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Abstract

Test-time adaptation methods have been gaining atten-
tion recently as a practical solution for addressing source-
to-target domain gaps by gradually updating the model
without requiring labels on the target data. In this paper, we
propose a method of test-time adaptation for category-level
object pose estimation called TTA-COPE. We design a pose
ensemble approach with a self-training loss using pose-
aware confidence. Unlike previous unsupervised domain
adaptation methods for category-level object pose estima-
tion, our approach processes the test data in a sequential,
online manner, and it does not require access to the source
domain at runtime. Extensive experimental results demon-
strate that the proposed pose ensemble and the self-training
loss improve category-level object pose performance dur-
ing test time under both semi-supervised and unsupervised
settings.

1. Introduction
Object pose estimation is a crucial problem in com-

puter vision and robotics. Advanced methods that fo-
cus on diverse variations of object 6D pose estimation
have been introduced, such as known 3D objects (instance-
level) [28, 38], category-level [18, 36, 43], few-shot [52],
and zero-shot pose estimation [13, 47]. These techniques
are useful for downstream applications requiring an on-
line operation, such as robotic manipulation [6, 25, 48] and
augmented reality [23, 24, 32]. Our paper focuses on the
category-level object pose estimation problem since it is
more broadly applicable than the instance-level problem.

Many works on category-level object pose estimation [2,
3, 17, 18, 36, 43, 44] have been proposed recently. These
approaches estimate multiple classes of object pose more
efficiently in a single network compared to the instance-
level object pose estimation methods [27, 38, 41, 49–51],
which depend on known 3D shape knowledge and the size
of the objects. Notably, Wang et al. [43] introduced a
novel representation called Normalized Object Coordinate
Space (NOCS) to align various object instances within each

Figure 1. We propose a Test-Time Adaptation for Category-level
Object Pose Estimation framework (TTA-COPE) that automati-
cally improves the network in an online manner without labeled
target data. As new image frames are processed, our method fine-
tunes the network using the unlabeled data and simultaneously ap-
plies the network to perform pose estimation via inference. This
approach successfully handles domain shifts compared with no
adaptation, as seen here.

category in a canonical 3D space. The strengths of the
NOCS representation have led to its adoption by follow-up
work [3, 17, 36].

In order to obtain accurate category-level object pose
methods in unseen real-world scenarios, it is desirable to
fine-tune the models in the new environment with labeled
target data. The model that is not fine-tuned on the tar-
get domain distribution will almost certainly exhibit lower
performance than the fine-tuned model [37]. However, an-
notating 6D poses of objects in the target environment is
an expensive process [1, 39, 43, 45] that we seek to avoid.
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Table 1. Comparison with prior unsupervised works for
category-level object pose estimation. Our unsupervised method
trains models without 2D or 3D labels of target data, similar to
Self-DPDN [16]. Unlike previous methods, our proposed ap-
proach updates the model online without offline batch processing.
Moreover, we do not use the source data during test time (source-
free) because it is impractical to train on a large amount of source
data every iteration. There also may be privacy or legal constraints
to access source data [21].

Method
Unsupervised Test-time Adaptation

Target 3D Target 2D Source-Free
Online

Adaptation
Supervised ✗ ✗ ✗ ✗

SSC-6D [29] ✓ ✗ ✗ ✗
RePoNet [5] ✓ ✗ ✗ ✗

UDA-COPE [15] ✓ ✗ ✓ ✗
Self-DPDN [16] ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓

Compared to annotating in 2D space, labeling in 3D space
requires specific knowledge about geometry [7] from the
annotator and is much more laborious, time-consuming,
and error-prone due to the complex nature of SE(3) space.
Therefore, it is usually challenging to annotate real-world
data with 3D annotations for fine-tuning.

In order to solve the aforementioned problem of anno-
tating object pose data in the real world, several recent
methods [5, 15, 16] propose unsupervised domain adapta-
tion (UDA) that aims to train the network without utilizing
the ground truth of target pose labels. Although they show
promising results using UDA techniques, these approaches
still do not meet some of the requirements for online ap-
plications. For example, when a robot encounters a new
environment, it is desirable to adapt the scene online man-
ner while estimating object poses rather than waiting for
enough data to be collected in the novel scene to train the
model offline.

This problem definition of online fine-tuning is more
practical for real applications, where we desire to update
the model instantly when new data becomes available for
fast domain adaptation. This setting is known as test-time
adaptation (TTA) [42]. For TTA, the requirements are as
follows: 1) labeled source data should not be accessed at
test time, 2) adaptation should be online (rather than of-
fline batch processing), and 3) the method should be fully
unsupervised, without using 2D or 3D target labels during
online fine-tuning. Since we do not have access to labeled
source data (source-free) at test time this problem is more
challenging than existing unsupervised category-level ob-
ject pose methods [5,15,16,29]. Table 1 summarizes the dif-
ference between our problem definition and existing meth-
ods, showing that test-time adaptation for category-level ob-
ject pose estimation remains an open problem.

In this paper, we propose Test-time Adaptation for
Category-level Object Pose Estimation (TTA-COPE) to

handle domain shifts without any target domain annota-
tions (see Fig. 1). Prior works on general test-time adapta-
tion [42,46] propose self-training to minimize entropy loss.
TENT [42] has shown improvement in 2D classification and
segmentation tasks. We show, however, that simply extend-
ing TENT for the category-level object pose estimation is
not effective. Another self-training strategy is the teacher-
student framework [35] with pseudo labels. However, since
pseudo labels are created without any noise filtering, naive
pseudo labels may be unreliable and cause convergence to
a suboptimal model.

