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Figure 1. Scale field estimation results and their use cases.

Abstract

In this paper, we propose a single image scale estima-
tion method based on a novel scale field representation. A
scale field defines the local pixel-to-metric conversion ratio
along the gravity direction on all the ground pixels. This
representation resolves the ambiguity in camera parame-
ters, allowing us to use a simple yet effective way to collect
scale annotations on arbitrary images from human annota-
tors. By training our model on calibrated panoramic image
data and the in-the-wild human annotated data, our sin-
gle image scene scale estimation network generates robust
scale field on a variety of image, which can be utilized in
various 3D understanding and scale-aware image editing
applications.

1. Introduction

Single image 3D understanding plays a significant role in
various computer vision tasks, such as AR/VR applications,
robotics, and computational 3D photography. Many recent
approaches show promising results in estimating depth [17,

18,25], scene structure [24, 32], or radiance field [20, 22,
23]. However, they often treat scale as an undetermined
factor as it is a very ill-posed problem when the physical
extrinsics of the camera is unknown. Therefore, it remains a
very challenging task to estimate the metric scale of a scene
for a single unconstrained image.

One seminal work in scale estimation is single view
metrology [6]. As detailed in this line of works [6, 10, 35],
knowing horizon line, field of view (FoV) and absolute
camera height enables the conversion between any 2D mea-
surements in image space to 3D measurements. Horizon
line and FoV can be estimated using visual features, as
many of other previous methods suggest [9, 1 1,29, 30, 35].
However, since the absolute camera height information can-
not be obtained from low-level visual features, Criminisi et
al. [0], Hoiem et al. [10] and Zhu et al. [35] utilize canoni-
cal object heights as reference. Reprojecting the 2D bound-
ing boxes of well-known objects like humans or cars to 3D
space with their known metric heights, these methods derive
the vertical height of the camera, and then calculate metric
scale of other objects in the 2D image.
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However, there are two major downsides of single view
metrology based approaches. First, their scale estimation
relies on the existence of known objects with either precise
or canonical metric heights. This restricts practical usage
of their methods because there may or may not be an object
with known height. In addition, the height of a known ob-
ject can also change with its pose (e.g. a sitting person vs a
standing person), making the system less reliable. Second,
their prediction of the scene scale is highly dependent on a
few global parameters like horizon line, FoV, and camera
height. Among these parameters, camera height is very dif-
ficult to directly predict based on visual features. Moreover,
models that directly predict these parameters tend to overfit
to a certain dataset where the camera height and the FoV lie
in a limited range.

In this paper, to tackle the aforementioned issues, we in-
troduce a novel way of representing scene scale. We define
a pixel-wise pixel-to-metric 2D map, called Scale Field.
Using this local and dense representation, our goal is to
train a robust and generalizable scale estimation network
to recover the scene scale. Also, we provide an efficient
pipeline to annotate scale fields on random images based
on our geometrical observations consistent with single view
metrology. This allows us to collect a diverse set of images
with varying camera angles and camera heights. Our single-
view scene scale estimation network trained on this dataset
shows robust results on a variety of scenes, and it general-
izes well even on object-centric images. With our predicted
scale field, we can perform various 3D scene understanding
and scale-aware image editing, as visualized in Fig. 1.

To summarize, our major contributions are:

* We introduce Scale Field, a novel representation of
scene scale information, which can be utilized in var-
ious 3D understanding and scale-aware image editing
tasks.

* We propose a pipeline to annotate scale fields on web
images, and collect a diverse set of training samples.

* We provide a formulation of the single image scene
scale estimation network, trained on a mixture of
training data from panoramic images and human an-
notated data. Our method shows great robustness and
generalizability on in-the-wild images.

2. Related Work

Scale Estimation. Obtaining scene scale can be done by es-
timating scale-aware information. The most straightforward
approach is to predict pixel-wise depth map from the scene.
Monocular depth estimation [3, 16, 17] has improved by a
large margin alongside technical improvements on power-
ful network backbones and deep learning training schemes.
Still, some of them utilize additional information like cam-
era parameters and surface normal to maintain consistency
between 2D depth map and 3D structure. Moreover, they

are still far behind in terms of accuracy compared to depth
completion [ 14, 19], stereo matching [5,2 1] and multi-view
stereo [13, 18,27,31,34], which exploits more direct scale-
aware priors like sparse depth measurements or multi-view
constraints.

