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Figure 1. Demonstration of the proposed 3dSwap. Given single-view source and target images, our method synthesizes high-fidelity and
multi-view-consistent images of the swapped faces and the corresponding geometries. More results can be found on our project page.

Abstract

Face swapping is an important research topic in com-
puter vision with wide applications in entertainment and
privacy protection. Existing methods directly learn to swap
2D facial images, taking no account of the geometric in-
formation of human faces. In the presence of large pose
variance between the source and the target faces, there
always exist undesirable artifacts on the swapped face.
In this paper, we present a novel 3D-aware face swap-
ping method that generates high-fidelity and multi-view-
consistent swapped faces from single-view source and tar-
get images. To achieve this, we take advantage of the strong
geometry and texture prior of 3D human faces, where the
2D faces are projected into the latent space of a 3D genera-
tive model. By disentangling the identity and attribute fea-
tures in the latent space, we succeed in swapping faces in
a 3D-aware manner, being robust to pose variations while
transferring fine-grained facial details. Extensive experi-
ments demonstrate the superiority of our 3D-aware face
swapping framework in terms of visual quality, identity sim-
ilarity, and multi-view consistency. Code is available at
https://lyx0208.github.io/3dSwap.

∗ Corresponding authors.

1. Introduction

Face swapping aims to transfer the identity of a person
in the source image to another person in the target image
while preserving other attributes like head pose, expression,
illumination, background, etc. It has attracted extensive at-
tention recently in the academic and industrial world for its
potential wide applications in entertainment [14,30,38] and
privacy protection [7, 37, 48].

The key of face swapping is to transfer the geometric
shape of the facial region (i.e., eyes, nose, mouth) and
detailed texture information (such as the color of eyes)
from the source image to the target image while pre-
serving both geometry and texture of non-facial regions
(i.e., hair, background, etc). Currently, some 3D-based
methods consider geometry prior of human faces by fit-
ting the input image to 3D face models such as 3D Mor-
phable Model (3DMM) [8] to overcome the differences of
face orientation and expression between sources and tar-
gets [7, 15, 34, 43]. However, these parametric face mod-
els only produce coarse frontal faces without fine-grained
details, leading to low-resolution and fuzzy swapping re-
sults. On the other hand, following Generative Adversarial
Network [24], GAN-based [6, 23, 32, 39, 40, 42] or GAN-
inversion-based [44, 55, 57, 60] approaches adopt the ad-
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versarial training strategy to learn texture information from
inputs. Despite the demonstrated photorealistic and high-
resolution images, the swapped faces via 2D GANs sustain
undesirable artifacts when two input faces undergo large
pose variation since the strong 3D geometry prior of human
faces is ignored. Moreover, learning to swap faces in 2D
images makes little use of the shaped details from sources,
leading to poorer performance on identity transferring.

Motivated by the recent advances of 3D generative mod-
els [12, 13, 20, 25, 45] in synthesizing multi-view consis-
tent images and high-quality 3D shapes, it naturally raises
a question: can we perform face swapping in a 3D-aware
manner to exploit the strong geometry and texture priors?
To answer this question, two challenges arise. First, how to
infer 3D prior directly from 3D-GAN models still remains
open. Current 3D-aware generative models synthesize their
results from a random Gaussian noise z, so that their output
images are not controllable. This increases the complexity
of inferring the required prior from arbitrary input. Second,
the inferred prior corresponding to input images is in the
form of a high-dimension feature vector in the latent space
of 3D GANs. Simply synthesizing multi-view target im-
ages referring to the prior and applying 2D face swapping
to them produces not only inconsistent artifacts but also a
heavy computational load.

