
RGBD2: Generative Scene Synthesis via Incremental
View Inpainting using RGBD Diffusion Models

Jiabao Lei1, Jiapeng Tang2, Kui Jia1,3,†
1South China University of Technology

2Technical University of Munich, 3Peng Cheng Laboratory

Abstract

We address the challenge of recovering an underlying
scene geometry and colors from a sparse set of RGBD
view observations. In this work, we present a new solution
termed RGBD2 that sequentially generates novel RGBD
views along a camera trajectory, and the scene geometry
is simply the fusion result of these views. More specifically,
we maintain an intermediate surface mesh used for render-
ing new RGBD views, which subsequently becomes com-
plete by an inpainting network; each rendered RGBD view
is later back-projected as a partial surface and is supple-
mented into the intermediate mesh. The use of intermediate
mesh and camera projection helps solve the tough problem
of multi-view inconsistency. We practically implement the
RGBD inpainting network as a versatile RGBD diffusion
model, which is previously used for 2D generative model-
ing; we make a modification to its reverse diffusion process
to enable our use. We evaluate our approach on the task
of 3D scene synthesis from sparse RGBD inputs; extensive
experiments on the ScanNet dataset demonstrate the supe-
riority of our approach over existing ones. Project page:
https://jblei.site/proj/rgbd-diffusion.

1. Introduction
Scene synthesis is an essential requirement for many

practical applications. The resulting scene representation

can be readily utilized in diverse fields, such as virtual re-

ality, augmented reality, computer graphics, and game de-

velopment. Nevertheless, conventional approaches to scene

synthesis usually involve reconstructing scenes (e.g., indoor

scenes with varying sizes) by fitting given observations,

such as multi-view images or point clouds. The increas-

ing prevalence of RGB/RGBD scanning devices has estab-

lished multi-view data as a favored input modality, driving

and promoting technical advancements in the realm of scene

reconstruction from multi-view images.

Neural Radiance Fields (NeRFs) [42] have demonstrated
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Figure 1. Illustration of Our Generative Scene Synthesis. We

incrementally reconstruct the scene geometry by inpainting RGBD

views as the camera moves in the scene.

potential in this regard, yet they are not exempt from limi-

tations. NeRFs are designed to reconstruct complete scenes

by fitting multi-view images, and they cannot generate or

infer missing parts when the input is inevitably incomplete

or missing. While recently some studies [3,5,8,56,63] have

attempted to equip NeRFs with generative and extrapola-

tion capabilities, this functionality relies on a comparatively

short representation with limited elements (e.g. typically,

the length of a global latent code is much shorter than that of

an image: (F = 512) � (H×W = 128×128 = 16, 384))
that significantly constrains their capacity to accurately cap-

ture fine-grained details in the observed data. Consequently,

the effectiveness of these methods has only been established

for certain categories of canonical objects, such as faces or

cars [8, 63], or relatively small toy scenes [5].

We introduce a novel task of generative scene synthesis

from sparse RGBD views, which involves learning across

multiple scenes to later enable scene synthesis from a sparse

set of multi-view RGBD images. This task presents a chal-

lenging setting wherein a desired solution should simulta-

neously (1) preserve observed regions, hallucinate missing

parts of the scene, (2) eliminate additional computational

costs during inference for each individual test scene, (3) en-
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sure exact 3D consistency, and (4) maintain scalability to

scenes with unfixed scales.

We will elaborate on them in detail as follows. Firstly, to

maximize the preservation of intricate details while simulta-

neously hallucinating potentially absent parts that may be-

come more pronounced when views are exceedingly sparse,

we perform straightforward reconstruction whose details

come from images that can describe fine structures using

a maximum of H × W elements (i.e. an image size) in a

view completion manner. This is particularly compatible

with diffusion models that operate at full image resolution

with an inpainting mechanism. We also found that RGBD

diffusion models greatly simplify the training complexity

of a completion model, thanks to their versatile generative

ability to inpaint missing RGBD pixels while preserving

the integrity of known regions through a convenient train-

ing process solely operated on complete RGBD data. Sec-

ondly, our method employs back-projection that requires

no optimization, thus eliminating the necessity for test-time

training for each individual scene, ultimately leading to a

significant enhancement in test-time efficiency. Thirdly, to

ensure consistency among multi-view images, an interme-

diate mesh representation is utilized as a means of bridging

the 2D domain (i.e. multi-view RGBD images) with the 3D

domain (i.e. the 3D intermediate mesh) through the aid of

camera projection. Fourthly, to enable our method to handle

scenes of indeterminate sizes, we utilize images with freely

designated poses as the input representation. Such manner

naturally ensures SE(3) equivariance, and thus offers scala-

bility due to the ease with which the range of the generated

content can be controlled by simply specifying their camera

extrinsic matrices.