Camera Calibration. Camera intrinsic and extrinsic pa-
rameters enable conversion between 2D measurements and
3D measurements. Intrinsic camera parameter estimation
methods [9, 1 1,29] are usually done by using an explicit ge-
ometric model of a camera, or data-dependant supervised
training scheme. Extrinsic camera parameters consist of
rotation and translation. Rotation such as camera pitch or
roll can be easily interpreted as horizon line, which can be
retrieved in a classical way of utilizing line segments and
vanishing points [2, 8, 15, 33], or in deep learning-based
way by learning from large-scale dataset with ground truth
horizons [11,30]. However, predicting absolute translation,
which is crucial in recovering scale, is difficult without us-
ing additional annotations.

Single View Metrology. Single view metrology [6] estab-
lishes the relationship among low-level image features like
vanishing points and vanishing lines, 3D sizes of objects in
the 3D space, and projected 2D positions and sizes. Re-
cent works [10, 12,35] that follow this philosophy estimate
either unknown heights of objects in the scene or camera
height by using camera parameters, image features, and at
least one 2D and 3D size annotation of reference objects.

3. Introducing Scale Field
3.1. Geometric Background

Before describing our scale field, we first review the ge-
ometric background regarding the camera and metric scale.
Our observations are summarized in two-fold.

* All the vertical lines from ground pixel to horizon line
are reprojected to 3D space with same metric heights,
which is also same as camera height.

* In a fixed ground position, metric height and pixel
height are approximately in a linear relation.

Fig. 2 visually describes the relationship between the cam-
era, ground, and horizon line.

Observation 1. Assuming ‘ground’ as a single plane where
the camera height was measured, in 2D image, we denote
all the pixels under the horizon line as ground pixels. We
focus on the vertical lines, i.e., aligned with gravity direc-
tion, from ground pixel to horizon line, as in Fig. 3c. When
they are reprojected to 3D space, all of these lines will have
same metric heights. And that height is also same as the
height of the camera, h¢,p, as shown in Fig. 2a.
Observation 2. We additionally inspect the relationship
between pixel height and metric height on a fixed ground
point. As illustrated in Fig. 2b, we denote pitch and focal
length of the camera as 6 and f respectively, and the z-axis
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Figure 2. Visualization of the relationship between pixel height, metric height, and camera height. (a) All the vertical lines from the
ground to the horizon line will have the same metric height as camera height. (b) From the same ground position, metric height and pixel

height are approximately in linear relation.

distance from the camera to the ground point as d. Blue
arrow with metric height h; and the red arrow with metric
height ho are set to start from the same ground point. Pixel
heights of the projected arrows in 2D image are defined as
ph1 and phs, respectively. Then, we can express ph; and
phs in terms of hy and hy like following:

_ J cos ¢y
phi = hldcos&cos(qSl —0)’
hy = hy f cos ¢1(cos 8 + sin 6 tan ¢9) 1

dcos(¢y — 0) ’

h1 — ha

h
¢1 = arctan j, ¢o = 0 — arctan

Following approximations applied in [10], the metric height
to pixel height formulation can be derived from Eq. (1), as
in,

phy

~ —. 2
pha  ho @

This means that the metric height and the pixel height from
a single ground pixel are in linear relation.

3.2. Scale Field Formulation

Based on the above observations, we now formulate
our scale field. We first calculate a 2D vector field in
an image where each vector starts from the ground pixel
and ends at the intersection to the horizon line, which
we call ground2horizon. Each ground2horizon vector
should be perpendicular to the ground plane when repro-
jected to 3D space. As was mentioned in Sec. 3.1, all the
ground2horizon vectors obtained in a single image have the
same metric height, and each of the vectors will have lin-
ear relation between pixel and metric heights. We simply
define the Scale Field S F' by dividing the pixel magnitudes
of these vectors by the absolute metric height of the camera,

' 02
00
Figure 3. Components for the scale field generation. Overlaid
colormap of scale field in (d) are represented relatively to image
height. For example, red color with scale field value of 1.0 refers

to image height amount of pixels equal to 1.0m. Note that scale
field values converge to 0.0 near the horizon line.

(c) GroundZHorizon

(d) Scale Field

as in,

h hcam if ) d7
SF(y) =17 (x,y)/ if (x y) € ground, )
0 otherwise,

where (x,y) is a 2D coordinate and ph is a pixel height
of the ground2horizon vector from (z,y), normalized by
image height and width. This makes our scale field a 2D
map of per-pixel pixel-to-metric ratio.