To address these challenges, we systematically inves-
tigate the geometry and texture prior of these 3D gener-
ative models and propose a novel 3D-aware face swap-
ping framework 3dSwap. We introduce a 3D GAN inver-
sion framework to project the 2D inputs into the 3D latent
space, motivated by recent GAN inversion approaches [46,
47, 51]. Specifically, we design a learning-based inver-
sion algorithm that trains an encoding network to efficiently
and robustly project input images into the latent space of
EG3D [12]. However, directly borrowing the architecture
from 2D approaches is not yet enough since a single-view
input provides limited information about the whole human
face. To further improve the multi-view consistency of la-
tent code projection, we design a pseudo-multi-view train-
ing strategy. This design effectively bridges the domain
gap between 2D and 3D. To tackle the second problem,
we design a face swapping algorithm based on the 3D la-
tent codes and directly synthesize the swapped faces with
the 3D-aware generator. In this way, we achieve 3D GAN-
inversion-based face swapping by a latent code manipulat-
ing algorithm consisting of style-mixing and interpolation,
where latent code interpolation is responsible for identity
transferring while style-mixing helps to preserve attributes.

In summary, our contributions are threefold:

• To the best of our knowledge, we first address the
3D-aware face swapping task. The proposed 3dSwap
method sets a strong baseline and we hope this work
will foster future research into this task.

• We design a learning-based 3D GAN inversion with
the pseudo-multi-view training strategy to extract ge-
ometry and texture prior from arbitrary input images.
We further utilize these strong prior by designing a la-
tent code manipulating algorithm, with which we di-
rectly synthesize the final results with the pretrained
generator.

• Extensive experiments on benchmark datasets demon-
strate the superiority of the proposed 3dSwap over
state-of-the-art 2D face swapping approaches in iden-
tity transferring. Our reconstruction module for 3D-
GAN inversion performs favorably over the state-of-
the-art methods as well.

2. Related Work
Face Swapping. Face swapping has emerged as a pop-
ular research topic in the field of computer vision in re-
cent years. Currently, it can be classified into two cate-
gories: 3D-based and GAN-based methods. Specifically,
3D-based methods [7, 15, 34, 43] fit input images into 3D
parametric face models (i.e. 3DMM [8]) to overcome the
problems of posture or perspective difference between in-
put images. However, the performance of such methods is
usually limited by the reconstruction results. GAN-based
methods [6, 18, 23, 31, 32, 39, 40, 42] adopt the adversarial
training strategy to generate photorealistic fake faces.

Early GAN-based face swapping methods are subject-
specific, i.e. DeepFake [18] and Korshunova et al. [31] are
required to train different models for different inputs. The
subject-specific approaches have limited real applications
since face swapping is required to be applicable to any un-
seen pair of input images, and such limitation is addressed
in latter subject-agnostic face swapping approaches [6, 23,
32, 39, 40, 42]. To increase the resolution of generated im-
ages, MegaFS [60] firstly proposes a GAN-inversion-based
face swapping method, utilizing StyleGAN [28] to synthe-
size megapixel-level swapping faces. Xu et al. [56] and
StyleSwap [57] integrate the StyleGAN2 [29] generator to
their face swapping pipeline, applying its strong prior to
generate high-resolution swapped faces. Following these
approaches, we furtherly extend the face swapping task into
3D latent space to capture fine-grained details of face shape
and strengthen the robustness under large pose variance.

3D-Aware Generative Models. The 3D-aware generative
models are aimed to synthesize 3D-aware (i.e., can be ex-
plicitly controlled by the camera pose) images from 2D
image collections. HoloGAN [41] firstly proposes a 3D-
aware generative model through learning the voxel features,
whereas it only generates low-resolution results due to the
limitation of computational cost. Recently, several works
utilize the NeRF [36] representation [12, 20, 25, 45, 50].
GRAF [50] adopts the approach of patch sampling to elim-
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Figure 2. The pipeline of our 3D-aware face swapping method, 3dSwap. In the first stage, we infer 3D geometry and texture prior of both
source and target images with an encoder. We then design a latent code manipulation algorithm consisting of style mixing and interpolation
to conduct face swapping based on these priors. Finally, swapped faces in any view direction can be synthesized by 3dSwap after fine-
tuning the parameters of the generator following the joint pivot tuning optimization.

