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Abstract

We present All-Pairs Multi-Field Transforms (AMT), a
new network architecture for video frame interpolation. It
is based on two essential designs. First, we build bidirec-
tional correlation volumes for all pairs of pixels, and use
the predicted bilateral flows to retrieve correlations for up-
dating both flows and the interpolated content feature. Sec-
ond, we derive multiple groups of fine-grained flow fields
from one pair of updated coarse flows for performing back-
ward warping on the input frames separately. Combining
these two designs enables us to generate promising task-
oriented flows and reduce the difficulties in modeling large
motions and handling occluded areas during frame interpo-
lation. These qualities promote our model to achieve state-
of-the-art performance on various benchmarks with high
efficiency. Moreover, our convolution-based model com-
petes favorably compared to Transformer-based models in
terms of accuracy and efficiency. Our code is available at
https://github.com/MCG-NKU/AMT.

1. Introduction
Video frame interpolation (VFI) is a long-standing video

processing technology, aiming to increase the temporal res-

olution of the input video by synthesizing intermediate

frames from the reference ones. It has been applied to

various downstream tasks, including slow-motion genera-

tion [22, 61], novel view synthesis [11, 29, 71], video com-

pression [60], text-to-video generation [52], etc.

Recently, flow-based VFI methods [17,22,26,34,53,69]

have been predominant in referenced research due to their

effectiveness. A common flow-based technique estimates

bilateral/bidirectional flows from the given frames and then

propagates pixels/features to the target time step via back-

ward [2, 17, 26] or forward [14, 37, 38] warping. Thus, the

quality of a synthesized frame relies heavily on flow esti-

mation results. In fact, it is cumbersome to approximate

intermediate flows through pretrained optical flow models,
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Figure 1. Performance vs. number of parameters and FLOPs. The

PSNR values are obtained from the Vimeo90K dataset [65]. We

use a 720p frame pair to calculate FLOPs. Our AMT outperforms

the state-of-the-art methods and is with higher efficiency.

and these flows are unqualified for VFI usage [14, 17].

A feasible way to alleviate this issue is to estimate task-
oriented flows in an end-to-end training manner [22, 26,

32, 65]. However, some major challenges, such as large

motions and occlusions, are still pending to be resolved.

These challenges mainly arise from the defective estimation

of optical flows. Thus, a straightforward question should

be: Why do previous methods have difficulties in predict-

ing promising task-oriented flows when facing these chal-

lenges? Inspired by the recent studies [26, 65] that demon-

strate task-oriented flow is generally consistent with ground
truth optical flow but diverse in local details, we attempt to

answer the above question from two perspectives:

(i) The flow fields predicted by existing VFI methods

are not consistent enough with the true displacements, es-

pecially when encountering large motions (see Fig. 2). Ex-

isting methods mostly adopt the UNet-like architecture [48]

with plain convolutions to build VFI models. However, this

type of architecture is vulnerable to accumulating errors at

early stages when modeling large motions [45, 56, 63, 70].

As a result, the predicted flow fields are not accurate.

(ii) Existing methods predict one pair of flow fields, re-
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Figure 2. Qualitative comparisons of estimated flows and the inter-

polated frames. Our AMT guarantees the general consistency of

intermediate flows and synthesizes fast-moving objects with oc-

cluded regions precisely, while the previous state-of-the-art IFR-

Net [26] fails to achieve them.

stricting the solution set in a tight space. This makes them

struggle to handle occlusions and details around the mo-

tion boundaries, which consequently deteriorates the final

results (see Fig. 2 and Fig. 5).

In this paper, we present a new network architecture,

dubbed All-pairs Multi-field Transforms (AMT), for video

frame interpolation. AMT explores two new designs to im-

prove the fidelity and diversity of predicted flows regarding

the above two main shortcomings of previous works.

Our first design is based on all-pairs correlation in

RAFT [56], which adequately models the dense correspon-

dence between frames, especially for large motions. We

propose to build bidirectional correlation volumes instead

of unidirectional one and introduce a scaled lookup strat-

egy to solve the coordinate mismatch issue caused by the

invisible frame. Besides, the retrieved correlations assist

our model in jointly updating bilateral flows and the inter-

polated content feature in a cross-scale manner. Thus, the

network guarantees the fidelity of flows across scales, lay-

ing the foundation for the following refinement.