Our proposal involves generating multi-view consistent

RGBD views along a predetermined camera trajectory, us-

ing an intermediate mesh to render novel RGBD images

that are subsequently inpainted using a diffusion model,

and transforming each RGBD view into a 3D partial mesh

via back-projection, and finally merging it with the inter-

mediate scene mesh to produce the final output. Specifi-

cally, our proposed approach initiates by ingesting multiple

posed RGBD images as input and utilizing back-projection

to construct an intermediate scene mesh. This mesh encom-

passes color attributes that facilitate the rendering of RGBD

images from the representation under arbitrarily specified

camera viewpoints. Once a camera pose is selected from

the test-time rendering trajectory, the intermediate mesh is

rendered to generate a new RGBD image for this pose. No-

tably, the test-time view typically exhibits only slight over-

lap with the known cameras, leading to naturally partially

rendered RGBD images. To fill the gaps in the incom-

plete view, we employ an inpainting network implemented

as an RGBD diffusion model with minor modifications to

its reverse sampling process. The resulting inpainted out-

put is then back-projected into 3D space, forming a partial

mesh that complements the entire intermediate scene mesh.

We iterate these steps until all test-time camera viewpoints

are covered, and the intermediate scene mesh gradually be-

comes complete during this process. The final output of our

pipeline is the mesh outcome acquired from the last step.

Extensive experiments on ScanNet [12] dataset demon-

strate the superiority of our approach over existing solutions

on the task of scene synthesis from sparse RGBD inputs.

2. Related Works
In this section, we provide a brief review of the literature

related to diffusion models, 3D representations and genera-

tive manners, scene synthesis, and view synthesis.

Diffusion Models. In recent years, the field of 2D computer

vision has experienced a surge of interest in diffusion-based

generative models [20,65,67]. These models have prompted

the development of image generative modeling approaches,

such as GLIDE [45], unCLIP [53], Imagen [61], and Latent

Diffusion Models [57], as well as the invention of sampling

schedulers [20, 26, 36, 66] and guiding methods [15, 22].

Furthermore, these models have been applied to a broad

range of image processing tasks, including image inpaint-

ing [37], image translation [4, 57, 60, 82], video genera-

tion [23, 25, 76], super-resolution [21, 32, 62], and image

editing [2, 27, 40]. More recently, some researchers have

adapted these techniques from 2D to the 3D domain, as

demonstrated by methods such as [39, 51, 88, 92]. Our ap-

proach harnesses such versatility by adopting an iterative

denoising strategy like [37], and utilizing a masked inpaint-

ing technique that operates on the projected RGBD views

to synthesize image content.

3D Representations and Generative Manners. A va-

riety of representations, including voxels [81, 85], point

clouds [1, 39, 68, 87, 92], meshes [17, 44, 70, 71, 79], im-

plicit surfaces [10, 30, 31, 41, 48, 72–74, 88, 91], multi-view

images [11,19,34,35,86], and neural radiance fields [3,8,9,

13, 42, 43, 49, 56, 63, 80], have been proposed, each with its

own unique advantages over the others. This has also moti-

vated researchers to combine them with distinct generative

approaches, such as VAEs [28], GANs [16], normalizing

flows [54], auto-regressive models [24, 75], and the latest

diffusion models [20], resulting in an extensive range of ap-

plications [1,8,39,41,44,48,63,85,87,92]. However, most

existing methods have limitations in their representation ca-

pability, such as cubically scaled-up memory consumption,

or a fixed number of points, which makes them difficult

to apply to scenes of uncertain scales, and poor equivari-

ance, which only allows them to handle canonically-posed

objects. In this paper, we address these issues by focus-

ing on the generation of multi-view RGBD images that can

capture intricate structures using H×W pixels created by a

diffusion model. This approach reduces memory complex-

ity from O(HWD) to O(HW ) and increases expressive
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ability from O(F ) to O(HW ).
Scene Synthesis. In this area, there are two primary re-

search directions. The first pertains to learning configura-

tions, including graphs [33,38,77,90], top-down views [55,

78], and scene composition [50, 83]. The second line of

research involves direct learning from the appearance of a

scene [13, 42, 43, 49, 80], thereby obviating the necessity

for specialized synthesized datasets required by the afore-

mentioned methods. Our approach relies solely on RGBD

scans, which are readily available from scanning devices,

reducing the need for manual annotation. It accurately re-

constructs a clean geometry based on the sparse-view in-

put and can effectively hallucinate missing parts, especially

when the input views are highly sparse.