inate computational costs during training. GRAM [20] es-
timates radiance manifolds to produce realistic images with
fine details and strong 3D consistency. StyleNeRF [25] in-
tegrates NeRF with style-based generators and proposes a
better up-sampler and a new regularization loss to mitigate
inconsistencies. StyleSDF [45] presents a Signed Distance
Field (SDF) based on 3D modeling that defines detailed 3D
surfaces. EG3D [12] raises a novel tri-plane representation
for efficient 3D-aware image generation. Due to the strong
generative capability of these 3D-aware generative models,
we leverage them to infer fine 3D prior from 2D images for
our 3D-aware face swapping framework.

GAN Inversion. Since Generative Adversarial Net-
work [24], numerous generative models reflect great abili-
ties in synthesizing high-quality images [9,12,25,28,29,45].
To fully leverage these well-trained GANs, the task of GAN
inversion emerges recently. In particular, GAN inversion is
aimed to project a given image back to a vector w in the
latent space of a pretrained GAN model so that this image
can be faithfully reconstructed from w by the generator.

Early works invert images into Gaussian noise z ∈
R1×512 or semantic latent space W ∈ R1×512 [1,16,17,59].
Abdal et al. [2] firstly extend latent space to W+ ∈
R18×512 for more accurate reconstruction. To predict the
latent code, learning-based methods [3, 26, 46, 51, 52] train
an encoder for latent projection, while optimization-based
methods [1,2,16,17] directly find the optimal code step-by-
step from noise. Hybrid methods [4, 47, 59] combine both
to optimize latent codes initialized by encoders.

In addition, there are a few inversion works for 3D gener-
ative models. Pix2NeRF [10] is proposed to generate Neu-
ral Radiance Fields (NeRF) [36] of an object applying a

single input image based on a pretrained π-GAN [13]. Con-
nor et al. [33] leverage EG3D [12] and a pretrained 3DMM
predictor [22] to reconstruct a 3D human face, which could
be further animated or edited. Our reconstruction model is
also in this catalog, while the adopted learning-based algo-
rithm is more robust and efficient compared with them.

3. Method

3.1. Overview

Given single-view source and target images, we aim to
synthesize multi-view-consistent face images with identity
from source image xs and other attributes from target im-
age xt. Fig. 2 demonstrates the overall pipeline and no-
tations of the proposed 3dSwap. First, to extract accurate
geometry and texture prior from 2D images, we conduct
a learning-based 3D GAN inversion, training an encoding
network to project the inputs into the latent space of a 3D-
aware generative model. Specifically, we design a pseudo-
multi-view optimization strategy to train the encoder with
a feature pyramid architecture from pSp [46], empowering
the latent code projection with the 3D consistency of the
state-of-the-art 3D GAN, i.e. EG3D [12] (Sec. 3.2). Then,
to disentangle identity from attributes in the latent space,
we design a latent code manipulation algorithm consisting
of style mixing and interpolation (Sec. 3.3). Finally, for
the purpose of improving the overall quality of our results,
bridging the gap between 2D image generating and 3D ren-
dering, we implement a joint pivot tuning on parameters of
the pretrained EG3D generator (Sec. 3.4). The networks are
trained with a set of well-designed loss functions to enforce
identity transferring and attribute preserving (Sec. 3.5).
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3.2. Inferring 3D Prior from 2D Images

To infer geometry and texture prior from a 2D image,
we leverage the state-of-the-art 3D-aware generative model,
i.e. EG3D [12] by projecting the inputs into its latent space.
Since the optimization-based algorithm [47] is inefficient
and less robust to non-front faces, we propose a learning-
based inversion algorithm where an encoding network is
trained to project the single-view inputs into the 3D latent
space. Different from 2D StyleGAN-like models which to-
tally rely on the latent code w to generate the corresponding
output: y = G(w), the 3D-aware generative model has an
extra input d which controls the pose of synthesized image:
y = G(w, d). This indicates that latent codes and generated
images are not bijections for 3D GANs since multi-view im-
ages of the same person can be synthesized using the same
w but different d. Taking this property into account, we
design a pseudo-multi-view training strategy, using a gen-
erated image in a different view from the source image to
improve the consistency of latent code projection. Fig. 3
illustrates the pipeline of our design.

