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Figure 1. NeRFs have not yet tackled scenes in which the medium strongly influences the appearances of objects, as in the case of
underwater imagery. By incorporating a scattering image formation model into the NeRF rendering equations, we are able to separate the
scene into ‘clean’ and backscatter components. Consequently, we can render photorealistic novel-views with or without the participating
medium, in the latter case recovering colors as if the image was taken in clear air. Results on the Curaçao scene: A RAW image (left)
is brightened and white balanced (WB) for visualization, showing more detail, while areas further from the camera (top-right corner) are
occluded and attenuated by severe backscatter - which is effectively removed in our restored image. Please zoom-in to observe the details.

Abstract

Research on neural radiance fields (NeRFs) for novel
view generation is exploding with new models and exten-
sions. However, a question that remains unanswered is what
happens in underwater or foggy scenes where the medium
strongly influences the appearance of objects. Thus far,
NeRF and its variants have ignored these cases. However,
since the NeRF framework is based on volumetric render-
ing, it has inherent capability to account for the medium’s
effects, once modeled appropriately. We develop a new ren-
dering model for NeRFs in scattering media, which is based
on the SeaThru image formation model, and suggest a suit-
able architecture for learning both scene information and
medium parameters. We demonstrate the strength of our
method using simulated and real-world scenes, correctly
rendering novel photorealistic views underwater. Even
more excitingly, we can render clear views of these scenes,
removing the medium between the camera and the scene
and reconstructing the appearance and depth of far objects,
which are severely occluded by the medium. Our code and
unique datasets are available on the project’s website.

1. Introduction

The pioneering work of Mildenhall et al. [25] on Neural
Radiance Fields (NeRFs) has tremendously advanced the
field of Neural Rendering, due to its flexibility and unprece-
dented quality of synthesized images. Yet, the formulations
of the original NeRF [25] and its followup variants assume

that images were acquired in clear air, i.e., in a medium
that does not scatter or absorb light in a significant man-
ner and that the acquired image is composed solely of the
object radiance. The NeRF formulation is based on volu-
metric rendering equations that take into account sampled
points along 3D rays. Assuming a clear air environment, an
implicit assumption, which is often enforced explicitly with
dedicated loss components [5], is that a single opaque (high
density) object is encountered per ray, with zero density be-
tween the camera and the object.

In stark contrast to clear air case, when the medium is
absorbing and / or scattering (e.g., haze, fog, smog, and all
aquatic habitats), the volume rendering equation has a true
volumetric meaning, as the entire volume, and not only the
object, contributes to image intensity. As the NeRF model
estimates color and density at every point of a scene, it lends
itself perfectly to general volumetric rendering, given that
the appropriate rendering model is used. Here, we bridge
this gap with SeaThru-NeRF, a framework that incorporates
a rendering model that takes into account scattering media.

This is achieved by assigning separate color and density
parameters to the object (scene) and the medium, within the
NeRF framework. Our approach adopts the SeaThru un-
derwater image formation model [1, 3] to account for scat-
tering media. SeaThru is a generalization of the standard
wavelength-independent attenuation (e.g., fog) image for-
mation model, where two different wideband coefficients
are used to represent the medium, which is more accurate
when attenuation is wavelength-dependent (as in all wa-
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ter bodies and under some atmospheric conditions). In our
model, the medium parameters are separate per color chan-
nel, and are learned functions of the viewing angles, enforc-
ing them to be constant only along 3D rays in the scene.

Attempting to optimize existing NeRFs on scenes with
scattering medium results in cloud-like objects floating in
space, while our formulation enables the network to learn
the correct representation of the entire 3D volume, that con-
sists of both the scene and the medium. Our experiments
demonstrate that SeaThru-NeRF produces state-of-the-art
photorealistic novel view synthesis on simulated and chal-
lenging real-world scenes (see Fig. 1) with scattering media,
that include complex geometries and appearances. In addi-
tion, it enables:
1. Color restoration of the scenes as if they were not im-
aged through a medium, as our modeling allows full sepa-
ration of object appearance from the medium effects.
2. Estimation of 3D scene structure which surpasses that
of structure-from-motion (SFM) or current NeRFs, espe-
cially in far areas of bad visibility, as we jointly reconstruct
and reason for the geometry and medium.
3. Estimation of wideband medium parameters, which
are informative properties of the captured environment, and
potentially allowing simulation under different conditions.