To tackle this problem, we design a novel pose ensemble
method to perform test-time adaptation for category-level
object pose estimation by extending the pose-aware filter-
ing of UDA-COPE [15]. The proposed method uses an en-
semble of teacher-student predictions based on pose-aware
confidence, which is used both for generating pseudo labels
and inference. Also, the pose ensemble helps to train mod-
els with additional self-training loss to reduce the domain
shift for category-level pose estimation by using pose-aware
confidence. We demonstrate the advantages of our proposed
pose ensemble and self-training loss with extensive stud-
ies in both semi-supervised and unsupervised settings. We
show that our TTA-COPE framework achieves state-of-the-
art performance compared to strong TTA baselines.

In summary, the main contributions of our work are as
follows:

• We propose Test-Time Adaptation for Category-level
Object Pose Estimation (TTA-COPE), which handles
domain shifts without labeling target data and without
accessing source data during test time.

• We introduce a pose ensemble with self-training loss
that utilizes the teacher-student predictions to generate
robust pseudo labels and estimates accurate poses for
inference.

• We evaluate our framework with experimental com-
parisons against strong test-time baselines and state-
of-the-art methods under both semi-supervised and un-
supervised settings.

2. Related Works
2.1. Supervised Methods

Fully supervised learning methods for category-level ob-
ject pose estimation [2,3,17,36,43,44] train their models us-
ing labeled source data (e.g., synthetic) and target data (e.g.,
real). Most category-level 6D object pose and size estima-
tion approaches [3, 14, 36, 43, 44] use the dense correspon-
dence via Normalized Object Coordinate Space (NOCS)
representation as a common way to estimate pose and size.
These correspondence-based methods initially estimate the
NOCS map from RGB or depth images. Afterwards, the
Umeyama algorithm [40] with RANSAC is used to estimate
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optimal poses and object sizes by minimizing distances be-
tween depth and estimated NOCS map.

Some methods use category priors [3,36,44] as the repre-
sentative 3D shape per class, jointly reconstructing the full
3D shape and estimating the NOCS map from the full shape.
Results show that this prior category helps improve the ac-
curacy of the NOCS map and enhance the pose estimation
performance. Other methods directly regress the pose or
jointly utilize the correspondence representations [2,11,17].

2.2. Unsupervised Methods

Given that annotating the 6D object pose and 3D size la-
bels in the real world is expensive, time-consuming, and
laborious, RePoNet [5] and SSC-6D [29] propose semi-
supervised approaches that reconstruct the entire shape
and use differential rendering [19, 20] techniques for self-
training signals. These are category-specific methods and
utilize multiple models, as many models as the number of
categories is required. UDA-COPE [15] proposes an un-
supervised domain adaptation method to mitigate the do-
main shift from the source to the target domain with a single
model to estimate all categories efficiently.

Although these works show reasonable performance
without using pose labels, there is still a limitation in relying
on 2D ground truth information (segmentation or bounding
boxes) to train the segmentation network or pose network.
Self-DPDN [16] shows a fully unsupervised method using
inter/intra-consistency as a reconstructed shape in a self-
supervised objective but requires a supervised loss for the
source domain in the unsupervised learning process. Addi-
tionally, the self-training loss utilizes a full 3D shape and
requires an additional reconstruction module for 3D shape.
Most methods, except for UDA-COPE [15], jointly use the
supervised loss using source label data during unsupervised
learning to relax the unstable training. Furthermore, all
the aforementioned unsupervised methods train their model
in an offline manner and are unsuitable for online applica-
tions [24, 25].

2.3. Test-time Adaptation Methods

Test-Time Adaptation (TTA) aims to enable the online
adaptation of a pretrained model to the target domain with-
out access to the source domain (source-free) [26,34,42,46].
The source data is commonly inaccessible during inference
time because it is inefficient to train on a huge amount of
source data every iteration. There may also be privacy or
legal constraints to accessing source data [21], thus TTA is
a more difficult but practical task than UDA. From the point
of view of real-world applications, it is necessary to adapt
to the new scene in an online way. Accordingly, test-time
adaptation is necessary for the success of practical, real-
world computer vision applications. Wang et al. propose
Test entropy minimization (TENT) [42], which trains a net-

work using a labeled source dataset, and adapts it to the un-
labeled target dataset by updating the network parameters in
batch norm layers using entropy loss. CoTTA [46] proposes
a continual test-time adaptation method on the 2D classifi-
cation and semantic segmentation tasks, and it effectively
reduces the error accumulations while continually changing
target data. Not limited to the 2D tasks, test-time adapta-
tion methods have been applied to other tasks such as 3D
segmentation [31, 33] and robot manipulation [22].

3. TTA-COPE
Given an RGB-D image, our approach aims to estimate

the 6D pose T ∈ SE(3) and size s ∈ R3
+ of each object.

The object pose T is defined as the rigid transformation
[R | t], with rotation R ∈ SO(3) and translation t ∈ R3.

