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Figure 1. 3D-aware I2] translation: given a view-consistent 3D scene (the input), our method maps it into a high-quality target-specific

image. Our approach produces consistent results across viewpoints.

Abstract

Recent advances in 3D-aware generative models (3D-
aware GANs) combined with Neural Radiance Fields
(NeRF) have achieved impressive results. However no prior
works investigate 3D-aware GANSs for 3D consistent multi-
class image-to-image (3D-aware 121) translation. Naively
using 2D-I21 translation methods suffers from unrealistic
shape/identity change. To perform 3D-aware multi-class
121 translation, we decouple this learning process into a
multi-class 3D-aware GAN step and a 3D-aware 121 trans-

*The corresponding author.

lation step. In the first step, we propose two novel tech-
niques: a new conditional architecture and an effective
training strategy. In the second step, based on the well-
trained multi-class 3D-aware GAN architecture, that pre-
serves view-consistency, we construct a 3D-aware 121 trans-
lation system. To further reduce the view-consistency prob-
lems, we propose several new techniques, including a U-
net-like adaptor network design, a hierarchical representa-
tion constrain and a relative regularization loss. In exten-
sive experiments on two datasets, quantitative and qualita-
tive results demonstrate that we successfully perform 3D-
aware 121 translation with multi-view consistency. Code is
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available in 3DI2I.

1. Introduction

Neural Radiance Fields (NeRF) have increasingly gained
attention with their outstanding capacity to synthesize high-
quality view-consistent images [31,39,60]. Benefiting from
the adversarial mechanism [1 1], StyleNeRF [12] and con-
current works [4, 8, 44, 69] have successfully synthesized
high-quality view-consistent, detailed 3D scenes by com-
bining NeRF with StyleGAN-like generator design [22].
This recent progress in 3D-aware image synthesis has not
yet been extended to 3D-aware I2I translation, where the
aim is to translate in a 3D-consistent manner from a source
scene to a target scene of another class (see Figure 1).

A naive strategy is to use well-designed 2D-I2I trans-
lation methods [15, 16, 26,28,46,63,65,70]. These meth-
ods, however, suffer from unrealistic shape/identity changes
when changing the viewpoint, which are especially notable
when looking at a video. Main target class characteristics,
such as hairs, ears, and noses, are not geometrically realis-
tic, leading to unrealistic results which are especially dis-
turbing when applying I2I to translate videos. Also, these
methods typically underestimate the viewpoint change and
result in target videos with less viewpoint change than
the source video. Another direction is to apply video-to-
video synthesis methods [2, 3, 6,30, 53]. These approaches,
however, either rely heavily on labeled data or multi-view
frames for each object. In this work, we assume that we
only have access to single-view RGB data.

To perform 3D-aware 121 translation, we extend the the-
ory developed for 2D-I2I with recent developments in 3D-
aware image synthesis. We decouple the learning process
into a multi-class 3D-aware generative model step and a
3D-aware I2I translation step. The former can synthesize
view-consistent 3D scenes given a scene label, thereby ad-
dressing the 3D inconsistency problems we discussed for
2D-121. We will use this 3D-aware generative model to ini-
tialize our 3D-aware I2I model. It therefore inherits the ca-
pacity of synthesizing 3D consistent images. To train ef-
fectively a multi-class 3D-aware generative model (see Fig-
ure 2(b)), we provide a new training strategy consisting of:
(1) training an unconditional 3D-aware generative model
(i.e., StyleNeRF) and (2) partially initializing the multi-
class 3D-aware generative model (i.e., multi-class StyleN-
eRF) with the weights learned from StyleNeRF. In the 3D-
aware 121 translation step, we design a 3D-aware 121 trans-
lation architecture (Figure 2(f)) adapted from the trained
multi-class StyleNeRF network. To be specific, we use the
main network of the pretrained discriminator (Figure 2(b))
to initialize the encoder E of the 3D-aware 121 translation
model (Figure 2(f)), and correspondingly, the pretrained
generator (Figure 2(b)) to initialize the 3D-aware 121 gen-

erator (Figure 2(f)). This initialization inherits the capacity
of being sensitive to the view information.

Directly using the constructed 3D-aware 121 translation
model (Figure 2(f)), there still exists some view-consistency
problem. This is because of the lack of multi-view consis-
tency regularization, and the usage of the single-view im-
age. Therefore, to address these problems we introduce
several techniques, including a U-net-like adaptor network
design, a hierarchical representation constrain and a relative
regularization loss.