View Synthesis. The arrival of NeRF [42] has significantly

advanced the field of view synthesis. While a considerable

amount of research has been dedicated to the view synthe-

sis of object-level instances [7, 18, 47, 64], only a few stud-

ies have focused on simple scenes [5, 14, 58]. Additionally,

some studies have explored techniques for improving per-

formance using sparse inputs [46,56]. In this paper, we aim

to recover scene-level geometry from sparse RGBD images

without relying on NeRFs.

3. Preliminary
To make our paper self-contained, we provide some pre-

liminary knowledge about DDPM [20] and DDIM [66].

Definition. Given an image x0 ∼ q(x0), the forward diffu-

sion process is a Markov chain that sequentially produces

noisy images x1, ...,xT scheduled by a set of constants

{βt ∈ (0, 1)}Tt=1 where T is the total number of iterations

and β1 < β2 < ... < βT :

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI)

A nice property of using i.i.d. Gaussian distribution is that

we can sample the noisy image xt easily based on x0 in a

closed form without computing all the intermediates:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (1)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. The reverse
diffusion process is another Markov chain starting from

xT ∼ N (xT ; 0, I) parameterized by a trainable θ:

pθ(xt−1 | xt) = N (xt−1;μθ(xt, t),Σθ(xt, t)) (2)

where Σθ(xt, t) = σ2
t I = η 1−ᾱt−1

1−ᾱt
βtI [66] is independent

of θ and xt, and μθ(xt, t) can be derived from a noise esti-

mator εθ(xt, t) via:

μθ(xt,xo) =
1√
αt

(
xt − 1− αt√

1− ᾱt
εθ(xt, t)

)

We practically implement the noise estimator εθ(xt, t) as a

UNet [57, 59] parameterized by θ. However, in our case, it

is also conditioned on x̂0 which will be detailed in Sec. 4.2.

Training. To train the noise estimator εθ(xt, t), we adopt

the simplified training objective [20]:

min
θ

Et,εt,x0

[‖εθ(√ᾱtx0 +
√
1− ᾱtεt, t)− εt‖2

]

where the time step t ∼ U{1, T} is uniformly sampled,

εt ∼ N (0, I) is a standard Gaussian noise, and the image

x0 ∼ q(x0) is randomly drawn from the data distribution.

Inference. We employ a strided DDIM [66] scheduler to

progressively recover the clean image from xT ∼ N (0, I)
to x0 with a subset of S (usually S � T ) steps {τi}Si=1:

xτi−1
← √

ᾱτi−1

(
xτi −

√
1− ᾱτiεθ(xτi , τi)√

ᾱτi

)
+

√
1− ᾱτi−1

− σ2
τi · εθ(xτi , τi) + σ2

τiετi

where ετi ∼ N (0, I) is a standard Gaussian noise. It is in-

teresting that setting η = 0 implies ∀i, στi ≡ 0, making the

inference process deterministic. Nevertheless, diversity can

still be achieved by choosing a different xT from N (0, I).

4. Approach
In this work, we introduce a new scene synthesis ap-

proach that relies on the sequential generation of RGBD

frames using a trained RGBD diffusion model conditioned

on views rendered under a test-time camera trajectory from

a sparse set of input RGBD images. Our approach lever-

ages the generative ability of diffusion models to synthe-

size missing visual appearance (color) and geometry details

(depth) while rigorously preserving visible regions by im-

age inpainting. Such an incremental view inpainting pro-

cess is interleaved with the back-projection, mesh fusion,

and mesh rendering procedures to achieve global 3D con-

sistency among distinct temporal frames.

This section is organized as follow. In Sec. 4.1, we will

start by introducing the overall framework of repeatedly

converting the RGBD image into a partial 3D mesh and

performing RGBD inpainting for rendered views in a pro-

gressive manner. Later in Sec. 4.2, we will elaborate more

on the details of the conditional RGBD diffusion model for

rendered view inpainting based on a trained DDPM [20].