Our method consists of a two-stage learning scheme us-
ing source and target data, respectively. In the first stage,
we train the network using labeled (synthetic) source data
in a supervised manner (Sec. 3.1). This step is the same
as supervised methods and results in a pretrained model.
We then utilize this pretrained model for test-time adapta-
tion (TTA) using unlabeled target data without accessing the
source data. To the best of our knowledge, we are the first to
propose test-time adaptation for category-level object pose
estimation. Therefore, we study and explore how TTA base-
lines (Sec. 3.2) might apply to category-level object pose
estimation. Finally, our proposed method is presented and
explained (Sec. 3.3).

3.1. Pretraining with Source Data

In this section, we introduce an overview of our model
and then describe how to train the model using labeled
source data. We use UDA-COPE [15] network as a base
model, which we supplement with batch normalization
(BN) [10] in the 2D network to utilize BN updates for test-
time adaptation. Fig. 2 shows an overview of our network,
consisting of three steps to estimate the pose similar to cor-
respondence methods [3,16,36]. First, we detect the bound-
ing area of the object and segment the object surface using
the off-the-shelf segmentation model from a single RGB
image [8]. In the second stage, given a cropped 2D ob-
ject image I and segmented 3D object point cloud D, our
model estimates the correspondence as a NOCS map N . We
leverage the NOCS representation [43] to align diverse ob-
ject instances within each class in a unified 3D space. In the
final stage, our proposed pose ensemble method estimates
the object pose T . It simultaneously utilizes the predictions
of the student and teacher model by calculating the pose
confidence using the number of filtered points.

The network is pretrained in a fully supervised manner
using labeled source data. We minimize the predictions of
the NOCS map N using the cross-entropy loss LCE with
ground truth labels NGT . We also use the consistency loss
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Figure 2. Overview of our Test-Time Adaptation for Category-level Object Pose Estimation (TTA-COPE) framework. Our method
consists of three steps to estimate category-level object pose, similar to correspondence methods. 1) We detect and segment the object
region using an off-the-shelf segmentation model from a single RGB image. 2) Given a cropped 2D object image I and segmented 3D
object point cloud D, our model estimates the correspondence points as a NOCS map N . 3) Our proposed pose ensemble estimates the
object pose T . It simultaneously utilizes the predictions of the student θS and teacher model θT by calculating the pose-aware confidence
using the number of inlier points. We operate point filtering for each student and teacher model and select a confident pose T with higher
confidence (i.e., more inlier points) for which the pose estimation is more accurate.

LC with 2D and 3D augmentation to make the network ro-
bust to noise in the input [15]. The supervised loss is for-
mulated as:

Lsup = λCELCE(N,NGT ) + λCLC(Naug, N), (1)

where Naug is the estimated NOCS map from augmented
2D or 3D input, and λCE , λC ∈ R+ are weights.

3.2. Test-time Adaptation with Target Data

The model is updated every iteration while simultane-
ously estimating the object pose of the current scene. (Note
that this is different from previous methods that update the
model by running multiple epochs over the target data [16].)

We have a design choice for the objective loss when up-
dating the model during test time. One of the widely used
test-time objective losses is the entropy loss proposed by
TENT [42],

Lent = −
∑

p(xt) log p(xt), (2)

where p(xt) is the probability of predictions θS(xt) from
target data xt. This simple objective loss encourages sharp
distributions by assigning the most probability.

Another common approach is utilizing pseudo labels
from a teacher-student framework [35] with momentum up-
date. The teacher model θT generates pseudo ground truth
ŷ = θT (xt), where xt = (I,D). The student model θS

then uses the predictions of the teacher as the ground truth
signals (pseudo labels) with cross-entropy loss,

Lpl = LCE(θ
S(xt), ŷ). (3)

After updating the student model θSi −→ θSi+1 by minimizing
Eq. (3), the teacher model θTi+1 is updated by momentum
update,

θTi+1 ← γθTi + (1− γ)θSi+1, (4)

where i stands for the time stamp of the iteration and γ is the
momentum smoothing factor. The separation of the model
structure mitigates some error accumulation by the pseudo
label and momentum update.

Although these objective strategies from previous work
potentially provide self-training signals for test-time adap-
tation, they become brittle when directly applied to a
category-level object pose estimation task. The pseudo la-
bels ŷ are still inherently exposed to noisy inputs and pre-
dictions, leading to errors in the student model θS . Since
θT cannot guarantee clean pseudo labels for the student, we
need the ability to filter noise in the input or predictions and
to yield more reliable pseudo labels to the θS .

3.3. Pose Ensemble

To solve this problem, we propose to extend the pseudo-
label filtering proposed by UDA-COPE [15] with pose en-
semble processing. We observe that the UDA-COPE frame-
work and pose filtering, while showing notable results, is
inefficient for two reasons. First, the teacher model is only
used for generating pseudo labels and not for inference.
Second, the student model is also only used for inference
and has less influence in generating pseudo labels.

We propose instead to jointly utilize the teacher and stu-
dent models for both generating pseudo labels and for infer-
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ence, which we show in the experimental results produces
a noticeable improvement. To this end, we design a pose
ensemble module to simultaneously use teacher and student
model predictions. Fig. 2 shows an overview of the pose
ensemble with point filtering.