2. Related Work
Neural Radiance Fields (NeRFs): The original work on
NeRFs [25] has paved the way to a large capacity of fol-
lowup work, with rapid and significant progress in many re-
lated aspects. For brevity, we focus in the following only on
works closely related to ours, and refer the reader to a com-
prehensive review of the field [43] prior to the introduction
of NeRFs, and to [44] for the most recent.

NeRFs have been recently shown to be extremely power-
ful in multi-image settings that involve computational imag-
ing tasks. These include HDR [50], de-blurring [20], super-
resolution [49], low-light enhancement [23] and denois-
ing [32]. The need to recover the clean ‘medium-free’ ver-
sion of images degraded by scattering and attenuation ef-
fects, likewise, can benefit from the neural rendering ap-
proach. SeaThru-NeRF is designed to model the degrada-
tion, with the ability to recover its parameters, and recon-
struct the clean underlying scene and novel-view images.

Our work is related to recent efforts to improve the qual-
ity and robustness of NeRFs in challenging environments
(e.g. [14, 21, 29]). Nerf-W [21] learns a per-image latent
embedding that can capture appearance variations in com-
plex scenes. It decomposes the scene into image-dependent
and shared components to disentangle transient elements
from the static scene. NeRFReN [14] is designed for scenes
with reflections. It separates the scene as a sum of transmit-
ted and reflected components, which are modeled as sepa-
rate NeRFs. Ref-NeRF [47] introduces a new parameteriza-

tion and structuring of view-dependent appearance, which
can represent scenes with specularities and reflections.

Our approach has much in common with some of these
methods, most notably the way of reconstructing the tar-
get image as a composition of components: ‘direct’ and
‘backscatter’ in our case, ‘transient’ and ‘static’ in [21],
or ‘transmitted’ and ‘reflected’ in [14]. However, as we
demonstrate, these methods are limited on scenes in scat-
tering media as they do not explicitly model the effects of
the medium. Our method is different in that it can model a
continuous medium component that is not an object.

Graphics and Vision in Scattering Media: Propagation
of light in a medium is governed by the radiative trans-
fer equation [10]. This equation describes light interaction
per particle in the medium and requires extensive Monte
Carlo simulations for complete solutions [12, 16, 30, 31],
see [30] for an excellent review. In many cases simplifying
assumptions can be made about the medium that ease ren-
dering [22], where the major one is single-scattering [33,
42, 48]. Realistic rendering requires having the scattering
properties of the medium, which can be estimated in the
lab [13,26], or from in situ images [6]. An MLP for render-
ing synthetic atmospheric clouds was suggested in [17].

In computer vision, image formation models under am-
bient illumination for bad weather [28] and underwater [37]
share the same general structure for the case of horizontal
viewing. Artificial illumination used underwater [46] and
in fog has additional terms that account for the nonunifor-
mity of the source. Underwater, the medium parameters
exhibit strong wavelength dependency that was shown to
affect model accuracy in wideband camera channels. The
SeaThru model [1–3] was suggested to overcome this issue.

Scene reconstruction in scattering media is an ill-
posed problem which was initially solved with multiple
frames [27,37,38,46]. Later on, single-image methods have
proposed a multitude of image priors to overcome the ill-
posed nature of the problem, see [19,51] for comprehensive
reviews on single-image dehazing and underwater recon-
struction, respectively. The introduction of deep-learning
has led to an explosion of single-image dehazing and under-
water reconstruction networks. See [41] and [4] for recent
reviews of deep-learning dehazing and underwater recon-
struction works, respectively.