4.1. Incremental View Inpainting Fashion
As shown in Figure 2, given a sparse set of N RGBD

views {Ii}Ni=1 with their associated camera intrinsic K
and extrinsic {Ri}Ni=1 matrices, and additionally a cam-

era trajectory composed of M viewpoints {Tj}Mj=1 with

the same intrinsic matrix, the essence of our method is to

progressively synthesize RGBD images Oj at each spec-

ified novel view Tj . The generated novel-view frames

should be consistent with {Ii}Ni=1 in both geometry and

appearance. The final output should be a consistent 3D
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Figure 2. 3D Scene Synthesis via Incremental View Inpainting. Given a sparse set of RGBD images {Ii}Ni=1 with camera intrinsic

K and extrinsic {Ri}Ni=1 matrices, our goal is to generate a coherent 3D scene mesh S via predicting RGBD frames {Oj}Mj=1 along a

novel-view trajectory {Tj}Mj=1. To achieve this goal, we firstly fuse the inputs of {Ii}Ni=1 into an initial mesh S1, and then render it to

obtain an incomplete image Ô1 that is later inpainted to obtain O1 using a RGBD diffusion model. After that, O1 is back-projected and

integrated with S1 to produce a more complete scene, S2. By iteratively repeating this process, we can progressively obtain S2, ...,SM .

Finaly, the fused result SM+1 is the eventual desired output S. Gray dashed lines “ ” denote omitted and unvisualized steps.

colored mesh S converted from the back-projection result(∪M
j=1φ2→3(Oj)

) ∪ (∪N
i=1φ2→3(Ii)

)
. Please also refer to

Algorithm 1 for a detailed description of the procedure.

Algorithm 1 Incremental RGBD View Inpainting

Require: RGBD images {Ii}Ni=1 with camera extrinsics

{Ri}Ni=1, a novel trajectory of M extrinsics {Tj}Mj=1.

S1 ← ∪N
i=1φ2→3(Ii)

for j = 1 to M do
Ôj ← φ3→2(Tj) 
 novel-view rendering

Oj ← f(Ôj) 
 RGBD inpainting

Sj+1 ← Sj ∪ φ2→3(Oj) 
 mesh fusion

end for
return SM+1

Rendering and Back-projection.1 The operator φ3→2 is

implemented as mesh rasterization, which allows for the

rendering of a partial RGBD image Ôj from a mesh Sj .

This approach offers the advantage of producing a clean

visibility mask mj , which is not possible with NeRFs [42].

The back-projection operator φ2→3 is responsible for the

conversion from a depth map into a point cloud, where the

connectivity between points is inherited from the connec-

tivity of the 2D pixel grid. Furthermore, mesh faces that are

either in close proximity to the viewpoint or exhibit slender

characteristics are filtered out to ensure accuracy.

Challenges and Solutions. To circumvent the limitations

1 To simplify notations, we disregard certain arguments in operators

φ3→2 and φ2→3, such as the camera intrinsic matrix K.

posed by potential 3D inconsistency in both geometry and

appearance, as well as the challenge of solely handling spe-

cific canonically-posed scenes, we propose several strate-

gies to address these issues. Firstly, our method for synthe-

sizing novel views combines rendering (mesh rasterization)

and inpainting techniques, and interleaves the view synthe-

sis process with online RGBD fusion via back-projection

and mesh combination. The use of perspective camera pro-

jection ensures strict adherence to 3D constraints, resulting

in visually consistent and accurate synthesized views. In

concrete terms, we begin by rendering the mesh Sj under

view Tj using a rendering operation φ3→2(Tj). This pro-

cess yields an incomplete RGBD image Ôj with missing

regions, which is subsequently inpainted using a diffusion

model described in detail in Sec. 4.2, resulting in a complete

image Oj . Once image Oj has been generated for view Tj ,

it can be fused into a 3D mesh via Sj+1 = φ2→3(Oj) ∪ Sj

using a back-projection operator φ2→3. Secondly, our so-

lution reduces the learning difficulty and can handle non-

canonical scenes by decomposing the 3D scene as a Markov

chain of temporal RGBD images rendered from arbitrar-

ily specified novel viewpoints. The applicability of han-

dling scenes with arbitrary scaling, movement, and posing

is attributed to the utilization of two SE(3) equivariant op-

erators, namely φ3→2 and φ2→3, as well as the indepen-

dence of absolute coordinates. Moreover, the presence of

redundant information in adjacent frames, combined with

our suggested decomposition rule, facilitates the minimiza-

tion of learning complexity in an auto-regressive manner.
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In accordance with the Markov chain decomposition prin-

ciple, the distribution of the scene can be expressed as the

joint distribution of view frames:

p(S) =
∏
j

p(Oj | {Os}j−1
s=1, {Is}Ns=1)

where the prediction of Oj is based on the fusion result of

all the previously known frames {Os}j−1
s=1 ∪ {Is}Ns=1.