Second, considering that predicting one pair of flow

fields is hard to cope with the occlusions, we propose to

derive multiple groups of fine-grained flow fields from one

pair of updated coarse bilateral flows. The input frames can

be separately backward warped to the target time step by

these flows. Such diverse flow fields provide adequate po-

tential solutions for each pixel to be interpolated, particu-

larly alleviating the ambiguity issue in the occluded areas.

We examine the proposed AMT on several public bench-

marks with different model scales, showing strong perfor-

mance and high efficiency in contrast to the state-of-the-

art (SOTA) methods (see Fig. 1). Our small model outper-

forms IFRNet-B, a SOTA lightweight model, by +0.17dB

PSNR on Vimeo90K [65] with only 60% of its FLOPs

and parameters. For large-scale setting, our AMT exceeds

the previous SOTA (i.e., IFRNet-L) by +0.15 dB PSNR on

Vimeo90K [65] with 75% of its FLOPs and 65% of its pa-

rameters. Besides, we provide a huge model for comparison

with the SOTA transformer-based method VFIFormer [34].

Our convolution-based AMT shows a comparable perfor-

mance but only needs nearly 23× less computational cost

compared to VFIFormer [34]. Considering its effectiveness,

we hope our AMT could bring a new perspective for the ar-

chitecture design in efficient frame interpolation.

2. Related Work

Video Frame Interpolation: The development of deep

learning has spawned a large amount of VFI methods.

These methods can be roughly divided into three categories:

kernel-based [5,6,27,39,40,44], hallucination-based [8,23,

25, 50], and flow-based ones [1, 2, 17, 26, 32, 37, 38, 64, 65].

Kernel-based methods attempt to capture motion with

dynamic kernel weights [39, 40, 44] or/and offsets [5, 6, 10,

27]. With the help of off-the-shelf architectures [9, 13, 49,

57], hallucination-based methods directly generate the in-

terpolated frame from features of input pairs. Thanks to

the robustness of optical flow, flow-based methods have be-

come mainstream in VFI. Previous methods resort to a pre-

trained flow model [37, 64] or a jointly trained estimation

module [26, 32, 65] to obtain the flow estimation. For gen-

erating task-oriented flows, some methods [17, 26] propose

intermediate supervisions to distill motion knowledge from

the pseudo ground truth. Subsequently, backward warp-

ing [2,17,26] and forward warping [37,38,41] are standard

schemes in the usage of estimated flows. A UNet-like ar-

chitecture is a common choice [1, 2, 37, 38] to obtain the

final synthesized frame, and the transformer [31, 58], as a

prevailing architecture, is introduced [34, 50, 68] for a bet-

ter synthesis. Recent works [26,46] discard an independent

synthetic network in consideration of efficiency. However,

these methods suffer from the inability in modeling large

motions and in dealing with occlusions.

Task-Oriented Flow: Initially, flow-based video process-

ing methods [1, 22, 42, 64] estimate flows and process im-

ages individually. However, this two-step pipeline ignores

the gap between true optical flow with task-specific ob-

jectives, which could be suboptimal for a specific task.

ToFlow [65] proposes the concept of task-oriented flow, fa-

cilitating the development of video processing methods [3,

15,28,30,66] significantly. Typically, the VFI-oriented flow

is generally consistent with the true flow while diverses in

detail (e.g., occluded regions). Super Slomo [22] introduces

a mask to handle the occlusion explicitly and provides a

standard formulation for synthesizing intermediate frames,

which utilizes by following methods [7, 17, 26, 51] up to

now. IFRNet [26] and RIFE [17] propose task-oriented flow

distillation losses to provide a prior of intermediate flow in

training. Different from them, we consider the estimation

of task-oriented flows from the perspective of architecture
design. We introduce all-pairs correlation to strengthen the
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Figure 3. Architecture overview of the proposed AMT. Firstly, the input frames are sent to the correlation encoder to extract features,

which are used to construct bidirectional correlation volumes. Then, the context encoder extracts pyramid features of visible frames and

generates initial bilateral flows and interpolated intermediate feature. Next, we use bilateral flows to retrieve bidirectional correlations for

jointly updating flow fields and the intermediate feature at each level. Finally, we generate multiple groups of flow fields, occlusion masks,

and residuals based on the coarse estimate for interpolating the intermediate frame.

ability in motion modeling, which guarantees the consis-

tency of flows on the coarse scale. At the finest scale, we

employ multi-field refinement to ensure the diversity for the

flow regions that need to be task-specific.