The point filtering has three steps. Unlike UDA-
COPE [15], we repeat these steps for both the student and
teacher: 1) We initially estimate TS using the Umeyama
algorithm θp within the region of object points D and es-
timated NOCS map NS . 2) We transform observed depth
to normalized object coordinate space D̂S by multiplying
(TS)−1 and D. 3) We compute each matching point dis-
tance between NS and D̂, removing outliers that exceed a
certain threshold ρ. This whole process of point-filtering is
then repeated using NT to estimate TT . This process is rep-
resented as follows, where NS,T is either NS or NT , and
similarly for TS,T :

TS,T = θp(D,NS,T ),

D̂S,T =
(
TS,T

)−1
D,

eS,Tj =

{
inlier if ∥D̂S ,T

j −N S ,T
j ∥ ≤ ρ, ∀j

outlier otherwise.

(5)

where j = 1, . . . , X , and X = |D| = |D̂|.
Our proposed pose ensemble aims to fuse two pre-

dictions (NS , NT ) to estimate the optimal pose. Al-
though this fusion could be conducted at the input level
before obtaining the T from θp, we found that our pro-
posal of fusing at the output level after getting T produces
slightly better results (see the ablation study, Sec. 4.5).
We first estimate each pose (TS , TT ) from each prediction
(NS , NT ) using θp. We then calculate the number of inliers
(inliersS , inliersT ) from each pose using Eq. (5) to eval-
uate the confidence of the pose. We assume that the higher
this confidence (i.e., the more inliers) is, the more accurate
the pose estimation will be. Therefore:

Tout =

{
TS if inliersS > inliersT ,

TT otherwise.
(6)

We found that this simple pose-aware ensemble method is
more effective for generating high-quality pseudo labels and
inference than other ensemble methods (Sec. 4.5).

Another crucial part of our method is a self-training loss.
The total loss that we use to update the student network
combines this self-training Ld loss and the pseudo label loss
Lpl:

Ltta = λdLd + λplLpl. (7)

The first term is self-training loss Ld, which helps learn the
distribution of the target domain and reduce the domain gap

through Tout, which is obtained from the pose ensemble and
observed D. This loss is given by:

Ld = LCE(N
S
e ,Enc(D̂e)), (8)

where NS
e is the inlier-only student NOCS map, D̂e is

the resulting inliner-only transformed depth point cloud in
NOCS space, and Enc(·) is the one-hot encoding to enable
cross-entropy loss.

The second term

Lpl = LCE(N
S
e , N

T
e ) (9)

is the pseudo label loss from UDA-COPE [15], where NT
e

is the inlier-only teacher NOCS map. Since NS = θS(xt),
and ŷ = θT (xt), Lpl in Eq. (9) is the same as the loss in
Eq. (3), except that here only inliers are considered.

4. Experiments
4.1. Dataset

We utilize two widely used category-level pose esti-
mation datasets as the source and target domain, respec-
tively. The source data is the Context-Aware MixEd Re-
Ality (CAMERA) dataset [43], generated by rendering and
compositing synthetic objects into real scenes while con-
sidering the context. CAMERA consists of 275K RGB-D
images as a training set with 1,085 object instances cho-
sen from six categories: bottle, bowl, camera, can, laptop
and mug. We use the REAL dataset [43] as the target do-
main. The target data consists of 4,300 real-world images
of seven scenes for training and 2,750 real-world images of
six scenes for evaluation. We refer to REAL evaluation set
as REAL275. Our TTA methods do not use the target train-
ing set (4,300 images with seven scenes) and only use the
evaluation set (2,750 images with six scenes, REAL275) for
test-time adaptation, e.g., TENT [42] process evaluation set
in a sequential, online manner. On the other hand, unsu-
pervised methods such as [5, 16, 29] use the target training
set for updating the models without any restrictions on how
much and how long they use the information.

4.2. Implementation Details

Object Segmentation. We use Mask R-CNN [8] to ob-
tain the object area in 2D image. We use the identical re-
sults of Mask R-CNN for a fair comparison with previous
methods [3, 17, 36] for semi-supervised and unsupervised
settings. For the semi-supervised setting, Mask R-CNN has
trained on the source, and target domain supervised man-
ner. For the unsupervised setting, Mask R-CNN is trained
on only the source domain. The detected area of the im-
age resizes to 192 x 192 image resolution as the teacher or
student model input.
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Table 2. Quantitative comparisons with state-of-the-art methods on the REAL275 dataset.

Method Supervised Unsupervised mAP (↑)

Source Target Target Online IoU50 IoU75 5° 2cm 5° 5cm 10° 2cm 10° 5 cm
Source (Supervised)

Metric Scale [14] 2D/3D 54.6 8.4 2.2 5.4 10.1 25.0
SPD [36] 2D/3D 50.5 17.0 11.5 12.1 33.0 37.9

Source (Supervised) & Target (Supervised)
NOCS [43] 2D/3D 2D/3D 47.2 9.4 7.2 10.0 13.8 25.2
SPD [36] 2D/3D 2D/3D 68.5 27.0 19.5 21.6 43.5 54.0
DualPoseNet [17] 2D/3D 2D/3D — 30.8 29.3 35.9 50.0 66.8
CR-Net [44] 2D/3D 2D/3D — 33.2 27.8 34.3 47.2 60.8
SGPA [3] 2D/3D 2D/3D — 37.1 35.9 39.6 61.3 70.7