4.2. RGBD Diffusion for Rendered View Inpainting

In this section, we describe the implementation details

of the way to employ diffusion models to inpaint the miss-

ing regions of the RGBD image Ôj with a binary mask mj

obtained by rendering visibility, where the value of 1 is as-

signed to the corresponding ray that intersects with the ge-

ometry surface, while 0 is assigned to all other cases, both

of which are rendered by projecting Sj under a novel view-

point Tj . It is noteworthy that only those pixels located

where mj = 0 in Ôj are considered invalid, and therefore,

are entirely filled with zeros (i.e., Ôj �mj ≡ Ôj).
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Figure 3. RGBD Diffusion for Rendered View Inpainting. In

each iteration, we utilize a forward diffusion step to sample the

visible region xvis
t (top) from the incomplete input x̂0, while em-

ploying a denoising diffusion step to obtain the complementary

content xinvis
t (bottom) from the output xt+1 generated in the pre-

vious iteration t+ 1.

A Single Reverse Diffusion Step for Tj at Time t.2 We

initialize the clean diffusion sample x̂0 at time t = 0 as Ôj ,

and those noisy samples at time 0 < t ≤ T are denoted

as xt. To ensure 3D consistency, we seek to predict the in-

visible region xinvis
0 while preserving the visible portion xvis

0

unaltered. We follow [37] and modify the standard denois-

ing process to meet our needs. At each reverse diffusion

step t, we use the forward diffusion process defined by the

Eqn. (1) to sample a visible region xvis
t masked by m, and

the reverse diffusion step defined by Eqn. (2) to sample a

full part from xt+1 which is later masked by 1−m to form

an invisible region xinvis
t .

xvis
t =

√
ᾱtx̂0 + (1− ᾱt)ε

vis
t �m

2 For notational simplicity, we ignore the novel camera subscript j in

the following part of this Sec. 4.2 since all notations we consider here are

derived from the same camera Tj .

xinvis
t =

(
μθ (xt, x̂t, t) + σtε

invis
t

)� (1−m)

where εvis
t , εinvis

t ∼ N (0, I). The noisy image xt can be

simply calculated as the sum of xvis
t and xinvis

t , as expressed

by xt = xvis
t + xinvis

t .

Diffusion Network. We implement the diffusion model

as a UNet [57, 59] conditioned on the observed region x0.

We input the concatenation of xt and x̂0 into the network.

Classifier-free Guidance. To further enhance the control-

lability of the generation process, we introduce a classifier-

free guidance [22] mechanism. Specifically, we train a

unified network εθ comprising of an unconditional model

εθ(xt, c, t), where the shared variable c is incorporated, and

a conditional model εθ(xt, x̂0, t). In this way, the predicted

noise ε̃θ can be recomputed as follows:

ε̃θ(xt, x̂0, t) = εθ(xt, c, t)+β×[εθ(xt, x̂0, t)−εθ(xt, c, t)]

where β ≥ 0 is the guidance factor, being responsible for

the trade-off between sampling quality and diversity [22].

5. Experiments
Dataset. We conducted experiments on the ScanNet-

V2 [12] dataset, which was pre-processed by removing re-

dundant frames [69]. For training, we used the first 1, 293
scenes, while for metric evaluation, we randomly selected

18 scenes with over 50 views each from the remaining

as our test set. We also evaluated under various sparsity

settings (5%, 10%, 20%, and 50%) by uniformly down-

sampling views.

Comparison. We compared against the neural graphics

primitive (NGP) [43], which has demonstrated impressive

performance in scene modeling with high efficiency. To

enhance its geometric quality, we incorporated a depth

supervision (DS) loss [13] to build an improved variant

called DS-NGP [13, 43]. We also compare against Neu-

ral RGBD (N-RGBD) [3], which recovers implicit surfaces

from RGBD scans, and Dense Depth Prior (DDP) [56],

which learns a NeRF utilizing view completion from sparse

RGBD views.