Underwater, it was suggested to solve for the 3D struc-
ture of the scene, prior to image restoration [9, 35] using
the haze model and [2] using the revised one. In SeaThru-
NeRF, we simultaneously reconstruct the scene and its 3D
structure, yielding multiple advantages that we demonstrate
empirically. WaterNeRF [40] suggests an underwater neu-
ral renderer that estimates the medium parameters only with
respect to histogram-equalized images, separately from the
rendering. Here, we show the huge benefit of modeling the
scattering medium within the rendering equations, over a
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variety of different scenes. Concurrently and independently
to our work, [11] presented a NeRF for haze.

3. Scientific Background
3.1. Neural Radiance Fields (NeRFs)

The original NeRF formulation [25] implicitly repre-
sents a 3D scene by a trainable continuous function. It is
typically parameterized by an MLP fΘ : (x,d) → (c, σ)
which encodes the density σ at the 3D point x = (x, y, z)
and the color c = (r, g, b) emitted from this point in the
viewing direction d = (θ, ϕ) (which is typically repre-
sented as a 2-element unit normalized 3D vector).1

This simple representation is used to simulate classical
image-based rendering, by color accumulation along rays
that are back-projected from a posed camera. If we param-
eterize points along a camera ray r by r(t) = o + d(t),
where o is the camera center and t ∈ R+, the expected (im-
age) color C(r) along the ray can be written as:2

C(r) =

∫ tf

tn

T (t)σ(t)c(t)dt (1)

where: integration along the ray is limited to the range
t ∈ [tn, tf ] (near and far bounds on the scene contents);
σ(t) and c(t) are shorthands for the density at the point r(t)
and its emitted color towards the camera center; T (t) de-
notes the accumulated transmittance along the ray from tn
to t (the probability that the ray travels from tn to t without
hitting other particles along the way), and is given by:

T (t) = exp

(
−
∫ t

tn

σ(s)ds

)
(2)

In practice, the rendered color C(r) in Eq. (1) is approx-
imated with the quadrature rule, by discretizing the range
[tn, tf ] into a set of N intervals Ii = [si, si+1] (where
tn = s0 < · · · < sN = tf ), assuming that the density σ
and color c are constant along each interval (e.g. by query-
ing the model once per interval at its center-point).

In the discretized version of Eq. (1):

Ĉ(r) =

N∑
i=1

Ci(r) (3)

the contribution Ci(r) of the interval Ii is given by:

Ci(r) =

∫ si+1

si

T (t)σicidt = T (si)
(
1− e−σiδi

)
ci (4)

where σi and ci are the (constant) density and color along
the ith interval, whose length is δi = si+1 − si, and the

1Vectors (3D coordinates or color components) are denoted in bold.
2Each color channel is integrated separately.

transmittance T (si) at the beginning of the interval is:

T (si) = exp

(
−

i−1∑
j=0

σjδj

)
(5)

This fully differentiable NeRF model (with the dis-
cretized rendering scheme) is trained with a simple recon-
struction loss

L =
∑
r∈R

∥Ĉ(r)− C(r)∥2 (6)

comparing each rendered training image pixel Ĉ(r) to its
ground truth color C(r). The model can then be used to
synthesize photorealistic novel view images.

3.2. Image Formation in Scattering Media

Image formation in fog, haze, or underwater differs from
image formation in clear air in two major aspects. First,
the direct signal emanating from the object is attenuated as
a function of distance and wavelength. Second, this sig-
nal is occluded by backscatter (termed also path-radiance or
veiling-light) - radiance that is added due to the in-scattering
from the particles along the line-of-sight (LOS), illustrated
in Fig. 2. The intensity and color of the occluding backscat-
ter layer are independent of the scene contents, and its inten-
sity accumulates along the LOS, increasing with distance.
As a result, the visibility and contrast of further objects is
significantly reduced and their colors are distorted.