For each ground pixel in an image, the scale field pro-
vides information on how many pixels represent a certain
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amount of vertical metric length. It enables various scale-
coherent applications on 2D images such as 3D scene un-
derstanding or scale-aware image editing.

4. Single Image Scene Scale Estimation

In this section, we introduce our single image scene scale
estimation network and its training pipeline using scale
field. We first describe the dataset generation scheme using
panoramic images and our method of collecting web image
annotations in Sec. 4.1.

4.1. Dataset Generation

In most neural network-based algorithms, it is very cru-
cial to acquire an appropriate training dataset to give the
neural network reliable supervision. In order to gener-
ate a scale field, metric camera height, horizon line, and
ground2horizon vectors should be prepared. In addition, to
make our scene scale estimation network robust to a wide
variety of images, training samples with various ranges of
aforementioned parameters should be used.

All of the values can be obtained from intrinsic and ex-

trinsic camera parameters. However, many of the public
vision datasets with both intrinsic and extrinsic camera pa-
rameters are mostly taken handheld or while attached to the
grounded vehicle. Moreover, one dataset is most likely cap-
tured using the same sensor system. Therefore, utilizing
these datasets will lack variety in terms of FoV, roll, pitch,
and especially, camera height.
Panorama Images. Due to the problems of using pub-
lic datasets of perspective images, we choose to uti-
lize 360° panoramic images. The most beneficial prop-
erty of panorama is its scalability. When performing
equirectangular-to-perspective cropping, it is able to make a
large number of perspective images from a single panorama
by using different combinations of camera parameters,
while maintaining the same camera height.

We select the Stanford2D3D [1] and Matterport3D [4]
datasets for our scale field dataset generation. They are two
of the most frequently used panorama datasets with camera
height provided. For each panorama image, we sample 40
different perspective images and scale field pairs. We ran-
domly select camera parameters from uniform distributions
of [45°,105°] for FoV, [—30°, 30°] for roll, [-15°,15°] for
elevation and [—180°,180°] for azimuth. We use the of-
ficial train/test splits from each of the datasets, and ran-
domly select only 2000 pairs for testing from each dataset.
Fig. 4 shows examples of different perspective crops and
their horizone line, ground2horizon vectors and scale field
from a single panorama image.

However, both Stanford2D3D and Matterport3D
datasets only contain indoor scenes. To provide more
visual variety to the training pool, we also utilize additional

Crop #1
FoV:105°, roll:-15°,
ellavation:-5°, azimuth:-105°

Crop #2
FoV:45°, roll:0°,
ellavation:10°, azimuth:-20°

Crop #3
FoV:75°, roll:10°,
ellavation:-10°, azimuth:50°

FoV:75°, roll:-5°,
ellavation:-15°, azimuth:140°

Figure 4. Examples of different perspective crops using different
sets of camera parameters from a single panorama image.

indoor/outdoor panorama images of our own, applying the
same process as formerly described.

Web Images. While panorama-based datasets provide a
sufficient amount of training samples, there exists a major
problem that may hinder the generalizability of the network.
Most of the panoramic datasets are taken from 360° cam-
eras that are placed on the tripod. This means that many
of the training/testing samples have similar camera heights.
For example, the mean and the standard deviation values
of camera heights from all the samples from panorama im-
ages are 1.538m and 0.069, respectively. Since we want
our scene scale estimation network to perform well on ar-
bitrary scenes, we need an additional source for our scale
field dataset.

In order to alleviate this issue, we introduce another
method for collecting the scale field annotations on random
web images. Fig. 5 describes the overall pipeline of the an-
notation process. We first annotate the horizon line. This
can be done by using at least a pair of horizontal parallel
lines in the image and identifying their vanishing point. We
assume the image to have nearly-zero roll or otherwise rec-
tified beforehand.

The next step is to annotate ground-attached vertical
lines with known or estimated metric heights. In Fig. 5,
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Figure 6. Examples of annotated web images.

for example, the height of the human and the building are
annotated to have 1.8m and 7.5m heights. Using these ver-
tical lines, horizon line, and the linearity between metric
and pixel heights described in Eq. (2), we can obtain cam-
era height candidates. The final camera height is the median
value of all the candidates from the annotations. With the
annotations and camera height, all the components for our
scale field are calculated using formulations previously de-
scribed in Sec. 3.1 and [9, 1 1,29].