Evaluation Metrics. For assessing the visual quality of

RGB images, we adopted the peak signal-to-noise ratio

(PSNR), structural similarity index measure (SSIM), and

learned perceptual image patch similarity (LPIPS) [89] that

is based on the AlexNet [29] backbone. To evaluate the

geometry quality, we computed the mean squared error

(MSE) on depth maps, and sample 10, 000 points uniformly

on meshes constructed via back-projection to evaluate the

chamfer distance (CD) and completeness (Comp.) with a

threshold of 0.1m. We also measured the computational

time required to execute different stages of the method.

For LPIPS, MSE, and CD, the lower the better; for PSNR,

SSIM, and Comp., the higher the better. All reported met-

rics are averaged across the test scenes.
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Implementation Details. Our model has 157M parameters

and was trained for three days on 7 NVIDIA 3090-Ti GPUs,

using a batch size of 280. The learning rate was initialized

at 1 × 10−4 and reduced to 1 × 10−6 over a period of 300

epochs, utilizing a cosine annealing strategy. The image

resolution is 128× 128 with a rendering chunk size of 7.

5.1. Ablation Studies
We conducted ablation studies to validate the effective-

ness of each component in our proposal. Results concluded

here are nontrivial and a bit nuanced.

Effects of Different Ingredients. We examined the antic-

ipated efficacy of the proposed conditioning and inpainting

components in our approach. Table 2 displays the numerical

results, and Figure 5-(a-c) presents the visualizations. The

combined use of conditioning and inpainting yields supe-

rior visual performance compared to the ground truth. Nev-

ertheless, when the model is conditioned, the impact of in-

painting on geometric quality becomes less crucial. More-

over, as more views are provided, the stochastic genera-

tion process becomes increasingly deterministic, resulting

in structures that more closely resemble the ground truth.

Effects of Guidance Scale. The guidance factor β sig-

nificantly affects the conditioning effect on the results.

To investigate the optimal β under various settings, we

conducted experiments with β chosen from 0.0, 0.5, 1.0,

2.0, and 5.0, respectively, and evaluated their performance.

Quantitative results are presented in Table 3. It is interest-

ing that only a suitable value of β (1.0 or 2.0) yields opti-

mal performance, while smaller or larger values of β result

in underperformance. Surprisingly, for geometric recovery

(MSE and CD), the optimal value of β appears to increase

as the percentage gets larger. For a scene with a percentage

≥ 50%, the best value of β is amazingly greater than 5.0.

However, such a large percentage is not optimal for visual

appearance. This is because using a larger value of β at a

low percentage can cause the generated results to deviate

unexpectedly from the ground truth. Our visualization, pre-

sented in Figure 5-(a, c, d), indicates that using an uncon-

ditional model (β = 0) leads to undesired and bizarre ge-

ometric structures since the network fails to understand the

context provided by known views. However, excessively

large values of β also oversaturate the color (e.g. row “(d)”

at 5%), making the visual appearance unrealistic.

Effects of Randomness and Trajectories. We investigated

(a) original (b) seed (c) trajectory

Figure 4. Diverse results obtained by changing the (b) random
seed and (c) camera trajectory based on (a) the original scene.

the impact of employing different random seeds and camera

trajectories on the results. Such obtained meshes are visu-

alized in Figure 4. As diffusion models inherently include

randomness in their reverse sampling process, by switching

to a different random seed, we can obtain another outcome.

Moreover, the camera trajectory can affect the rough shape

of the scene. It is promising that our approach can yield con-

trollable and editable results, as it is capable of generating

various and appealing outcomes by simply altering these

two factors.

5.2. Generative Scene Synthesis
We evaluated the performance of our method against

other similar approaches on this task through extensive ex-

periments under various sparsity settings. Table 1 presents

the time required by different methods across various

stages. Our approach stands out for its efficiency, as it elim-

inates the need for additional optimization on individual test

scenes during inference. Quantitative results are shown in

Time Backend Repre. Training Optimization Rendering

(DS-)NGP [13, 43] CUDA C++ NeRF — ∼ 3 min. ∼ 0.05 sec.

N-RGBD [3] PyTorch NeRF — ∼ 2 hours ∼ 2 sec.