We adopt the revised model [1] as the general model
for image formation in scattering media under ambient il-
lumination. Image intensity (per pixel, per color channel) is
given as:

I =

direct︷ ︸︸ ︷
J︸︷︷︸

color

· (e−βD(vD)·z)︸ ︷︷ ︸
attenuation

+

backscatter︷ ︸︸ ︷
B∞︸︷︷︸
color

· (1− e−βB(vB)·z)︸ ︷︷ ︸
attenuation

(7)

where I is the linear image captured by the camera of a
scene with range z, J is the clear scene that would have been
captured had there been no medium along z, and B∞ is the
backscatter water color at infinity, i.e., the backscatter at
areas that contain no objects. Lastly, βD and βB are the at-
tenuation and backscatter coefficients, respectively, the two
parameters that describe the medium effects. The vectors
vD and vB represent the dependencies of βD and βB on
range, object reflectance, spectrum of ambient light, spec-
tral response of the camera, and the physical scattering and
beam attenuation coefficients of the water body, all of which
are functions of wavelength. It was shown in [2] that βB can
be assumed constant in an image, while βD mainly depends
on the object distance and weakly on object reflectance, thus
solving for the full model requires at least 6 unknowns. The
value of B∞ is usually assumed to be uniform in the scene
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Figure 2. An illustration of our ray model. We assume a scene with
at most a single opaque object at every ray. The medium is semi-
transparent with constant density per-ray. The densities governing
the backscatter and the object in water are not the same [1].

but as discussed in [6] it is almost never really uniform, be-
cause of the directionality of the sun, among other factors.

This model is also applicable to haze and fog, where at-
tenuation has very little dependence on wavelength. Then,
image formation is greatly simplified because it can be as-
sumed that there is only one medium parameter that is
uniform across the color channels, represented by a scalar
(βD = βB = β) [38]. Underwater, often the simplifying
(less accurate) assumption that βD = βB is made, reducing
to 3 unknowns [6, 7, 37].

4. SeaThru-NeRF
4.1. Basic Model Derivation

Here we consider a more general setting than the orig-
inal NeRF [25], in which light travels through a scatter-
ing medium rather than free-space, resulting in a significant
impact on the captured color. Following [22] we suggest
adding the medium to Eqs. (1) and (2):

C(r) =

∫ tf

tn

T (t)
(
σobj(t)cobj(t) + σmed(t)cmed(t)

)
dt

(8)
where:

T (t) = exp

(
−
∫ t

tn

(
σobj(s) + σmed(s)

)
ds

)
, (9)

using separate color and density parameters for the object
and medium. Notice that these equations reduce to Eqs. (1)
and (2) by simply considering the case where the medium
density σmed is zero.

Moving to the discretized version, we similarly get3 the
following generalizations of Eqs. (4) and (5):

Ci(r) = T (si)
(
1− e−(σ

obj
i +σmed

i )δi
) σobj

i cobji + σmed
i cmed

i

σobj
i + σmed

i
(10)

3Full derivations of Eqs. (10, 11) is provided in the appendix.

with transmittance

T (si) = exp

(
−

i−1∑
j=0

(σobj
j + σmed

j )δj

)
. (11)

Splitting the discretized color rendering equations (3 ,10
and 11) into the ‘object’ and ‘medium’ components, we get:

Ĉ(r) =

N∑
i=1

Ĉobj
i (r) +

N∑
i=1

Ĉmed
i (r) (12)

Ĉobj
i (r) = T (si)

(
1− e−(σ

obj
i +σmed

i )δi
) σobj

i cobji

σobj
i + σmed

i

(13)

Ĉmed
i (r) = T (si)

(
1− e−(σ

obj
i +σmed

i )δi
) σmed

i cmed
i

σobj
i + σmed

i

(14)

As a first step towards constraining and simplifying our
model, we constrain the medium parameters to be constant
along 3D viewing rays. We drop the respective interval
indices and remain with σmed and cmed that depend only
on the ray r. The cmed uniformity stems from the com-
mon assumption of a uniform phase function (the depen-
dence of scattered radiance on scattering angle) along the
LOS [22, 30]. Regarding the density σmed, we take it to be
separate per color channel, but constant per ray. This is far
less restrictive compared to models that assume constancy
per image or even per scene [2]. These constraints will be
enforced by respective structural choices in the network.