In sum, our work makes the following contributions:

* We are the first to explore 3D-aware multi-class I2I trans-
lation, which allows generating 3D consistent videos.

* We decouple 3D-aware I2I translation into two steps.
First, we propose a multi-class StyleNeRF. To train this
multi-class StyleNeRF effectively, we provide a new
training strategy. The second step is the proposal of a
3D-aware 121 translation architecture.

* To further address the view-inconsistency problem of 3D-
aware I2] translation, we propose several techniques: a U-
net-like adaptor, a hierarchical representation constraint
and a relative regularization loss.

* On extensive experiments, we considerably outperform
existing 2D-12I systems with our 3D-aware I12] method
when evaluating temporal consistency.

2. Related Works

Neural Implicit Fields. Using neural implicit fields
to represent 3D scenes has shown unprecedented quality.
[37,38,43,45,48,51] use 3D supervision to predict neural
implicit fields. Recently, NeRF has shown powerful per-
formance to neural implicit representations. NeRF and its
variants [31,39,66] utilize a volume rendering technique for
reconstructing a 3D scene as a combination of neural radi-
ance and density fields to synthesize novel views.

3D-aware GANs Recent approaches [5,9, 13,19, 35,40~

, 52,62, 68] learn neural implicit representations with-
out 3D or multi-view supervisions. Combined with the
adversarial loss, these methods typically randomly sam-
ple viewpoints, render photorealistic 2D images, and fi-
nally optimize their 3D representations. StyleNeRF [12]
and concurrent works [4,8,44,69] have successfully synthe-
sized high-quality view-consistent, detailed 3D scenes with
StyleGAN-like generator design [22]. In this paper, we in-
vestigate 3D-aware image-to-image (3D-aware I2]) transla-
tion, where the aim is to translate in a 3D-consistent manner
from a source scene to a target scene of another class. We
combine transfer learning of GANs [55,60].

121 translation. I2I translation with GAN [16,57,59,61]
has increasingly gained attention in computer vision. Based
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on the differences of the 121 translation task, recent works
focus on paired 121 translation [10, 16, 71], unpaired 121
translation [1, 18, 24,27,32, 36, 46, 50, 56, 58, 63, 64, 70],
diverse 121 translation [24,32,36,46,64,70] and scalable 121
translation [7, 29, 65]. However, none of these approaches
addresses the problem of 3D-aware I21. For the 3D scenes
represented by neural implicit fields, directly using these
methods suffers from view-inconsistency.

3. Method

Problem setting.  Our goal is to achieve 3D consistent
multi-class 121 translation trained on single-view data only.
The system is designed to translate a viewpoint-video con-
sisting of multiple images (source domain) into a new, pho-
torealistic viewpoint-video scene of a target class. Further-
more, the system should be able to handle multi-class target
domains. We decouple our learning into a multi-class 3D-
aware generative model step and a multi-class 3D-aware 121
translation step.

3.1. Multi-class 3D-aware generative model

Let Zrgs € RE*XWX3 be in the image domain. In this
work, we aim to map a source image into a target sample
conditioned on the target domain label I € {1,...,L} and
a random noise vector z € RZ. Let vector = and d be 3D
location and 2D viewing direction, respectively.

Unconditional 3D-aware generative model. StyleN-
eRF [12] introduces a 5D function (3D location x and 2D
viewing direction d) to predict the volume density ¢ and
RGB color ¢. Both o and c are further used to render an
image. As shown on Figure 2(a) StyleNeRF consists of
four subnetworks: a mapping network M, a fully connected
layer F', a generator GG and a discriminator D. The map-
ping network M takes random noise z as input, and outputs
latent code w, which is further fed into both the fully con-
nected layer F' and generator G. Given the 3D location x,
the 2D viewing direction d and latent code w, StyleNeRF
renders the feature map f:

p(t) = exp (— /0 to(r(s))dg) o) O
c,0 =F(z,d,w),

where 7(t) = o + td (o is the camera origin) is a camera
ray for each feature representation position. Generator G
takes as an input the representation f and the latent code
w, and outputs view-consistent photo-realistic novel result
Irap. The discriminator D is to distinguish real images
Irap from generated images I RGB-

The fully objective of StyleNeRF is as following:

EG = Esz,pN'P [U(D(G(F(Z7 Z, d)a M(Z)))]
+ Erpopopan (V(—DIreB) + AMIVD(Ires)|?)] )
+ B - LNeRF-path

where v(u) = —log(l + exp(—u)), and pya, is the data
distribution. L£NerF-pah 1S NeRF path regularization used in
StyleNeRF. We also set 5 = 0.2 and A = 0.5 following
StyleNeRF.