DDP [56] PyTorch NeRF ∼ 1 day ∼ 1 hour ∼ 1 sec.

Ours PyTorch Mesh ∼ 3 days — ∼ 3 sec.

Table 1. Efficiency Comparison of Different Methods. It details

their distinct implementation backends, the underlying represen-

tation (Repre.) methods, and the time required for training on

multiple training scenes, optimization on a single test scene, and

rendering a single view after per-scene optimization.

Table 4. We observe that our approach exhibits a clear

advantage in visual metrics over the others when the pro-

vided views are extremely sparse (5%). Interestingly, our

method consistently achieves the best performance in all

the geometry-related metrics. Qualitative results are pre-

sented in Figure 6. DS-NGP [13, 43] and DDP [56] strug-

gle to accurately recover geometry due to their inability to

hallucinate and extrapolate missing regions. In compari-

son, N-RGBD [3] can achieve better surface completion

results by learning and extrapolating neural implicit sur-

faces. However, their performance significantly degrades

when input views are extraordinarily sparse (5%). In con-

trast, our method consistently exhibits plausible appearance

that closely resembles the ground truth, particularly in sce-

narios with sparse-view inputs.

6. Discussions
Limitations. Our current implementation has several lim-

itations that may impact its usefulness in some scenar-

ios. Firstly, it is incapable of handling color discrepancies

caused by lighting variations. Secondly, it lacks surface

extrapolation capabilities that can be provided through im-

plicit field representation. Lastly, the limited receptive field

of our design is confined to the observable volume of the

current camera view and may result in inconsistent and dis-

continuous predictions, particularly in the case of a large
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Factors
Visual Geometric

PSNRcolor SSIMcolor LPIPScolor MSEdepth CDmesh Comp.mesh@0.1m

Cond. Inpa. 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50%

9.33 9.30 9.27 9.45 0.331 0.330 0.330 0.333 0.637 0.636 0.637 0.635 1.309 1.304 1.310 1.293 3061 2777 2463 1758 0.513 0.598 0.711 0.862

� 12.4 14.7 16.5 17.9 0.411 0.496 0.557 0.583 0.520 0.446 0.393 0.359 1.001 0.837 0.761 0.730 1934 850 443 149 0.600 0.781 0.881 0.931

� 12.5 13.6 14.7 16.1 0.444 0.473 0.513 0.556 0.449 0.409 0.362 0.315 0.897 0.808 0.662 0.595 1163 699 176 99.0 0.751 0.817 0.887 0.928

� � 14.6 16.0 17.4 18.4 0.522 0.555 0.593 0.603 0.448 0.399 0.359 0.338 0.825 0.805 0.688 0.628 1058 902 156 100 0.747 0.839 0.909 0.936

Table 2. Ablation studies of the effects of conditioning (Cond., β = 1) and inpainting (Inpa.) on visual (color images) and geometric
(depth maps and meshes) results on the task of scene synthesis from sparse RGBD inputs. The combined use of conditioning and

inpainting leads to superior performance in visual metrics, and inpainting plays a less significant role in terms of geometric results when

the model is conditioned.
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Figure 5. Qualitative results of ablation studies on the task of scene synthesis from sparse RGBD inputs. “(a)”, “(b)” and “(c)”

correspond to the second (w/o conditioning, β = 0), third (w/o inpainting, β = 1) and fourth (w/ all, β = 1) rows of Table 2, and

“(d)” corresponds to the last (w/ all, β = 5) row of Table 3. Each image in the grid consists of four sub-images, with two located at the

lower-right corner displaying rendered RGBD images generated from either NeRFs (others) or meshes (ours), and the other two positioned

at the top-left corner and underneath, respectively, showcasing the back-projected triangular meshes captured from a close-up perspective.

It is clear that the third row basically shows the most favorable appearance.