Specifically, we first use an encoder to project the input
image x into the latent space W and get a high-dimension
intermediate latent vector wx = Eθ(x), where Eθ(·) is the
pSp encoder with parameters θ. Then, with the pretrained
EG3D generator G(·, ·) and input direction d estimated by
Deep3d Face Reconstruction [21], we synthesize the recon-
structed result x′ = G(wx, d). For a 2D GAN inversion
approach, this ground-truth and reconstructed image pair
(x, x′) is enough, but it is inadequate for 3D GANs due to
the non-bijective property.

Ideally, this issue can be addressed by feeding multi-
view images of a person into the encoder and minimizing
the distance between their output vectors. However, it is
difficult to obtain large-scale multi-view data, and we usu-
ally only have single-view images of a person in the training
dataset. To this end, we additionally sample a random di-
rection d̂ and use the generator to synthesize x̂ = G(wx, d̂)
with the same latent code. This output image x̂, which
is called a pseudo-input since it is generated by the 3D
GAN, is again fed into the encoder-decoder structure to get
wx̂ = Eθ(x̂) and x̂′ = G(wx̂, d).

Now, we can define our optimization objectives. Follow-
ing the usual inversion approaches, we apply some pixel-
wise loss functions between the input x and its reconstruc-
tion x′. Under the setting of our pseudo-multi-view input,
we add constraints between the two latent codes wx and
wx̂ for the purpose of maintaining 3D consistency. We fur-
ther restrain pixel-level distance between the second-order
output x̂′ synthesized with wx̂ and the origin input x to re-
inforce such constraint. In summary, this three-termed op-
timization can be written as:

min
θ

{L(x, x′) + ηL(x, x̂′) + L(wx, wx̂)}, (1)

Figure 3. The pipeline of our pseudo-multi-view training strategy.

where θ is the parameter of encoder, η is a trade-off param-
eter and L(·, ·) denotes the loss functions which will be fur-
ther discussed in Sec. 3.5. After optimizing the parameters
of the encoding network with this strategy, we can obtain
rather accurate 3D prior wx from any given input x.

3.3. Face Swapping via Latent Code Manipulation

To take full advantage of the prior extracted from the 3D
GAN model, we calculate the latent code for the swapped
face based on latent codes ws = Eθ(xs) of the source image
xs and wt = Eθ(xt) of the target image xt. Before that, we
step back and think about what these latent codes represent.

A face image usually contains different attributes such
as face shape, hairstyle, skin color, etc. With the encoder
discussed in Sec. 3.2, we embed all these attributes in the
high-dimension latent vectors. However, identity features
depending on the geometry of facial region (i.e., eyes, nose,
mouth, cheek, and so on) also implicitly lie in such latent
codes. For the task of face swapping, it is desirable if iden-
tity features can be disentangled from attribute features in
the latent code. Afterward, we can simply exchange the
identity part of the latent codes to achieve face swapping.

Since such identity and attributes are typically entangled
in the latent codes, we design an interpolation strategy be-
tween the source and target latent codes with learnable co-
efficients. Here, the source latent code ws plays a leading
role in the identity part while wt dominates the others. To
obtain these coefficients, we concatenate ws and wt to form
a 1 × 1024 vector and feed it into a four-layer Multilayer
Perceptron whose output ρ is the interpolation coefficient.