Source (Supervised) & Target (Semi-Supervised)
SSC-6D [29] 2D/3D 2D 3D ✗ 73.0 — 16.8 19.6 44.1 54.5
RePoNet [5] 2D/3D 2D 3D ✗ 76.0 — 30.7 33.9 — 63.0
UDA-COPE [15] 2D/3D 2D 3D ✗ 75.5 34.4 30.5 34.9 57.0 66.1
Self-DPDN [16] 2D/3D 2D 3D ✗ 75.2 41.6 39.5 45.0 63.3 72.2
TTA-COPE (Ours) 2D/3D 2D 3D ✓ 78.7 43.5 33.3 38.1 64.3 75.1

Source (Supervised) & Target (Unsupervised)
Self-DPDN [16] 2D/3D 2D/3D ✗ 67.2 43.9 39.0 46.7 61.8 73.4
TTA-COPE (Ours) 2D/3D 2D/3D ✓ 69.1 39.7 30.2 35.9 61.7 73.2

Student and Teacher. The student and teacher models
have identical design in 2D and 3D branches from UDA-
COPE [15]. We utilize the PSPNet [53] with ResNet34 [9]
backbone for the 2D image feature extraction. For a 3D
branch, we use the MinkowskiNet [4] and utilize sparse
convolution operation with a 5cm voxel size. Our NOCS
representation uses the classification with 32 bins [43] in-
stead of direct regression. During the pretraining stage, we
train our model on the source data for 50 epochs using the
Adam optimizer by initializing the learning rate of 1e-4 with
a batch size of 32. The learning rate was reduced by a ratio
of 0.6 (at 15k iterations), 0.3 (at 30k iterations), 0.1 (at 45k
iterations), and 0.01 (at 60k iterations). During test-time
adaptation, our student model uses the same learning rate,
and the teacher smoothly updates using momentum update
with γ = 0.99. Given target data, we first update the model
every iteration and then estimate the pose. We set λCE = 1.0,
λC = 1e-6, λd = 1.0, λpl = 1.0 for our experiments. The point
filtering threshold ρ was set to 0.05 for all experiments.
Metrics. To evaluate the performance of 3D object detec-
tion and 6D pose estimation, we follow the previous pose
and size evaluation metric from Wang et al. [43]. We re-
port the mean average precision (mAP) at the 50% and 75%
intersection over union (IoU) thresholds for 3D object de-
tection. We also report mAP for 6D object pose evaluation
w.r.t. rotation and translation errors, where e.g. the 5° 5cm
metric describes the percentage of pose predictions where
the error is less than both 5° and 5cm and the same for
other thresholds. We recalculated all the metrics with the
improved code.

Table 3. Quantitative comparisons with TTA baselines for
category-level object pose estimation on the REAL275 dataset.

Method Unsupervised mAP (↑)
Target 3D Target 2D IoU75 5° 2cm 5° 5 cm

TENT [42] - Eq. (2) ✓ 33.7 25.9 29.1
PL [35] - Eqs. (3)–(4) ✓ 39.9 29.7 34.9
PL-F [15] - Eqs. (3)–(5) ✓ 41.1 31.4 36.3
TTA-COPE (Ours) ✓ 43.5 33.3 38.1
TENT [42] - Eq. (2) ✓ ✓ 32.3 26.8 31.2
PL [35] - Eqs. (3)–(4) ✓ ✓ 36.0 26.9 33.1
PL-F [15] - Eqs. (3)–(5) ✓ ✓ 36.5 28.0 34.0
TTA-COPE (Ours) ✓ ✓ 39.7 30.2 35.9

4.3. Comparison with state-of-the-art

Table 2 summarizes quantitative results on the REAL275
dataset under different settings: 1) supervised only on
source data, 2) supervised on source and target data, 3) su-
pervised on source data and semi-supervised on target data,
and 4) supervised on source data and unsupervised on tar-
get data. Not surprisingly, methods following 2) such as
SPD [36] perform better than setting 1) since they have the
benefit of accessing both source and target data. Recent
unsupervised domain adaptation (UDA) methods [15, 16]
show remarkable results compared to state-of-the-art su-
pervised methods without using target 3D labels (semi-
supervised setting). Our method shows state-of-the-art re-
sults in IoU metrics under the semi-supervised setting and
even outperforms the recent supervised methods SGPA [3]
by a large margin (6.4 mAP in IoU75). Our TTA-COPE uses
less time and data to train the target domain because of the
advantage of test-time adatpation but achieves comparable
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Table 4. Ablation study on variants of pose ensemble methods and self-training loss under the semi-supervised setting.

Method Pose Ensemble mAP (↑)

Input Output Inference Pseudo Label Ld (8) IoU50 IoU75 5° 2cm 5° 5 cm 10° 2cm 10° 5 cm
LB 76.2 37.5 29.1 34.6 62.1 73.2
(1) Argmax Match ✓ 71.1 27.5 29.6 34.3 60.7 71.7
(2) Softmax Avg. ✓ 78.7 40.4 32.1 37.3 64.0 74.7
(3) Softmax Max ✓ 77.6 40.9 31.6 36.4 63.4 74.3
(4) Softmax Max ✓ 77.5 41.1 32.1 37.1 64.3 74.6
(5) Inliers Max ✓ 77.6 41.2 32.8 37.6 64.4 74.9
(6) Inliers Max ✓ ✓ 78.2 42.9 32.4 37.8 64.1 74.7
(7) Argmax Match ✓ 78.3 40.7 31.7 36.4 63.2 73.9
(8) Softmax Avg. ✓ 78.6 41.1 31.5 36.2 63.6 74.5
(9) Softmax Max ✓ 78.1 41.2 31.9 36.5 63.5 74.4