Conditional 3D-aware generative model.  Figure 2(b)
shows the proposed multi-class 3D-aware generative model
(i.e., multi-class StyleNeRF). Compared to the StyleNeRF
architecture (Figure 2(a)), we introduce two mapping net-
works: M7 and M. The mapping network M; outputs the
latent code w1. While the mapping network M5 takes as in-
put the concatenated noise z and class embedding e; 45, and
outputs the latent code ws. The second mapping network
My aims to guide the generator G to synthesize a class-
specific image. Here we do not feed the latent code w- into
NeRF’s fully connected layer F, since we expect F' to learn
a class-agnostic feature representation, which contributes to
perform multi-class 3D-aware 121 translation.

To be able to train multi-class StyleNeRF we adapt the
loss function. We require D to address multiple adversarial
classification tasks simultaneously, as in [33]. Specifically,
given output D € RE, we locate the I-th class response.
Using the response for the I-th class, we compute the ad-
versarial loss and back-propagate gradients:

Lo =Eonzamp, ap, ['U(D(G(jRGB))l—th}

+Ernoppu [V(-DUIraB)emn + NIV DIres), %))
+ B - LNeRF-path-
3)

We initialize the multi-class StyleNeRF with the weights
learned with the unconditional StyleNeRF (E.q. 2), since
the training from scratch fails to convergence. Results of
this are show in Figs. 7. To be specific, we directly copy
the weights from the one learned from StyleNeRF for M7,
F and G with the same parameter size. For the mapping
network My, we duplicate the weight from M except for
the first layer, which is trained from scratch because of the
different parameter sizes. The discriminator is similarly ini-
tialized except for the last layer, which is a new convolution
layer with L output channels. Using the proposed initializa-
tion method, we successfully generate class-specific photo-
realistic high-resolution result.

3.2. 3D-aware 12I translation

Figure 2 (f) shows the 3D-aware 121 translation network
at inference time. It consists of the encoder E, the gener-
ator G and two mapping networks M; and M. Inspired
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Figure 2. Overview of our method. (a) We first train a 3D-aware generative mode (i.e., StyleNeRF) with single-view photos. (b) We extend
StyleNerf to multi-class StyleNerf. We introduce an effective training strategy: initializing multi-class StyleNeRF with StyleNeRF. (c) The
training of the proposed 3D-aware I21 translation. It consists of the encoder E, the adaptor A, the generator G' and two mapping networks
M and M,. We freeze all networks except for training the adaptor A. The encoder is initialized by the main networks of the pretrained
discriminator. We introduce several techniques to address the view-consistency problems: including a U-net-like adaptor A, (d) relative
regularization loss and (e) hierarchical representation constrain. (f) Usage of proposed model at inference time.

by Deepl2I [61], we use the pretrained discriminator (Fig-
ure 2(b)) to initialize the encoder F of the 3D-aware 121
translation model (Figure 2(f)), and correspondingly, the
pretrained generator (Figure 2(b)) to initialize the 3D-aware
121 generator. To align the encoder with the generator, [01]
introduces a Resnet-like adaptor network to communicate
the encoder and decoder. The adaptor is trained without
any real data. However, directly using these techniques
for 3D-aware 121 translation still suffers from some view-
consistency problems. Therefore, in the following, we in-
troduce several designs to address this problem: a U-net-
like adaptor network design, a hierarchical representation
constrain and a relative regularization loss.

U-net-like adaptor.  As shown in Figure 2(c), to over-
come 3D-inconsistency in the results, we propose a U-net-
like adaptor A. This design contributes to preserve the spa-
tial structure of the input feature. This has been used before
for semantic segmentation tasks and label to image trans-
lation [17]. In this paper, we experimentally demonstrate
that the U-net-like adaptor is effective to reduce the incon-
sistency.