Cost Volume: Cost volume is introduced as a representa-

tion of matching costs in numerous vision tasks [12,20,24].

In the deep learning era, the concept of cost volume is also

proved to be effective in optical flow estimation [16, 19, 55,

56, 67]. Among these works, the most influential ones are

PWC-Net [55] and RAFT [56]. In VFI, the existing meth-

ods [21,42,43,62] attempt to introduce the cost volume fol-

lowing the scheme of PWC-Net. However, those methods

not only search the cost volume in a local region but also

depend on inaccurate features warped from reference ones,

resulting in a limited performance gain from the cost vol-

ume. Instead, the proposed AMT is based on RAFT, which

enlarges the search space by iteratively updating the flow

field with all-pairs correlation, and only constructs cost vol-

umes between the visible frames. Besides, we involve many

novel and task-specific designs beyond RAFT. The details

are described in Sec. 3 and our supplement.

3. Method

Given a pair of input frames (I0, I1), we aim to synthe-

size an intermediate frame It at a target time step t, where

0 < t < 1. Our AMT is a one-stage flow-based method,

in which bilateral flows and the interpolated intermediate

feature are updated and upsampled jointly. As shown in

Fig. 3, it is composed of three main components: 1) an en-

coder for extracting features and initial bilateral flows si-

multaneously, 2) multi-scale bidirectional correlation vol-

umes for jointly updating bilateral flows and intermediate

features at coarse scales, and 3) a multi-field refinement op-

erator for interpolating the target frame with multiple flow

groups at the finest scale. Benefiting from such designs,

the estimated motion vectors at coarser scales are generally

consistent with the ground truth displacements. Meanwhile,

they are diverse in fine-grained details at the finest scale,

which meets the requirement of task-oriented flow. These

designs also enable our AMT to capture large motions and

successfully handle occlusion regions with high efficiency.

3.1. Initial Flow and Feature Extraction

We employ two separate feature extractors. They are ap-

plied to the input pair (I0, I1), but for different purposes.

The first is the correlation encoder, which maps the input

frames to a pair of dense features for constructing bidirec-

tional correlation volumes. We can obtain the pair of fea-

tures g0,g1 ∈ R
H/8×W/8×D at 1/8 the input image resolu-

tion with D channels.

The second is the context encoder, which outputs the ini-

tial interpolated intermediate feature X1
t and predicts the

initial bilateral flows F 1
t→0 and F 1

t→1. Their spatial reso-

lution is the same as the output of the correlation encoder.

Besides, the pyramid features {X l
0, X

l
1 | l ∈ {1, 2, 3}} for
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frames I0, I1 are extracted by context encoder for further

progressive warping. The architectural details of them can

be found in our supplement.

3.2. All-Pairs Correlation

Bidirectional Correlation Volumes: Similar to

RAFT [56], we compute the dot-product similarities

between all pairs of features vectors for constructing a 4D

correlation volume. Given the pair of features g0,g1, we

can obtain the correlation volume C through:

Cijkl =
∑

h

g0,ijh · g1,klh, C ∈ R
H
8 ×W

8 ×H
8 ×W

8 (1)

For further measuring similarities across scales, the last two

dimensions of the correlation volume are downsampled by

a repeated 2D average pooling layer with a kernel size of

2 and a stride of 2. We thus obtain a 4-level correlation

pyramid {C1,C2,C3,C4}.