(10) Softmax Max ✓ 78.6 41.2 31.8 36.3 63.5 74.4
(11) Inliers Max ✓ 78.2 41.3 31.6 36.2 63.6 74.3
(12) Inliers Max ✓ ✓ 78.7 43.0 32.6 37.0 63.5 73.9
Ours Inliers Max ✓ ✓ ✓ 78.7 43.5 33.3 38.1 64.6 75.1

results to the SOTA method, Self-DPDN [16]. Ours takes
about 31 minutes (Table 5) for TTA and is 58x faster than
the Self-DPDN, which takes about 30 hours for training in
the target domain, excluding inference time.

4.4. Comparison with TTA baselines

Table 3 summarizes results for the different design test-
time adaptation (TTA) baselines in semi-supervised and un-
supervised settings. TENT [42] has been designed for gen-
eral unsupervised settings, but it is not specially designed
for the object pose estimation task and naturally observes
overall poor performance compared to other TTA baselines.
Mean teacher with pseudo labels (PL) [35] performs better
than TENT [42] in semi-supervised and unsupervised set-
tings, and we believe that training the model using pseudo
labels with momentum update (Eqs. (3)–(4)) provides more
stable training signals by reducing the error accumulation
than entropy minimization (2). However, using pseudo
labels without filtering (PL) provides unreliable labels as
the ground truth, we found that pseudo label filtering (PL-
F) [15] performs better than PL, which indicates that noise
filtering (Eq. (5)) improves the results for the student as ex-
pected. Finally, our TTA-COPE achieves state-of-the-art
(SOTA) performance among all TTA baselines under both
semi-supervised and unsupervised settings.

4.5. Ablation Study

In this section, we conduct experiments to evaluate the
efficacy of the pose ensemble and self-training loss under a
semi-supervised setting.
Input/Output-Level Pose Ensemble. As mentioned in the
Sec. 3.3, we compare the different pose ensemble methods
given predictions of teacher and student models (NT , NS)
and answer the following question: Which ensemble is the
most effective for test-time adaptation? We categorize two
ensemble techniques:

1) Input-level ensemble that fuses two NOCS map predic-
tions (NT , NS) and makes an accurate single NOCS map
N to estimate poses using the Umeyama algorithm θp. For
the input-level ensemble that fuses two predictions (NT ,
NS) into one prediction N , we compare three strategies:
Argmax Match, Softmax Average, and Softmax Max oper-
ations [12, 33].
2) We ensemble output-level predictions (NT , NS) to es-
timate each pose (TT , TS) and choose the best pose pre-
dictions under specific criteria. Unlike the input ensemble,
only the Softmax Max operation is valid for the output-level
ensemble due to the nonlinearity of poses.

Table 4 summarizes our ensemble ablation study re-
sults. Table 4-(1-3) shows that the Softmax Avg. and Soft-
max Max perform better than the Argmax Match operation
among input-level pose ensembles. If we compare the same
operation (Softmax Max) in the input-level, Table 4-(3), and
output-level, Table 4-(4), the output-level ensemble shows
slightly better performance since the output-level operation
is directly related to the pose results. Our proposed pose
ensemble, Table 4-(5), considers pose-aware confidence by
choosing a higher number of inlier points and achieves the
best performance in all pose ensembles in Table 4-(1-5).
Use of Pose Ensemble. Our pose ensemble can be used for
inference Table 4-(1-6, Ours) as well as generating pseudo
labels Table 4-(7-12, Ours). The results show that our pose
ensemble is helpful for both cases. In particular, applying
our ensemble to inferences Table 4-(5) has been shown to
be more effective than application to generating pseudo la-
bels Table 4-(11) in pose metric. We also observe that our
pose ensemble used for inference or pseudo labels improves
overall metrics compared to the lower bound (LB) that is
only trained on source data without test-time adaptation.
Effect of self-training loss. The results of Table 4-(6) and
Table 4-(12) show the effect of self-training loss Eq. (8).
It yields an improvement of more than 1.7 mAP compared
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Figure 3. Qualitative comparison with the lower bound (LB) and our TTA-COPE under the semi-supervised setting.

Table 5. Ablation study on different updating intervals.
Method TTA Time IoU75 5° 2cm 5° 5 cm
Interval=1 (Ours) 31 min 43.5 33.3 38.1
Interval=10 16 min 41.8 32.7 37.7
Interval=20 15 min 41.1 31.9 37.1

to without self-training loss results of Table 4-(5, 11) in the
IoU75 metric. This indicates that the self-learning loss helps
to learn the distribution of the target domain and reduces
the domain shift by comparing the predicted NOCS map
against the observed point cloud in the target domain. The
result in the last column is our proposed model for test-time
adaptation, Fig. 3 shows qualitative results against the lower
bound method.
Updating Interval. TTA is inevitably slower than simple
inference since additional training is required. However,
reducing the update interval enables faster TTA time than
TTA baselines because of reduced training time. Table 5
shows the difference in TTA speed and performance accord-
ing to the updating interval. Specifically, the interval of ev-
ery 10 frames improves the speed of TTA roughly two-fold
compared to Interval 1 (Ours), with a marginal performance
drop. We also increase intervals to 20, but it does not show
as much improvement as before since most of the bottleneck
arises from inference time.