Moreover, StyleGAN-like [28,29] models share the style
mixing property of latent codes, which means that different
layers of latent codes control different parts of attributes.
For example, coarse spatial resolutions control high-level
aspects like face shape and orientation while fine resolution
latent control details like hair color. Motivated by this, we
also investigate the layer-wise attributes in EG3D and ob-
served similar properties. This allows us to generate more
desirable swapping results by only performing interpolation
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on part of the latent codes.
In summary, the latent code of swapped face wfs can be

obtained by:

w
(i)
fs =

{
ρ(i) × w

(i)
t + (1− ρ(i))× w

(i)
s i ∈ [5, 9],

w
(i)
t otherwise,

(2)
where the superscript i denotes the layer-wise expression of
wfs and the choice of layer, from layer 5 to layer 9, fol-
lows the definition of “middle” from StyleGAN [28], while
a slight modification is made since the dimension of EG3D
latent space is lower (i.e. W ∈ R14×512). To better disen-
tangle identity and attributes, we apply a Sigmoid-shaped
activation function with a factor λ = 100 to the ρ generated
by MLPs, enforcing the coefficients to be closer to 0 or 1:

ρ(i)new = (1 + e−λρ
(i)
old)−1. (3)

3.4. Joint Pivot Tuning

With the encoding network trained by the well-designed
optimization strategy in Sec. 3.2, we can project an input
image into a code in the 3D latent space. However, the in-
evitable reconstruction error will degrade the performance
of face swapping, which is a downstream task of 3D GAN
inversion. Also, we observe that directly swap faces via
latent manipulation leads to slight artifacts in the non-facial
region. Motivated by PTI [47], we adopt pivot tuning on the
parameters of the pretrained EG3D generator using a fixed
latent code wfs from Sec. 3.3, but in an optimizing direction
considering both reconstruction quality and face swapping
performance. The process of this “joint” pivot tuning is:

min
θ∗

{L(xs/t , Gθ∗(ws/t, ds/t)) +

L(xt ·Mf , Gθ∗(wfs, dt) ·Mf )},
(4)

where θ∗ is the parameter of EG3D generator, ds is the
direction of the source image, Mf is a binary mask that
shields facial region and L(·, ·) is the optimization con-
straint including MSE, LPIPS [58] and ID [19] losses.

Finally, with this finetuned generator and the latent code
calculated by Eq. 2, we can synthesize the swapped face y
in any direction d by:

y = Gθ∗(wfs, d). (5)

3.5. Objective Functions

GAN Inversion Losses. In Eq. 1, we generally use L(·, ·)
to denote the loss function of our pseudo-multi-view train-
ing strategy. Here, we give its detailed form. Following the
previous work [46], we use three different objectives for su-
pervising a pair of input image x and reconstruction x′ (and

the same for x̂′), including pixel-wise L1 loss, Learned Per-
ceptual Image Path Similarity [58] loss LLPIPS , and iden-
tity similarity loss Lid maximizing the cosine similarity be-
tween two identity embeddings estimated by ArcFace [19].
The total reconstruction loss between x and x′ is:

Lrec(x, x
′) = λ1L1(x, x

′) + λ2LLPISP (x, x
′)

+ λ3Lid(x, x
′),

(6)

where λ1, λ2 and λ3 are loss weights.
For the constraint between two latent codes, we adopt a

cosine similarity:

Llat(wx, wx̂) = 1− cos(wx, wx̂). (7)

Besides, we adopt the latent code regularization loss
from pSp [46], which constrains the generated latent vec-
tor in a region to be close to the average latent vector:

Lreg(x) = ∥Eθ(x)− x̄∥2, (8)

where x̄ is the average of 10000 randomly sampled latent
codes of EG3D generator. The overall loss function for 3D
GAN inversion is:

Linv = Lrec(x, x
′) + ηLrec(x, x̂

′) + Llat(wx, wx̂)

+Lreg(x).
(9)

Face Swapping Losses. For training our face swapping
module, we first design a masked pixel-wise L2 loss for the
face irrelevant region:

L2(xt, y) = ∥xt ·Mf − y ·Mf∥2, (10)

where Mf is the binary mask same as in Sec. 3.4. We gen-
erate this mask according to the face segmentation labels of
FFHQ [28] datasets. For 3D GAN inversion, we adopt the
LPIPS [58] loss LLPIPS(xt, y) to learn the perceptual sim-
ilarities and increase the quality of the generated images,
and the binary mask is also added before feeding the image
into the perceptual feature extractor.