We annotated three categories of web images, which are
object, indoor and outdoor. The ‘object’ category contains
object-centric images such as close-up images or tabletop
images. Our web image dataset contains a total of 1372 im-
ages, with 120 objects, 981 indoor, and 271 outdoor images.
Fig. 6 shows some examples of our web image dataset and
their annotations.

Obtained camera heights of these images range from
6cm to 234m. We handpicked 274 images from three cat-
egories for evaluation, and utilized others for training. For
both training and testing, we square-cropped the image to

three crops, so that every crops can cover the whole image.
Note that we do not utilize image crops with horizon line ly-
ing below image bottom boundary, since we cannot define
scale field in this circumstance.

4.2. Network Architecture

We now describe our single-view scene scale estimation
network using scale field. We design our network to simul-
taneously predict both ground2horizon and scale field, so
that it can be aware of not only scale but also the gravity
direction. As was introduced in Sec. 3.2, ground2horizon
is also a local and dense representation that implicitly holds
information about the camera parameters.

To show the robustness of predicting local fields in-
stead of global parameters, our scene scale estimation net-
work has 3 variants: 1) ground2horizon and scale field es-
timation (G2H+SF, Fig. 7a), 2) ground2horizon and cam-
era height estimation (G2H+CamH, Fig. 7b), and 3) hori-
zon line, field of view and camera height estimation (Cam-
Params, Fig. 7c). Variant CamParams is our own implemen-
tation version of single image camera calibration method by
Hold-Geoffroy et al. [1 1] with the addition of the camera
height estimation head. Model G2H+SF only predicts lo-
cal fields, while model CamParams only predicts global pa-
rameters and G2H+CamH is the mixture of both. All three
models, using the outputs of their own, are able to construct
ground2horizon and the scale field, which will be used in
quantitative evaluations. Overall structures of our model
and its variants are illustrated in Fig. 7.

All the variants have the same network architecture of
PVTv2 [28], which is a transformer-based feature extractor.
Decoder architecture for 2D field estimation follows the de-
sign of UNet [26] that outputs the same resolution as the
input image, while the number of channels differs accord-
ing to the target output value. The estimation head for the
global parameter is a fully connected (FC) layer, following
the design of [11].

5. Experiments

Implementation Details For our encoder, we utilize
PVTv2-b3 variant that was pre-trained on ImageNet-1K [7]
dataset. The network was trained for 50 epochs, with le-
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Figure 7. Overall pipelines for our three variants of single view scene scale estimation network.

Table 1. Quantitative evaluation on samples from public panorama datasets. P: Panorama dataset (Stanford2D3D, Matterport3D,

custom panorama). W: Web image dataset.

Model Train Set Stanford2D3D Matterport3D Web Image
Angle T Scale (e-4) ]  Height| | Anglet Scale(e-4)] Height] | Anglet Scale(e-2)] Heightl
CamParams P 0.999 1.932 0.039 0.999 4.154 0.082 0.914 21.510 0.555
G2H+CamH P 0.999 1.612 0.040 0.999 3.558 0.080 0.936 21.738 0.606
G2H+SF P 0.999 1.502 0.043 0.999 3.522 0.086 0.937 21.263 0.563
G2H+CamH P+W 0.999 1.924 0.036 0.999 3.702 0.081 0.938 13.785 0.331
G2H+SF P+W 0.999 1.858 0.049 0.999 3.601 0.085 0.938 3.076 0.180

4 initial learning rate and learning rate decaying to 10% at
15000, 30000, and 60000 iterations. The training took ~12
hours using 8 NVIDIA A100 GPUs, where for each GPU,
a batch of 48 images of 256 X256 resolution was loaded per
iteration. The dataloader is designed to assign equally dis-
tributed samples from each dataset in a batch. We directly
supervise all the outputs using mean squared error (MSE)
loss with equal loss weights. Further implementation de-
tails are described in Appendix. Unless specified otherwise,
we use the results of our G2H+SF variant for analysis and
visualizations.

5.1. Model Analysis

For quantitative comparison, we evaluate three metrics,
cosine similarity for ground2horizon estimation, RMSE er-
ror for scale field prediction, and REL error for camera
height. Since G2H+SF model does not estimate camera
height directly, averaged value of SF/| ground2horizon||
was used for evaluation. Note that camera height estima-
tion performance is reported for completeness, but it may
not directly reflect the scene scale estimation. We tested
our three models on Stanford2D3D, Matterport3D and web
image test sets. Overall results are shown in Tab. 1.