Hierarchical representation constrain. As shown
in Figure 2(e), given the noise z, 3D location x and
2D viewing direction d the fully connected layer F' ren-
ders the 3D-consistent feature map f = F(x,d,w;) =
F(x,d, M1(z)). We further extract the hierarchical repre-
sentation {G(f, w1, ws)} as well as the synthesized im-
age Irap = G(f, w1, wsy). Here G(f,w;,ws)y is the

k-th(k = m,...,n,(n > m)) ResBlock ! output of the
generator (G. We then take the generated image Irep as
input for the encoder E: E(Ipgp), which is fed into the
adaptor network A, thatis f = A(E(Irp)). In this step,
our loss is

tanlr-5],

For the intermediate layers, we propose a hierarchical repre-
sentation constrain. Given the output f and the latent codes
(i.e., wy and wo) 2, we similarly collect the hierarchical

feature {G(f, wy, wg)k}. The objective is

L =Y |GF wiw) = G(f w0 - s)
k

In this step, we freeze every network except for the U-net-
like adaptor which is learned. Note that we do not access to
any real data to train the adaptor, since we utilize the gener-
ated image with from the trained generator (Figure 2(b)).

Relative regularization loss. We expect to input the con-
sistency of the translated 3D scene with single-image reg-
ularization * instead of the images from the consecutive
views. We propose a relative regularization loss based on
neighboring patches. We assume that neighboring patches

! After each ResBlock the feature resolution is half of the previous one
in the encoder, and two times in generator. In the generator, the last output
is image.

2Both w1 and w2 are the ones used when generating image Iren

3More precisely, that is the feature map in this paper.
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Table 1. Comparison with baselines on TC and FID metrics.* de-
notes that we used the results provided by StarGANV2. { means
that we used the pre-trained networks provided by authors.

are equivalent to that on corresponding patches of two con-
secutive views. For example, when inputting multi-view
consistent scene images, the position of eyes are consis-
tently moving. The fully connected layers (i.e., NeRF
mode) I renders the view-consistent feature map f, which
finally decides the view-consistent reconstructed 3D scene.
Thus, we expect the output f of the adaptor A to obtain the
view-consistent property of the feature map f.

We randomly sample one vector from the feature map f
(e.g., red square in (Figure 2(d))), denoted as f". Then we
sample the eight nearest neighboring vectors of f" (dark
green square in Figure 2(d))), denoted by f"°° where ¢ =
1, ..., 8isthe neighbor index. Similarly, we sample vectors
f" and f'"’E from the feature map f' (red and dark green
dash square in Figure 2(d))). We then compute the patch
difference:

dp=frefre, dyt = fro fre, (©)

where © represents vector subtraction. In order to pre-
serve the consistency, we force these patch differences to
be small:
— || gme _ gme
Lo =y -

(7

The underlying intuition is straightforward: the difference
vectors of the same location should be most relevant in the
latent space compared to other random pairs.

The final objective is

1

L=Lyg+Ls+ LR ®)

4. Experiments

4.1. Experimental setup

Training details. We use the trained StyleNeRF to par-
tially initialize our multi-class StyleNeRF architecture. We
adapt the structure of the multi-class StyleNeRF to the 3D-
aware I2I architecture. The proposed method is imple-
mented in Pytorch [47]. We use Adam [25] with a batch size

Dataset CelebA-HQ AFHQ Ini. Ada. Hrc. Rrl. TC| FID|

Method TCY FIDJ, TC) FIDJ, ?{ g II:'I z ;g;ﬁ g?

*MUNIT 30.240 31.4 28.497 41.5 v v v N 2204 16.1

*DRIT 35.452 52.1 25.341 95.6 Y Y Y Y 2.067 15.3

*MSGAN 31.641 33.1 34.236 61.4

StarGANv2 10.250 13.6 3.025 16.1 Table 2. Impact of several components in the performance on
Ours (3D) 3.743 223 2.067 153 AFHQ. The second row is the case where the 3D-aware 121 trans-
TC| (unc)FID) TC| (unc)FID/ lation model is initialized by weights learned from the multi-class
tLiu et al. [34] 13315 178 3.462 20.0 StylyNeRF. Then it is trained with a Resnet-based adaptor and L1
StarGANv2 10.250 122 3.025 9.9 loss between the representations f and f. The proposed tech-
tKunhee ef al. [23] 10.462 6.7 3.241 10.0 niques continuously improve the consistency and performance.
Ours (3D) 3.743 187 2.067 14 Ini.: initialization method for multi-class StyleNeRF, Ada.: U-

net-like adaptor, Hrc.: Hierarchical representation constrain, Rrl:
Relative regularization loss.