Furthermore, we assume that objects in the scene are
opaque, hence the object density along the ray is close to
zero except for a high peak in the object location. On the
other hand, the medium is semi-transparent, characterized
by a low non-zero density. This implies that σmed ≫ σobj

before the object and σmed ≪ σobj at the object, as illus-
trated in Fig. 2. Therefore, Eqs. (13-14) reduce to

Ĉobj
i (r) = Ti ·

(
1− e−σobj

i δi
)
· cobji (15)

Ĉmed
i (r) = Ti ·

(
1− e−σmedδi

)
· cmed (16)

Ti = exp
(
−

i−1∑
j=0

σobj
j δj

)
· exp

(
−σmedsi

)
(17)

4.2. Relation to Underwater Image Formation

In this section we show that our model can be reduced to
the image formation model described in Sec. 3.2, which is
not based on volumetric rendering. To this end we consider
sampling the ray along intervals with constant size δ, and
the appearance of the opaque object at a depth z, at the be-
ginning of interval Ik = [sk, sk+1], for some integer k (that
is: si = i · δ for every i and z = k · δ in particular).
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Figure 3. SeaThru-NeRF architecture. The computation of the
‘object’ outputs (density and color, in green), follows the standard
NeRF architecture, while the ‘medium’ components (in purple) are
computed once per ray by a separate subnet (the ‘medium MLP’)
that depends only on the viewing direction.

In this case, σobj
i ≈ 0 for all i < k, and σobj

k ≫ σmed.
This implies that Cmed

k (r) ≪ Cobj
k (r) and Cobj

i (r) ≈ 0,
therefore we can write the rendering Eq. (12) as

Ĉ(r) ≈ Ĉobj
k (r) +

k−1∑
i=0

Ĉmed
i (r) . (18)

Furthermore, since the object is opaque, we can assume that
the density σobj

k is large enough such that the transmittance
at the end of the kth interval T (sk+1) drops practically to
zero, that is: e−σobj

k δ ≈ 0. Therefore

Ĉobj
k (r) = Ti ·

(
1− e−σobj

i δ
)
· cobji (19)

≈ e−kσmedδ
(
1− e−σobj

k δ
)
cobjk ≈ e−σmedδ·kcobjk

and

k−1∑
i=0

Ĉmed
i (r) =

k−1∑
i=0

Ti ·
(
1− e−σmedδ

)
· cmed (20)

≈
k−1∑
i=0

e−iσmedδ ·
(
1− e−σmedδ

)
· cmed

=
(
1− e−σmedδ·k) · cmed

Substituting Eqs. (19) and (20) into Eq. (18) (recalling
that the depth z equals k · δ) yields:

Ĉ(r) ≈ e−σmedz · cobjk +
(
1− e−σmedz

)
· cmed , (21)

resulting precisely in the commonly used scattering media
image formation model [8, 37]. This can be seen by com-
paring to Eq. (7) where σmed = βD = βB plays the role of
the attenuation coefficient (equal for direct and backscatter),
cmed is the veiling light B∞ (backscatter color at infinity)
and cobjk the clear image color J .

4.3. Final Model

We make several refinements with respect to the basic
model presented in Section 4.1. In Sec. 4.2, we showed
that our rendering equations lead to an image formation
model with identical attenuation coefficients for the direct
and backscatter components. Following the discussion in
Sec. 3.2, and as has been shown in [1], when using such
equations with a camera with wideband color channels, the
effective σmed that is experienced by the camera in Cobj

i (r)
is different than the one experienced in Cmed

i (r). Therefore,
in our final model we use different parameters for σmed in
each component and term them σattn and σbs for Cobj

i (r)
and Cmed

i (r) respectively. Our final equations are:

Ĉobj
i (r) = T obj

i ·exp
(
−σattnsi

)
·
(
1−exp(−σobj

i δi)
)
·cobji

Ĉmed
i (r) = T obj

i ·exp
(
−σbssi

)
·
(
1−exp(−σbsδi)

)
·cmed

T obj
i = exp

(
−

i−1∑
j=0

σobj
j δj

)
(22)

Based on our derivations we suggest the following ar-
chitecture (Fig. 3). As in [25], the object properties are
computed by a pair of MLPs, such that the density σobj

is a function of the position (x, y, z) only, while color cobj

is determined by the viewing direction (θ, ϕ) as well. The
medium parameters cmed,σbs,σattn are handled by a sepa-
rate MLP with only the direction input, following our deci-
sion to constrain them to be constant per viewing direction.