For 3D-aware face swapping, we additionally synthesize
the swapped face ŷ in the view of the source image, cal-
culating both Lid(xs, y) and Lid(xs, ŷ) for better identity
transferring.

Besides, Lcolor is designed to maintain the skin color of
swapped faces:

Lcolor(xs, y) = ∥C̄(xs·(1−Mf ))−C̄(y·(1−Mf ))∥2, (11)

where C̄(·) denotes an average RGB value of the masked
region.

The overall loss function for training the face swapping
module is:

Lfs = L2(xt, y) + LLPIPS(xt, y) + Lid(xs, y)

+Lid(xs, ŷ) + Lcolor(xs, y).
(12)

12709



Figure 4. Qualitative comparison of face swapping on CelebA-HQ dataset. Compared with all these 2D approaches, our method extracts
facial shapes more accurately and transfers identity better. Moreover, since we conduct face swapping in latent space and a well-trained
3D GAN directly synthesizes the results, there are no obvious artifacts in the facial region.

4. Experiments
In this section, we first compare the proposed 3dSwap

with some state-of-the-art 2D-images-based face swapping
approaches. Furthermore, face swapping in a 3D-aware
manner and extra evaluation metrics designed for 3D face
swapping are analyzed. We finally carry out ablation stud-
ies to evaluate the effectiveness of our major design.

4.1. Implementation Details

In all experiments, Ranger optimizer [54] is applied to
train our networks with a learning rate of 1× 10−4. Hyper-
parameters are set as λ1 = λ3 = 1, λ2 = 0.8 in Eq. 6 and
η = 0.25 in Eq. 9. For training time, the inversion mod-
ule is trained for 1,000,000 steps on 4 NVIDIA RTX3090
GPUs for about 3 days while the face swapping module is
trained for 500,000 steps also on 4 GPUs for about 2 days.
The pivot tuning optimization during inference time takes
about 8 minutes on a single GPU.

4.2. Datasets

We conduct experiments on two datasets: 1) The
FFHQ [28] dataset contains 70,000 high-quality images of
human faces crawled from Flicker with considerable vari-
ation in age, ethnicity, and background. All images of
this dataset are in a resolution of 1024 × 1024. 2). The
CelebA-HQ [27] dataset is the high-quality version of the
large-scale face attributes dataset CelebA [35] which con-
tains 30,000 images in 1024 × 1024. Specifically, we train
our model on FFHQ, while comparison experiments are ex-

ecuted on CelebA-HQ. We follow the data preprocessing
way of EG3D to crop images according to facial landmarks
and resize them into a resolution of 512 × 512. Due to the
relatively expensive inference cost of 3dSwap mentioned in
Sec. 4.1, we operate the following comparison experiments
on 1000 source-target image pairs.

4.3. Comparison with 2D Face Swapping Methods

In this section, we compare the proposed 3dSwap with
four 2D swapping methods: SimSwap [14], MegaFS [60],
Infoswap [23] and Xu et al. [56]. These four methods
are representative GAN-based [14,23] and GAN-inversion-
based [56, 60] approaches in recent years with state-of-the-
art performance. Moreover, their official source codes are
publicly available for us to make fair comparisons.