Guidance

Factor β

Visual Geometric

PSNRcolor SSIMcolor LPIPScolor MSEdepth CDmesh Comp.mesh@0.1m

5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50%

0.0 12.4 14.7 16.5 17.9 0.411 0.496 0.557 0.583 0.520 0.446 0.393 0.359 1.001 0.837 0.761 0.730 1934 850 443 149 0.600 0.781 0.881 0.931

0.5 13.2 15.5 17.1 18.2 0.452 0.530 0.578 0.596 0.496 0.418 0.374 0.347 0.999 0.845 0.772 0.719 1980 606 223 111 0.653 0.818 0.894 0.933

1.0 14.6 16.0 17.4 18.4 0.522 0.555 0.593 0.603 0.448 0.399 0.359 0.338 0.825 0.805 0.688 0.628 1058 902 156 100 0.747 0.839 0.909 0.936

2.0 14.5 15.8 17.5 18.4 0.532 0.561 0.598 0.606 0.439 0.393 0.352 0.334 0.894 0.800 0.654 0.593 1562 515 144 87.2 0.753 0.846 0.910 0.936
5.0 13.3 14.9 17.1 18.2 0.488 0.531 0.579 0.598 0.475 0.418 0.367 0.342 0.992 0.856 0.663 0.582 2551 1676 175 87.2 0.747 0.842 0.908 0.934

Table 3. Ablation studies of the effects of guidance factor β on visual (color images) and geometric (depth maps and meshes) results
on the task of scene synthesis from sparse RGBD inputs. A larger β ideally strengthens the conditioning effect. The visual metrics are

found to be the best when β is set to 1 or 2. Interestingly, the optimal value of β for the best geometry appears to increase as views become

denser. However, setting such a large value of β (e.g. β = 5) leads to sub-optimal visual results.

circular camera trajectory.

Future Works. To improve our design, potential areas of

investigation include: (1) Modeling color smoothness and

variation, as demonstrated by NeRF [42]. (2) Support-

ing advanced physical lighting effects, such as SVBRDF,

as implemented in TANGO [9]. (3) Incorporating ap-

pearance/surface extrapolation by learning an implicit field,

such as NeRF [42, 43] or SDF [3, 80]. (4) Exploring gener-

ative [5] or optimizable [6,84] camera trajectories for scene

synthesis. (5) Investigating reconstruction from sparse-view

RGB inputs only, using depth inpainting/estimation follow-

ing the reverse sampling technique proposed in [37] by uti-

lizing a versatile RGBD diffusion model. (6) Leveraging

the multi-modal [52] or generative [57] power of large-scale

pre-trained models, such as the recently widespread Stable

Diffusion [57].
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Methods

Visual Geometric

PSNRcolor SSIMcolor LPIPScolor MSEdepth CDmesh Comp.mesh@0.1m

5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50%

NGP 10.4 12.4 14.4 17.4 0.293 0.377 0.437 0.498 0.582 0.476 0.415 0.376 7.01 7.39 7.37 6.52 29994 22973 16676 8066 0.289 0.446 0.646 0.850

DS-NGP 10.1 11.9 13.5 15.3 0.205 0.281 0.321 0.361 0.605 0.533 0.503 0.476 2.30 1.69 1.44 1.17 5362 1701 768 230 0.529 0.722 0.845 0.918

N-RGBD 14.1 16.5 18.4 20.0 0.401 0.513 0.595 0.652 0.490 0.384 0.320 0.287 1.51 1.23 1.21 1.13 3503 1345 1210 643 0.705 0.819 0.857 0.872

DDP 14.1 16.1 18.3 20.9 0.418 0.504 0.599 0.702 0.517 0.410 0.329 0.259 1.44 1.05 0.94 0.88 2363 1013 637 451 0.507 0.624 0.719 0.812

Ours 14.6 16.0 17.4 18.4 0.522 0.555 0.593 0.603 0.448 0.399 0.359 0.338 0.82 0.80 0.68 0.62 1058 902 156 100 0.747 0.839 0.909 0.936

Table 4. Quantitative comparison with other approaches on visual (color images) and geometric (depth maps and meshes) results
on the task of scene synthesis from sparse RGBD inputs. Our approach outperforms other methods consistently in terms of geometric

metrics as the sparsity varies. However, our method only show a definitive visual advantage across various visual metrics when the input

views are highly sparse (5%).
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Figure 6. Qualitative comparison results with DS-NGP [13, 43], DDP [56], N-RGBD [3] on the task of scene synthesis from sparse
RGBD inputs. Each image in the grid consists of four sub-images, with two located at the lower-right corner displaying rendered RGBD

images generated from either NeRFs (others) or meshes (ours), and the other two positioned at the top-left corner and underneath, respec-

tively, showcasing the back-projected triangular meshes captured from a close-up perspective. Our approach produces images that exhibit

a close resemblance to the ground truth (GT), while comparative methods may result in inferior outcomes, especially when dealing with

excessively sparse input views and outward-looking cameras.
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