3D-aware I2I translation

Input

Output

_'_'_'_'_'_'_'_3ﬁWaFgéﬁatiWFem5_'

Figure 3. (Top) Using a single mapping network which takes as
input the concatenated class embedding and the noise. We find it
fails to generate target-specific realistic image. (Bottom) we use
two mapping networks without concatenating their outputs like the
proposed method. This design fails to generate 3D-aware results.

of 64, using a learning rate of 0.0002. We use 2x Quadro
RTX 3090 GPUs (24 GB VRAM) to conduct all our exper-
iments. We show the network details and more results on
Supp. Mat..

Datasets. Our experiments are conducted on the Animal
Faces (AFHQ) [7] and CelebA-HQ [21] datasets. AFHQ
contains 3 classes, each one has about 5000 images. In
CelebA-HQ, we use gender as a class, with ~10k(10057)
male and ~18k(17943) female images in the training set.
In this paper, all images are resized to 256 x 256.
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Output Input
(StarGANv2)

Output
(Ours)

Figure 4. Comparative results between the proposed method and StarGANv2. We observe that StarGANv2 suffers from underestimating
viewpoint changes when changing the input viewpoint ( first column). It also leads to identity change (third and fourth columns), and a
geometrically unrealistic ear (last two columns).

Figure 5. The generated images of (top) G (f, w1, ws) and (bot-
tom) G(f, w1, w2), which show that we correctly align the out-
puts of both the NeRF mode F' and the adaptor A.

Baselines. We compare to MUNIT [15], DRIT [28], MS-
GAN [20], StarGANV2 [7], [23] and [34], all of which per-
form image-to-image translation.

Evaluation Measures. We employ the widely used

metric for evaluation, namely Fréchet Inception Distance
(FID) [14]. We also propose a new measure in which we

combine two metrics, one which measures the consistency
between neighboring frames (which we want to be low), and
another that measures the diversity over the whole video
(which we would like to be high). We adopt a modified
temporal loss (TL) [54]. This temporal loss computes the
Frobenius difference between two frames to evaluate the
video consistency. Only considering this measure would
lead to high scores when neighboring frames in the gener-
ated video are all the same. For successful 3D-aware 121
translation, we expect the system to be sensitive to view
changes in the source video and therefore combine low con-
secutive frame changes with high diversity over the video.
Therefore, we propose to compute LPIPS [67] for each
video (VLPIPS), which indicates the diversity of the gener-
ated video sequence. To evaluate both the consistency and
the sensitiveness of the generated video, we propose a new
temporal consistency metric (TC):

TC = TL/vLPIPS. )

Due to the small changes between two consecutive views,
for each video we use frame interval 1, 2 and 4 in between
to evaluate view-consistency. Note that a lower TC value is
better.

4.2. Quantitative and qualitative results.

We evaluate the performance of the proposed method on
both the AFHQ animal and CelebA human face dataset. As
reported in Table 1, in terms of TC the proposed method
achieves the best score on two datasets. For example, we
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Figure 6. Interpolation between the dog and wildlife classes.

have 3.743 TC on CelebA-HQ, which is better than Star-
GANV2 (10.250 TC). This indicates that our method dra-
matically improves consistency. As reported in Table 1 (up),
across both datasets, the proposed method consistently out-
performs the baselines with significant gains in terms of
FID and LPIPS, except for StarGANv2 which obtains su-
perior results. However, on AFHQ we achieve better FID
score than StarGANv2. Kunhee ef al. [23] reports the un-
conditional FID ((unc)FID) value which is computed be-
tween synthesized images and training samples instead of
each class. As reported in Table 1 (bottom), We are able
to achieve completing results on uncFID metrics. Note that
while 2D I2I translation (e.g., StarGANv2) can obtain high-
quality for each image, they cannot synthesize images of the
same scene with 3D consistency, and suffers from unreal-
istic shape/identity changes when changing the viewpoint,
which are especially notable when looking at a video.