Qualitative Comparison. The qualitative comparison re-
sults are shown in Fig. 4. Compared with all these 2D face
swapping approaches, our methods transfer more accurate
geometry features (i.e., facial contour) and detailed texture
features like eye color to targets, reflecting better identity-
transferring performance. Also, since we directly synthe-
size our final results with a well-trained generator with a
properly calculated latent code, the swapped face we gener-
ate is more realistic without obvious artifacts in the facial re-
gion. More qualitative results on CelebA-HQ are provided
in the supplementary material.

Quantitative Comparison. We adopt several evaluation
metrics in our quantitative experiments to show the effec-
tiveness of our model in Table 1. Following MegaFS [60],
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Method ID ↑ Pose ↓ Exp. ↓
SimSwap [14] 0.57 1.49 10.48
MegaFS [60] 0.48 3.95 14.08
InfoSwap [23] 0.61 2.50 10.63
Xu et al. [56] 0.54 2.66 12.94
Ours 0.72 1.68 13.76

Table 1. Quantitative Results. We compare our model with four
competing methods in ID Similarity for identity transferring and
Pose & Expression Error for attribute preserving.

we measure the ID similarity by calculating the cosine sim-
ilarity between face embeddings of the source and swapped
faces that are estimated by a pretrained face recognition net-
work [19]. Meanwhile, pose error computes the L2 distance
between the estimated Euler Angle [49] of the target and
swapped images. For expression error, we calculate an av-
erage distance among estimated facial landmarks [5].

For cosine similarity of identity, which is a crucial in-
dicator for face swapping since it evaluates the quality of
identity transferring, we significantly outperform all these
2D approaches. Such results and the visual effects in Fig. 4
together show that our method transfers identity better due
to the application of 3D prior. For attribute preserving, our
method which can be explicitly controlled by a camera pose
performs rather well in pose error since it is only slightly
weaker than SimSwap [14] but it reflects a poorer perfor-
mance compared with 2D approaches in expression error.
However, we can still claim that the proposed 3dSwap is su-
perior to 2D methods in identity transferring and performs
close to them in attribute preserving after considering all
three quantitative comparison results.

4.4. Further Analysis on 3D-Aware Face Swapping

As the first 3D-aware face swapping method, the pro-
posed 3dSwap is specialized in synthesizing multi-view-
consistent results. In this section, we conduct more exper-
iments in this track, showing some visualized comparisons
on 3D consistency and raising brand-new criteria for 3D-
aware face swapping.

Visualization on Multi-View Images. To compare with
2D face swapping approaches in fairness, we first synthe-
size multi-view target images by using our reconstruction
module and then apply SimSwap [14] and InfoSwap [23]
to them. The visualized results are shown in Fig. 5, where
results under different views are not as consistent as ours
(i.e. shape of nose, mouth, and eyebrows changes) for the
2D face swapping method. More artifacts can be discov-
ered when the target images are sideward. Please refer to
the video in the supplementary material for more intuitional
comparisons.

Figure 5. Visualized comparison on Multi-view results among In-
foswap [23], Simswap [14] and Ours.

Criteria for 3D-Aware Face Swapping. In Sec. 4.3, the
performance of identity transferring is evaluated based on
the face embedding estimated by pretrained face recogni-
tion networks [19]. However, such networks are not enough
robust to pose variance so it could be an unfair criterion for
face swapping. For 3D-aware face swapping, we can sim-
ply synthesize a swapped face in the view of the source im-
age. In this way, the “Aligned Identity Similarity” can be
a reasonable standard to evaluate 3D-aware face swapping
models. Moreover, inspired by human’s ability to recognize
a familiarized person from any direction, we synthesize the
swapped face into 9 different fixed poses and calculate an
average identity similarity together with images in source
and target views. We report our results of these two evalu-
ation metrics in Table 2 and images under these fixed poses
are shown in the supplementary material.

Metric Aligned ID Sim.↑ Average ID Sim. ↑
Ours 0.85 0.42

Table 2. Quantitative Results of New Metrics. We test the pro-
posed 3dSwap under the two new evaluation metrics.