However, the correlation pyramid in RAFT is unidirec-
tional. It only reflects multi-scale correspondences from

I0 to I1. We thereby term it as the forward correlation

pyramid. The unidirectional correspondence is insufficient

for the VFI task, as the motions are usually asymmet-

ric [43, 64]. Instead of recomputing the matrix multiplica-

tion, we directly transpose the correlation volume C to rep-

resent the correspondence in the opposite direction. After

obtaining the transposed correlation volume CT , we per-

form the same pooling operation to form the backward cor-

relation pyramid {CT
1 ,C

T
2 ,C

T
3 ,C

T
4 }. Note that the bidi-

rectional correlation volumes only need to compute once.

The compact global representations assist our network in

being aware of large motions in an efficient way.

Correlation Scaled Lookup: After constructing the bidi-

rectional correlation volumes, we intend to query correla-

tion feature maps using estimated bilateral flows F l
t→0 and

F l
t→1. In RAFT, the lookup operation can be directly per-

formed since its estimated flow and the correlation volume

share an identical coordinate system. For example, the mo-

tion F0→1 from frame 0 to frame 1 and the corresponding

correlation volume are all based on the coordinate system

of the frame 0. Thus, the correlation feature maps can be

correctly sampled by the matched flow field. However, for

frame interpolation, we can only build correlation volumes

from visible reference frames (i.e., I0, I1) but estimate the

flows (i.e., F l
t→0 and F l

t→1) of an invisible intermediate

frame It. So there exists a mismatch between coordinate
systems, which causes unfaithful correlation lookups and

further influences the updating of the flows. A straightfor-

ward solution to this problem is transferring bilateral flows

F l
t→0 and F l

t→1 to bidirectional flows F l
0→1 and F l

1→0.

To achieve this goal, we simply scale the estimated

bilateral flows based on locally smooth motion assump-

tion [22,42,43]. Specifically, we assume the moving objects

are partially overlap within a small time interval. Thus, the

bilateral flows and bidirectional flows at the same position

are generally consistent in direction but different in mag-

nitude. So the bidirectional flows F l
0→1 and F l

1→0 can be

approximated by:

F l
0→1 =

1

1− t
F l
t→1, F l

1→0 =
1

t
F l
t→0. (2)

Subsequently, a lookup operation analogous to that in

RAFT performs on bidirectional correlation volumes

through approximated bidirectional flows. We construct

two lookup windows centered by bidirectional flows with

a predefined radius. The lookup operations in the windows

are conducted on all levels of the bidirectional correlation

pyramids. The retrieved bidirectional correlations are con-

catenated into one features map for further jointly updating

bilateral flows and the interpolated intermediate feature.

Updating with Retrieved Correlations: While RAFT up-

dates and maintains the flow prediction at a single resolu-

tion, we predict the bilateral flows in a coarse-to-fine man-

ner following most flow-based VFI methods [17,26,37,38].

This is because that the features of the input pair need to

be progressively warped based on the latest flow predic-

tions for generating a faithful intermediate feature. Given

the reciprocal relationship between bilateral flow fields and

intermediate features in VFI task [17, 26, 32], we also up-

date and upsample the intermediate feature along with the

intermediate motions.

Specifically, during the update stage at each spatial level

l, we employ an update block to jointly predict the resid-

uals of the bilateral flow fields F l
t→0, F

l
t→1 and the in-

terpolated intermediate feature X l
t based on the retrieved

bidirectional correlations. In each update block, the bidi-

rectional correlation features and bilateral flows are first

passed through two convolutional layers. Then, they are

concatenated with the interpolated intermediate feature and

injected into two convolutional layers instead of a cumber-

some GRU unit in RAFT. Finally, the output features are

sent to two separate heads for predicting bilateral flow resid-

uals ΔF l
t→0,ΔF l

t→1 and an interpolated feature residual

ΔX l
t . Each head is formed by two convolutional layers.

Note that the spatial dimension of the retrieved corre-

lation features is the same as the first two dimensions of

the correlation volume (i.e., H
8 × W

8 ) but is different from

that of the intermediate features and motions on upper lev-

els. We thus need to downscale the flow fields and the

intermediate feature accordingly before feeding them into

the update block and upsample the predicted residuals for

updating. Through downscaling, the update block works

at a low-resolution space, leading to promising efficiency.