In Figures 1,4, we perform 3D-aware 121 translation.
When changing the input viewpoint (Figure 4 (first two
columns)), the outputs of StarGANv2 do not maintain the
correct head pose, and underestimate the pose changes with
respect to the frontal view. To estimate that this is actually
the case, we also compute the diversity (i.e., VLPIPS) in a
single video sequence. For example, both StarGANv2 and
our method are 0.032 and 0.101 on CelebA-HQ. This con-
firms that the diversity (due to pose changes) is lowest for
StarGANvV2. More clearly showing the limitations of stan-
dard 121 methods for 3D-aware 121, we observe that Star-
GANV2 suffers from unrealistic changes when changing the
viewpoint. For example, when translating the class cart to
wildlife, the generated images changes from wolf to leop-

ard when varying the viewpoint (Figure 4 (third and fourth
columns)). Also, the main target class characteristics, such
as ears, are not geometrically realistic, leading to unrealis-
tic 3D scene videos. Our method, however, eliminates these
shortcomings and performs efficient high-resolution image
translation with high 3D-consistency, which preserves the
input image pose and changes the style of the output im-
ages. We show high-resolution images (1024 x 1024) on
Supp. Mat..

4.3. Ablation study

Conditional 3D-aware generative architecture In this
experiment, we verify our network design by comparing
it with two alternative network designs. As shown in Fig-
ure 3(up), we explore a naive strategy: using one mapping
which takes as input the concatenated class embedding and
the noise. In this way, the fully connected network F' out-
puts the class-specific latent code w, which is fed into the
fully connected network F' to output theclass-specific rep-
resentation f. Here, both the latent code w and the repre-
sentation f are decided by the same class. However, when
handling 3D-aware multi-class 121 translation task, the fea-
ture representation f is combined with the latent code w
from varying class embeddings, which leads to unrealistic
image generation (Figure. 3(up)).

As shown in Figure 3(bottom), we utilize two mapping
networks without concatenating their outputs like the pro-
posed method. This design guarantees that the output of
the fully connected layers F' are class-agnostic. We exper-
imentally observe that this model fails to handle 3D-aware
generation.

Effective training strategy for multi-class 3D-aware gen-
erative model. We evaluate the proposed training strategy
on AFHQ and CelebA-HQ datasets. We initialize the pro-
posed multi-class 3D 121 architecture from scratch and the
proposed method, respectively. As shown on Figure 7 (up),
the model trained from scratch synthesizes unrealistic faces
on CelebA-HQ dataset, and low quality cats on AFHQ. This
is due to the style-based conditional generator which is hard
to be optimized and causes mode collapse directly [49]. The
proposed training strategy, however, manages to synthesize
photo-realistic high-resolution images with high multi-view
consistency. This training strategy first performs uncondi-
tional learning, which leads to satisfactory generative abil-
ity. Thus, we relax the difficulty of directly training the
conditional model.

Alignment and interpolation. Figure 5 exhibits the out-
puts of the generator when taking as input the feature repre-
sentation f and f. This confirms that the proposed method
successfully aligns the outputs of the fully connected lay-
ers F' and the adaptor A. Figure 6 reports interpolation by
freezing the input images while interpolating the class em-
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Multi-class StyleNeRF

Multi-class StyleNeRF (Ours)

Figure 7. Qualitative results of multi-class StyleNeRF training from scratch (up) and from the proposed strategy (bottom).

bedding between two classes. Our model still manages to
preserve the view-consistency, and generate high quantity
images with even given never seen class embeddings.

Techniques for improving the view-consistency. We per-
form an ablation study on the impact of several design ele-
ments on the overall performance of the system, which in-
cludes the proposed initialization 3D-aware 121 translation
model (Ini.), U-net-like adaptor (Ada.), hierarchical repre-
sentation constrain (Hrc.) and relative regularization loss
(Rrl.). We evaluate these four factors in Table 2. The re-
sults show that only using the proposed initialization (the
second row of the Table 2) has already improved the view-
consistency comparing to StarGANv2 (Table 1). Utilizing
either U-net-like adaptor (Ada.) or hierarchical represen-
tation constrain (Hrc.) further leads to performance gains.
Finally we are able to get the best score when further adding
relative regularization loss (Rrl.) to the 3D-aware 121 trans-
lation model.

5. Conclusion

In this paper we first explore 3D-aware 121 translation.
We decouple the learning process into a multi-class 3D-
aware generative model step and a 3D-aware 121 transla-
tion step. In the first step, we propose a new multi-class
StyleNeRF architecture, and an effective training strategy.
We design the 3D-aware 121 translation model with the well-
optimized multi-class StyleNeRF model. It inherits the ca-
pacity of synthesizing 3D consistent images. In the second
step, we propose several techniques to further reduce the
view-consistency of the 3D-aware 121 translation.
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