Direct Parameter Estimation vs Scale Field Estimation.
First, we compare our three models, G2H+SF, G2H+CamH,
and CamParams, to see the difference between predicting
local fields and global parameters. Row 1, 2 and 3 in Tab. 1
show the test results of the three models trained in same

training configurations.

In our Stanford2D3D and Matterport3D test set, all three
models show nearly perfect results on gravity direction es-
timation. However, scale metrics show that the perfor-
mance improves when replacing the global parameter pre-
diction with the equivalent dense field formulation. For
example, G2H+CamH is better than CamParams by us-
ing the Ground2Horizon field, and G2H+SF is better than
G2H+CamH by predicting the scale field. Nonetheless, all
three models perform way worse on web image test set,
since the set contains out-of-distribution samples regarding
camera height.

On the other hand, comparing row 4 and 5, while both
G2H+SF and G2H+CamH were trained using the same
datasets including our web image dataset, the scale estima-
tion result on web image test set using the G2H+SF model
excels the result of G2H+CamH. Considering that the scale
field generation using outputs of G2H+CamH exactly fol-
lows the scale field formulation we described in Eq. (3), this
result indicates that predicting local fields rather than global
parameters boosts robustness in scale estimation.

Above observations validate the effectiveness of our pro-
posed approach of representing scene scale as local and
dense scale field. Qualitative results using three models
are also shown in Fig. 8. G2H+SF shows much reason-
able scale estimations results compared to CamParams and
G2H+CamH models. Additionally, it is shown that our
model implicitly holds the information of the horizon line.
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Figure 8. Qualitative comparison of our models. Inserted human silhouette set to have height of 1.7m. Metric height measured at pixel

coordinate (130, 240) for all examples.

Effect of Web Image Dataset. We also ablate the effect
of utilizing our web image dataset that covers a wide range
of camera heights. In the third and the fifth row in Tab. 1,
the same G2H+SF model was used while each was trained
on a different set of datasets. In Stanford2D3D and Mat-
terport3D, the network that is only trained on panorama
datasets shows better performance, since it was fitted to a
certain range of camera heights. However, the result of
it on our web image dataset is far behind. We stress the
importance of training the network with a huge variety of
scenes, thus the importance of our provided image annota-
tion pipeline.

Generalization From Scene to Object. We further analyze
the robustness of our SF model by processing a sequence of
gradually cropped images that show from the overall scene
to a certain object. The results are shown in Fig. 9. Both
rows show reliable scale estimation results on all of the
crops. This indicates that our network estimating scale field
works well on both scene-scale and object-centric images.

5.2. Applications

Using our scale field estimation results, we perform
scale-aware image editing tasks like object insertion
(Fig. 10a) and in-scale image compositing (Fig. 10b), and
3D scene understanding tasks like metric height measure-

Figure 9. Robustness check by gradually cropping scene image to
object-centric image.

ment (Fig. 10c) and ground plane elevation (Fig. 10d). The
last example can be utilized for architectural usage or furni-
ture arrangements. The various use cases of the tasks using
our scale field predictions are visualized in Fig. 10. Our net-
work can handle very extreme examples with small camera
height like the left-most image in Fig. 10c, or with large
camera height like the right-most images in Fig. 10a and
Fig. 10c.
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Figure 10. Examples of various use cases of our scale field estimations results. Inserted human silhouette set to have height of 1.7m.

6. Conclusion

In this paper, we introduce an effective way to estimate
scale information of a scene from a single image. Our
scale field, a local, dense and generalizable representation
of scale, helps a deep learning network to learn robust scene
scale in various range of images, from close-up tabletop im-
ages to cityscape images. Also, it enables easy annotation
on unlimited images using single-view metrology-based ge-
ometry. We believe that our scale field representation and

single image scene scale estimation can leverage ambigu-
ous 3D understanding tasks from a single view.

Limitations. Our scale field formulation assumes a flat
ground plane and is only defined under the horizon line.
It loses accuracy and consistency when the image is mainly
composed of curved surface, and cannot cover cases like
photos that are pointing up so that the horizon line lies under
the image boundary. It will be an interesting topic to further
upgrade our scale field formulation on even more variety of
images, which we aim to focus for our future direction.
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