5. Conclusion
We have proposed TTA-COPE, a test-time adaptation

method for category-level object pose estimation that ad-

dresses the source-to-target domain shift without accessing
source data at test time and without labeled target data.
Specifically, we designed a pose ensemble method with
self-training for test-time adaptation that simultaneously
uses the teacher-student model to generate robust pseudo
labels and estimate accurate poses for inference. We ex-
plore limitations of several test-time adaptation baselines
and show that the proposed method achieves state-of-the-art
performance. We demonstrate the benefits of our proposed
pose ensemble and self-training loss with extensive studies
in both semi-supervised and unsupervised settings.

To the best of our knowledge, TTA-COPE is the first ap-
proach that tries to solve test-time adaptation for category-
level object pose estimation. Since our method currently
focuses on generating 6D pose labels, it does not affect 2D
labels and the segmentation model. In future work, when
jointly considering 2D label and Mask R-CNN, greater
performance improvement and stable test-time adaptation
would be possible. Also, our pose estimation relies on non-
differentiable pose estimation, and as such we could benefit
from a differentiable pose estimation method [30].
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[13] Yann Labbé, Lucas Manuelli, Arsalan Mousavian, Stephen
Tyree, Stan Birchfield, Jonathan Tremblay, Justin Carpentier,

Mathieu Aubry, Dieter Fox, and Josef Sivic. MegaPose: 6d
pose estimation of novel objects via render & compare. In
6th Annual Conference on Robot Learning (CoRL), 2022. 1

[14] Taeyeop Lee, Byeong-Uk Lee, Myungchul Kim, and In So
Kweon. Category-level metric scale object shape and pose
estimation. IEEE Robotics and Automation Letters (RA-L),
6(4):8575–8582, 2021. 2, 6

[15] Taeyeop Lee, Byeong-Uk Lee, Inkyu Shin, Jaesung Choe,
Ukcheol Shin, In So Kweon, and Kuk-Jin Yoon. UDA-
COPE: Unsupervised domain adaptation for category-level
object pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14891–14900, 2022. 2, 3, 4, 5, 6, 7

[16] Jiehong Lin, Zewei Wei, Changxing Ding, and Kui Jia.
Category-level 6d object pose and size estimation using self-
supervised deep prior deformation networks. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 19–34, 2022. 2, 3, 4, 5, 6, 7

[17] Jiehong Lin, Zewei Wei, Zhihao Li, Songcen Xu, Kui Jia,
and Yuanqing Li. DualPoseNet: Category-level 6D object
pose and size estimation using dual pose network with re-
fined learning of pose consistency. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3560–3569, 2021. 1, 2, 3, 5, 6

[18] Yunzhi Lin, Jonathan Tremblay, Stephen Tyree, Patricio A.
Vela, and Stan Birchfield. Single-stage keypoint-based
category-level object pose estimation from an rgb image. In
IEEE International Conference on Robotics and Automation
(ICRA). ICRA, 2022. 1

[19] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 7708–7717, 2019.
3

[20] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. DIST: Rendering deep im-
plicit signed distance function with differentiable sphere
tracing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
2019–2028, 2020. 3

[21] Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain
adaptation for semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1215–1224, 2021. 2, 3

[22] Massimiliano Mancini, Hakan Karaoguz, Elisa Ricci, Patric
Jensfelt, and Barbara Caputo. Kitting in the wild through on-
line domain adaptation. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 1103–
1109. IEEE, 2018. 3

[23] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler.
Pose estimation for augmented reality: A hands-on survey.
IEEE Transactions on Visualization and Computer Graphics
(TVCG), 22(12):2633–2651, 2015. 1

[24] Eitan Marder-Eppstein. Project Tango. In ACM SIGGRAPH
Real-Time Live!, page 25, 2016. 1, 3

[25] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-
DoF GraspNet: Variational grasp generation for object ma-
nipulation. In Proceedings of the IEEE/CVF International

21293



Conference on Computer Vision (ICCV), pages 2901–2910,
2019. 1, 3

[26] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient test-
time model adaptation without forgetting. In International
Conference on Machine Learning (ICML), pages 16888–
16905, 2022. 3

[27] Kiru Park, Timothy Patten, and Markus Vincze. Pix2Pose:
Pixel-wise coordinate regression of objects for 6D pose es-
timation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7668–7677,
2019. 1

[28] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and
Hujun Bao. PVNet: Pixel-wise voting network for 6DoF
pose estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 4561–4570, 2019. 1

[29] Wanli Peng, Jianhang Yan, Hongtao Wen, and Yi Sun. Self-
supervised category-level 6D object pose estimation with
deep implicit shape representation. In Proceedings of the
Association for the Advancement of Artificial Intelligence
(AAAI), volume 36, pages 2082–2090, 2022. 2, 3, 5, 6

[30] Luis Pineda, Taosha Fan, Maurizio Monge, Shobha
Venkataraman, Paloma Sodhi, Ricky T. Q. Chen, Joseph
Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, Jing
Dong, Brandon Amos, and Mustafa Mukadam. Theseus: A
library for differentiable nonlinear optimization. Advances
in Neural Information Processing Systems, 2022. 8