4.4. Loss Function

Let us denote the sequence of samples along a ray
by s = {si}Ni=0, the object ‘weight’ at the ith segment
[si, si+1] ,

wobj
i = T obj

i ·
(
1− exp(−σobj

i δi)
)

, (23)

the sequence of these weights by w = {wobj
i }N−1

i=0 and the
ground-truth (supervised) pixel color by C∗.

Our loss is the following combination:

L = Lrecon(Ĉ, C∗) + Lprop(s,w) + λLacc(w) , (24)

where λ = 0.0001 was chosen through cross-validation.
Since we work on linear images, we adopt the reconstruc-
tion loss of RawNeRF [23]:

Lrecon(Ĉ, C∗) =

(
Ĉ − C∗

sg(Ĉ) + ϵ

)2

(25)

where sg(·) stands for stop-gradient and ϵ = 10−3. The
‘proposal’ loss Lprop(s,w) is an inherent part of Mip-
NeRF-360 [5]. It penalizes for the discrepancy between the
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distributions of object weights at ‘original’ and ‘proposed’
samplings, where only the latter is used for rendering [5].

To enforce binary separation between points in space that
contain objects and those that contain solely a medium -
we add a prior on the transmittance T obj

i of each point on
the ray to be either 0 or 1, not allowing semi-transparent
objects. This is modelled as a mixture of two Laplacian
distributions with modes at 0 and 1 (following [34]):

IP(x) ∝ e−
|x|
0.1 + e−

|1−x|
0.1 (26)

and use the negative log likelihood loss:

Lacc(w) = − log IP(T obj
i ) . (27)

4.5. Implementation and Optimization

Our implementation is based on the code released in
Mip-NeRF-360 [5], choosing the best performing baseline
on our scenes which was the forward-looking configuration
with normalized device coordinates (NDC). For the medi-
umMLP , we use 6 linear layers with 256 features and a
softplus activation, followed by 3 branches of dense layers
and a sigmoid activation for predicting cmed and softplus
activations for σattn and σbs.

In the rendering scheme, [5] initialized the farthest δi
with infinity, enabling the network to predict a background
color for rays that do not intersect with any object. We dis-
abled this addition as it prevents our method from explain-
ing the medium that contributes to the rendered color along
the ray. We keep the learning rate and optimization param-
eters the same as in [5]. The network is trained for 250,000
iterations with a batch size of 16384 rays, taking around 10
hours on an Nvidia A100 GPU. The loss function and met-
rics are calculated on the output before any post-processing.

5. Experiments and Results
5.1. Experiments

Real world scenes. We acquired multi-image underwa-
ter scenes by diving in three different seas: the Red Sea
(Eilat, Israel), the Caribbean Sea (Curaçao) and the Pacific
Sea (Panama) with a total of 20, 20 and 18 images respec-
tively, from which three are set aside for validation in each
set. This data encapsulates a diverse set of water conditions
and imaging conditions. The images were acquired as RAW
images with a Nikon D850 SLR camera in a Nauticam un-
derwater housing with a dome port to avoid refractions that
jeopardize the pinhole model [45], and downsampled to av-
erage size 900× 1400. The input linear images were white-
balanced before processing with 0.5% clipping per channel
to remove extreme noisy pixels. Finally, COLMAP [39] is
used to extract camera poses.
Simulated Scene. We constructed a simulation using the
Fern scene of the LLFF dataset [24]. We ran MIP-NeRF-
360 [5] and used the predicted depth maps to simulate an

Figure 4. Synthetic experiment on Fern scene of the LLFF
dataset [24]. Top: Our method can handle ‘in-air’ scenes, with
a uniform zeros backscatter image and a reconstruction PSNR that
is close to that of the baseline [5] which was 23.73. Middle and
bottom: Our method’s separation between clean and backscatter
components, for simulations of fog and underwater effects. The
reconstruction quality degrades rather gracefully.

underwater and a foggy scene. Water was added accord-
ing to (7) with parameter values: βD = [1.3, 1.2, 0.9],
βB = [0.95, 0.85, 0.7], B∞ = [0.07, 0.2, 0.39]. Fog was
simulated based on [36] with β = 1.2.

