) Editing with fixed NLA
UV mapping. (b) Using a semantic correspondence with fixed UV, the edits are mapped to the atlas properly but still remains the original
shapes in results. (c) With deformation initialization (Sec. 3.2), the NLA UV maps are deformed to restore the target shape. (d) With
further atlas optimization (Sec. 3.3), the incomplete pixels in edited atlas and distortion (in car’s roof and back wheel) are refined.
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Figure 7. Shape-aware interpolation. Our methods allow interpolation between two shapes by simply interpolating the atlas deformation
maps. The examples demonstrate the gradual changes from source objects to edited objects over the time.

In
pu

t
E

di
t

Figure 8. Limitations. We visualize a failure example (bear
→lion). The inaccurate NLA mapping in the motion of
crossing hind legs yields distortion in the edited result.

4.4. Application

We present an application of shape-aware interpolation
in Fig. 7. Through interpolating the deformation maps, the
object shape can be easily interpolated without additional
frame interpolation methods. Similarly, we can interpolate
atlas textures. Note that we directly apply image editing
on the background atlas since it can be treated as a natu-
ral panorama image (shown in Fig. 3). However, the fore-
ground atlas is an unwrapped object texture, which is unnat-
ural for general pre-trained editing models. Therefore, we
edit the video frame and map it back to the atlas. This ap-
proach is more general and allows users to use their chosen
images for video editing.

4.5. Limitations

Our method strictly relies on the many-to-one mapping
from individual frames to a unified atlas. However, NLA
may fail to get the ideal mapping in challenging scenarios
with complex motions. Therefore, we observe artifacts in
the erroneous mapping regions (e.g., the motion of hind
legs shown in Fig. 8). In addition, it remains difficult to
build semantic correspondence between two different ob-
jects. While the atlas optimization can improve noisy cor-

Figure 9. User-guided correspondence. Associating two
different objects remains challenging even for the SOTA semantic
correspondence methods. For a pair of source (a) and target (b),
the severe false matching can be corrected by users’ manual
warping for better results.

respondences, poor semantic correspondence initialization
would hinder the optimization. We show that user manual
correction (in Fig. 9) can lead to better video editing results.

5. Conclusions
We have presented a shape-aware text-driven video edit-

ing method. We tackle the limitation of appearance-only
manipulation in existing methods. We propose a deforma-
tion formulation using layered video representation to trans-
form the mapping field corresponding to the target shape
edits. We further refine the unseen regions by utilizing the
guidance from a pre-trained text-to-image diffusion model.
Our method facilitates a variety of shape and texture editing
applications.
Societal impacts. Our work proposes a tool for enabling
creative video editing applications. Nevertheless, similar
to many image/video synthesis applications, care should be
taken to prevent misuse or malicious use of such techniques.
We will release our code under a similar license as Stable
Diffusion that focuses on ethical and legal use.1

1https://github.com/CompVis/stable-diffusion/
blob/main/Stable_Diffusion_v1_Model_Card.md
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