[31] Mihir Prabhudesai, Sujoy Paul, Sjoerd van Steenkiste,
Mehdi SM Sajjadi, Anirudh Goyal, Deepak Pathak, Katerina
Fragkiadaki, Gaurav Aggarwal, and Thomas Kipf. Test-time
adaptation with slot-centric models. 2022. 3

[32] Martin Runz, Maud Buffier, and Lourdes Agapito. Mask-
Fusion: Real-time recognition, tracking and reconstruction
of multiple moving objects. In IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR), pages 10–
20, 2018. 1

[33] Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel
Schulter, Buyu Liu, Sparsh Garg, In So Kweon, and Kuk-
Jin Yoon. MM-TTA: Multi-modal test-time adaptation for
3D semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 16928–16937, 2022. 3, 7

[34] Junha Song, Jungsoo Lee, In So Kweon, and Sungha
Choi. Ecotta: Memory-efficient continual test-time adap-
tation via self-distilled regularization. arXiv preprint
arXiv:2303.01904, 2023. 3

[35] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. Advances in Neural
Information Processing Systems (NeurIPS), 30, 2017. 2, 4,
6, 7

[36] Meng Tian, Marcelo H Ang Jr, and Gim Hee Lee. Shape
prior deformation for categorical 6D object pose and size
estimation. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020. 1, 2, 3, 5, 6

[37] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark
Brophy, Varun Jampani, Cem Anil, Thang To, Eric Cam-

eracci, Shaad Boochoon, and Stan Birchfield. Training deep
networks with synthetic data: Bridging the reality gap by do-
main randomization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 969–977, 2018. 1

[38] Jonathan Tremblay, Thang To, Balakumar Sundaralingam,
Yu Xiang, Dieter Fox, and Stan Birchfield. Deep object pose
estimation for semantic robotic grasping of household ob-
jects. In Conference on Robot Learning (CoRL), 2018. 1

[39] Stephen Tyree, Jonathan Tremblay, Thang To, Jia Cheng,
Terry Mosier, Jeffrey Smith, and Stan Birchfield. 6-DoF
pose estimation of household objects for robotic manipula-
tion: An accessible dataset and benchmark. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2022. 1

[40] Shinji Umeyama. Least-squares estimation of transforma-
tion parameters between two point patterns. IEEE Transac-
tions on Pattern Analysis & Machine Intelligence (TPAMI),
13(04):376–380, 1991. 2

[41] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martı́n-Martı́n,
Cewu Lu, Li Fei-Fei, and Silvio Savarese. DenseFusion: 6D
object pose estimation by iterative dense fusion. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3343–3352, 2019. 1

[42] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations (ICLR), 2021. 2, 3, 4, 5, 6, 7

[43] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J Guibas. Normalized object
coordinate space for category-level 6D object pose and size
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2642–2651, 2019. 1, 2, 3, 5, 6

[44] Jiaze Wang, Kai Chen, and Qi Dou. Category-level 6D object
pose estimation via cascaded relation and recurrent recon-
struction networks. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021. 1, 2, 3, 6

[45] Pengyuan Wang, HyunJun Jung, Yitong Li, Siyuan Shen,
Rahul Parthasarathy Srikanth, Lorenzo Garattoni, Sven
Meier, Nassir Navab, and Benjamin Busam. Phocal: A
multi-modal dataset for category-level object pose estima-
tion with photometrically challenging objects. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 21222–21231, 2022. 1

[46] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7201–7211, 2022. 2, 3

[47] Bowen Wen and Kostas Bekris. BundleTrack: 6D pose track-
ing for novel objects without instance or category-level 3D
models. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 8067–8074, 2021.
1

[48] Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan
Schaal. You only demonstrate once: Category-level manip-
ulation from single visual demonstration. Robotics: Science
and Systems (RSS), 2022. 1

21294



[49] Bowen Wen, Chaitanya Mitash, Baozhang Ren, and Kostas E
Bekris. se (3)-tracknet: Data-driven 6d pose tracking by cal-
ibrating image residuals in synthetic domains. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 10367–10373. IEEE, 2020. 1

[50] Bowen Wen, Chaitanya Mitash, Sruthi Soorian, Andrew
Kimmel, Avishai Sintov, and Kostas E Bekris. Robust,
occlusion-aware pose estimation for objects grasped by
adaptive hands. In IEEE International Conference on
Robotics and Automation (ICRA), pages 6210–6217. IEEE,
2020. 1

[51] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. PoseCNN: A convolutional neural network for
6D object pose estimation in cluttered scenes. Robotics: Sci-
ence and Systems (RSS), 2018. 1

[52] He Yisheng, Wang Yao, Fan Haoqiang, Chen Qifeng, and
Sun Jian. Fs6d: Few-shot 6d pose estimation of novel ob-
jects. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 1

[53] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2881–2890, 2017. 6

21295


	. Introduction
	. Related Works
	. Supervised Methods
	. Unsupervised Methods
	. Test-time Adaptation Methods

	. TTA-COPE
	. Pretraining with Source Data
	. Test-time Adaptation with Target Data
	. Pose Ensemble

	. Experiments
	. Dataset
	. Implementation Details
	. Comparison with state-of-the-art
	. Comparison with TTA baselines
	. Ablation Study

	. Conclusion