4.5. Ablation Studies

In this section, we conduct ablation experiments on the
CelebA-HQ dataset to evaluate the effectiveness of the ma-
jor design of the proposed 3dSwap.
Effectiveness of 3D GAN Inversion. Since previous
works [12, 33] do not release the code of their 3D GAN-
inversion part, we follow the paper of EG3D to reproduce
a pivot tuning inversion [47] to the generator with the same
hyperparameters. In this section, we mainly compare our
design with the optimization-based latent code projection
of PTI on EG3D to show the effectiveness of the learning-
based inversion algorithm we use. For the sake of fairness,
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Figure 6. Qualitative Comparison on 3D GAN inversion. Compar-
ing to the directly application of pivot tuning inversion, our design
reconstruct details (i.e. shape and color of eyes, glasses etc.) better.

both models are tested on the same 2000 images in CelebA-
HQ and adopt a parameter tuning of the pretrained generator
for 500 steps.

We show the qualitative comparison results in Fig. 6.
Our design performs better in details reconstruction (i.e.,
eye shape, glasses, etc.) despite the optimization-based ap-
proach still recovers accurate face shape, hair color, etc.

For 3D GAN Inversion, we adopt the same metrics as
2D GAN inversion: L2 distance (or MSE loss) to calcu-
late the pixel-wise similarity, LPIPS [58] distance to eval-
uate the perceptual similarity and MS-SSIM [53] to show
the structural similarity. Additionally, we calculate ID sim-
ilarity to ensure the accuracy of the reconstruction, and the
results are reported in Table 3. Our design outperforms the
optimization-based approaches in all of the four criteria.

Method MSE ↓ LPIPS ↓ SSIM ↑ ID Sim.↑
EG3D with Opt. 0.0896 0.2761 0.6197 0.7318
Ours 0.0168 0.1049 0.7348 0.8616

Table 3. Quantitative Results on 3D GAN inversion. We com-
pare our 3D GAN inversion module with an optimization-based
inversion on EG3D under four common evaluation metrics in the
2D GAN inversion task.

Effectiveness of Style Mixing. As mentioned in Sec. 3.3,
we adopt style mixing and latent code interpolation for
face swapping. Here, we briefly show the effectiveness of
style mixing. A comparison of our model with and without
style mixing can be seen in Fig. 7. Identity can be ideally
transferred between sources and targets under both settings,
however, attributes including skin color, background, etc.
would be prominently affected if we interpolate in all lay-
ers of latent codes as shown in the third column.

Figure 7. Visualization of face swapping results with and without
style mixing.

5. Conclusion

We propose a novel 3D-aware face swapping method
3dSwap that generates high-fidelity and multi-view-
consistent swapped faces. To leverage both geometry and
texture prior of the 3D human face, we project the input
images into the latent space of the 3D-aware generative
model by introducing a learning-based inversion. A latent
code manipulation algorithm, consisting of style mixing and
latent code interpolation, is then designed to achieve 3D
GAN-inversion-based face swapping. We further bridge the
image quality between 2D generating and 3D rendering by
applying a joint pivot tuning. To the best of our knowledge,
3dSwap is the first 3D-aware face swapping method, thus
it sets a strong baseline for future research on 3D forgery
detection and face swapping.

Limitations. Since we need to project input images into
the latent space of a 3D GAN which contains far more in-
formation than that of 2D GANs, we tune the parameters of
the pretrained generator during testing, leading to a rather
long inference time. Moreover, since the final results are
rendered by a 3D generator, our method fails to accurately
reconstruct clothing, backgrounds, etc in the image limited
by the current development of 3D-aware generative models.

Broader Impacts. Although not the purpose of this work,
photorealistic swapped faces may potentially be abused. On
the other hand, our model can be used to generate high-
quality and multi-viewed examples to facilitate face forgery
detection [11].
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