Baseline methods. The input to all methods is the same
set of white-balanced linear images. In the task of render-
ing scenes in the medium we compare with the follow-
ing NeRF methods: MIP-NeRF-360, forward-looking with
NDC (MIP360) [5], NeRF-W [21] and NeRFReN [14]. In
the task of reconstructing clean medium-free images we
compare with NeRF-W, where the ‘transient’ component
can be viewed as the clean image and the ‘static’ image
as backscatter, and to NeRFReN with the ‘reflected’ and
‘transmitted’ components as clean and backscatter images.
We additionally compare to single-image scene reconstruc-
tion methods: plain white balance, SeaThru [2], the lead-
ing “classical” methods of Bekerman et al [6], and the re-
cent deep-learning based [52] (as well as [15, 52] whose
results are provided in the project website). SeaThru re-
quires depth maps, that we generate using SFM (with Ag-
isoft Metashape) as originally suggested. These depth-maps
are used to compare with those of the different methods.

Photo-finishing: As the input and output images are linear,
we apply photofinishing on all linear reconstructed scenes
to enhance scene contrast and appearance, using the digital
camera pipeline from [18]. This is done to improve visu-
alization for easier qualitative comparisons, while PSNR is
calculated on the original non-photofinished linear images.
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Figure 5. Scene rendering in the medium, on ‘Red Sea’. Left to right: white-balanced input image, our result, MIP360 [23], Nerf-
W [21], NeRFReN [14]. [Top 2 rows] Train image and zoom-ins. Even in the task of overfitting to the training images, there are noticeable
differences between the methods, and as can be seen in the zoom-ins (red squares) we are able to reconstruct fine details in further areas
(albeit a lower PSNR). [Bottom 2 rows] Novel view and zoom-ins. Our method achieves the highest PSNR (see tables 1, 2), and provides
much better details in further areas (see red square zoom-ins). Our depth reconstructions provide more detail in further areas.

5.2. Results

We start with a sanity check on a clean image. Our method
correctly estimates zero backscatter, and does not force it-
self to estimate a medium (Fig. 4 Top). On our simulated
fog and underwater scenes (Fig. 4 middle and bottom), our
method separates the scenes’ components very well, with
only slight reduction in PSNR in the underwater scene.
Image rendering and novel-view synthesis (in medium).
Qualitative results are summarized in Figs. 1, 5. Table 1
summarizes the average PSNR on the validation set of the
Red Sea scene, in which our method achieves the highest
PSNR. Note that both NeRF-W [21] and NeRFReN [14] are
based on the NeRF [25] model while our code is based on
Mip-NeRF-360 [5] that in general improves reconstruction
details in further areas. So our real comparison is with [5],
which we improve by ∼ 0.8dB on average over the valida-
tion set. Table 2 compares PSNR, SSIM and LPIPS with
those of [5] on validation sets of all real-world and simula-
tion scenes. Our method is better in the majority of cases,
and is especially good on the further areas (red squares).

On the train set [5] achieves a reasonable rendering of
the scene in terms of PSNR by wrongly modeling the wa-
ter as a nearby blue object, as can be seen in the depth
map, indicating a close object in the top area. Even then,
in our results further objects are reconstructed with more
detail. The NeRFReN [14] depth map flattens at the mid-
range, while ours is more informative further on. SFM does
not estimate depth at these areas because of lack of features.
Scene restoration (Fig. 6). In comparison with NeRF

Ours I II III [5] [21] [14]
21.83 21.76 21.43 21.72 21.05 16.52 21.05

Table 1. Average PSNRs of in-medium rendering on Red Sea
set: ours, 3 ablation variations (description in the text: I– 1 param-
eter, II– 3 parameters, III– Eqs. 13, 14) and other methods.

Scene MIP360 [5] Ours
Red Sea 21.05 / 0.75 / 0.29 21.83 / 0.77 / 0.25
Red Sea red square 29.66 / 0.84 / 0.43 33.80 / 0.90 / 0.23
Curaçao 26.54 / 0.81 / 0.33 30.48 / 0.87 / 0.20
Curaçao red square 27.04 / 0.84 / 0.45 33.20 / 0.88 / 0.08
Panama 27.43 / 0.82 / 0.23 27.89 / 0.83 / 0.22
Fern fog 30.23 / 0.88 / 0.15 30.75 / 0.87 / 0.16
Fern underwater 29.62 / 0.87 / 0.26 29.76 / 0.86 / 0.15

Table 2. Comparison to baseline: PSNR↑ / SSIM↑ / LPIPS↓ .

methods for scene separation it is clear that our separation
handles the medium the best. In the result of NeRF-W [21]
the scene is somewhat separated but blurry, while in that of
NeRFReN [14] the closer part of the scene is relatively well
reconstructed but the further areas are missing. In both, the
scene’s objects are visible in the backscatter image, which
is clearly wrong and reduces relevant signal from the object
image. In our results, due to the adequate modeling, the
backscatter is not polluted with objects. Compared to scene
restoration methods, SeaThru [2] is the best performing one
but is limited to areas where the depth map is available from
SFM. The single image methods are not on par, especially
from the mid-ranges and on. In novel-view synthesis of
clean scenes we are able to predict further the entire scene.
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Figure 6. Scene reconstruction on ‘Red Sea’. Columns 1-3: Comparing our method (top row) and 2 other NeRFs - Nerf-W [21] (middle
row) and NeRFReN [14] (bottom row). Even though not developed for scattering media, they manage to separate a training image into two
components (columns 1, 2), resembling the clean scene and the backscatter. However, their backscatter components contains details of the
objects, while ours correctly displays only the signal stemming from the medium. Similarly (column 3), their ’clean’ rendering of a novel
view is inferior to ours, especially in the far distances. Column 4: Among the single-image methods, SeaThru [2] is the best performing
(but requires the depth map as input). Nevertheless, color artifacts are visible in the far parts due to inaccurate depth information.

Ablation Study. (i) Number of medium parameters: fol-
lowing the discussion in Sec. 3.2, the elaborate version of
Eq. (7) uses 6 parameters for the medium coefficients, while
simplified versions use 1 (marked I in Table 1) or 3 (marked
II). This is ablated in Table 1, in terms of PSNR, where the
elaborate model with 6 parameters achieves a higher score.
(ii) Rendering equations. We compare our basic rendering
model (Eqs. 13, 14), marked III in Table 1 to the final one
marked ‘ours’ (Eq. 22). This option achieves lower PSNR.

6. Discussion
We provide an important extension of NeRFs that en-

ables rendering scenes acquired in scattering media such as
haze, fog and underwater. So far, NeRF provided a frame-
work for volumetric rendering, but without considering the
nature of the medium, resulting in a binary ‘occupancy’ vol-
ume. Our formulation enables opaque objects to exist in a
semi-transparent medium that is both scattering and absorb-
ing in a wavelength-dependent manner. We demonstrate it
on challenging real-world scenes with a complex 3D struc-
ture. Our scenes are forward-facing and contain areas with
no objects at all, which our method is able to explain.

Water effects in further regions are very strong, hamper-
ing single image methods and feature matching in multi-
view methods. Our method incorporates information from

all images at once, learning the scene in a holistic way. This
enables better scene reconstruction (in medium and clean),
and estimating the depth and the medium’s parameters.

Our method has several limitations. While it is based
on the current state-of-the-art image formation model, that
model does not account for multiple scattering or for artifi-
cial illumination. As common in NeRFs, it requires camera
poses that are extracted beforehand, which can be challeng-
ing in bad visibility. Lastly, the medium’s parameters are
better learned in sets where there is enough variation in the
scene range between the viewpoints. The formulation takes
its strength from the modeling of the medium. Thus it strug-
gles in scenes that do not adhere to the model’s assumptions,
e.g., underwater scenes with significant flickering. In the fu-
ture we plan to add components that will explain transient
effects such as flickering, and continue to explore estima-
tion of more diverse scenes and medium parameters.
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