The updated intermediate feature X̂ l
t can be formulated

as: X̂ l
t = X l

t + ΔX l
t , where ΔX l

t is the output content

residual of the update block. The updated bilateral flows

F̂ l
t→0, F̂

l
t→1 can be obtained following the same rule.
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We employ the updated bilateral flows to warp the fea-

tures X l
0, X

l
1 of the input frames. Let X̂ l

0, X̂
l
1 denote

the warped features. The warped features, the updated

bilateral flows, and the updated intermediate feature are

concatenated together and then fed into the l-th decoder.

The l-th decoder Dl predicts the upsampled bilateral flows

F l+1
t→0, F

l+1
t→1 and the intermediate feature X l+1

t simultane-

ously as follows:

[F l+1
t→0, F

l+1
t→1, X

l+1
t ] = Dl([X̂ l

0, X̂
l
1, F̂

l
t→0, F̂

l
t→1, X̂

l
t ]).

(3)

Specially, the Eqn. (3) does not consider the last decoder

D3, which is responsible for generating multiple flow fields

and occlusion masks for task-specific usage. The architec-

ture details of each decoder are listed in our supplement.

3.3. Multi-Field Refinement

In flow-based VFI methods, the common formulation for

interpolating the final intermediate frame is:

It = M�W(I0, Ft→0)+(1−M)�W(I1, Ft→1)+R, (4)

where W denotes the backward warping operation, �
means the element-wise multiplication. M is an estimated

occlusion mask which ranges from 0 to 1. Ft→0 and

Ft→1 are final predictions of bilateral flows. R is the es-

timated residual. Such formulation considers temporal con-

sistency and occlusion reasoning, synthesizing the interme-

diate frame efficiently. However, only predicting one pair of

flow fields ignores that each location in the occlusion areas

has many potential pixel candidates, restricting the solution

set for interpolation in a tight space.

Based on previously predicted coarse flows, which are

generally consistent with the ground truth displacements,

we derive multiple fine-grained flow fields for task-specific

usage. We also jointly estimate a residual content and an

occlusion mask for each pair of optical flow. This process

can be formulated as:

X = D3([X̂3
0 , X̂

3
1 , F̂

3
t→0, F̂

3
t→1, X̂

3
t ]),

X = {Ft→0,n, Ft→1,n,Mn, Rn|n ∈ {1, 2, ..., N}}, (5)

where N denotes the total number of output groups.

(Ft→0,n, Ft→1,n), Mn, and Rn are the n-th estimated bi-

lateral flows, occlusion mask, and residual content, respec-

tively. Notably, Eqn. (5) can be easily implemented by en-

larging the output channels of the last decoder according

to the number of flow pairs, which ensures efficiency. The

final intermediate frame can be obtained by:

It = C([I1t , ..., INt ]), (6)

where the n-th interpolated frame Int can be obtained by

Eqn. (4) with corresponding output group. We stack two

convolutional layers (denoted as C) for adaptively merging

candidate frames and refining the final results. The analyses

of multiple flow fields are detailed in Sec. 4.4.2.

3.4. Loss Functions

There are three losses involved in our AMT. To better

predict task-oriented flows, we employ flow distillation loss

Lflow in IFRNet [26], which concentrates more on the flow

regions that are easy to be reconstructed, but slightly pe-

nalizes the regions that are difficult to recover. This loss

is applied on updated multi-scale flow fields except for the

finest flow predictions left for fully task-specific usage. The

Charbonnier loss [4] Lchar and the census loss [35] Lcss are

used to supervise the content generation of the interpolated

frame. The former measures the pixel-wise errors between

the ground truth intermediate frame IGT
t and the generated

one It, and the latter calculates the soft Hamming distance

between census-transformed image patches of IGT
t and It.

The full objective can be defined as:

L = λcharLchar + λcssLcss + λflowLflow, (7)

where λchar, λcss, and λflow are weights for each loss.

4. Experiments
4.1. Training Details

We train AMT on Vimeo90K [65] training set for 300

epochs with AdamW [33] optimizer on 2 NVIDIA RTX

3090 GPUs. The total batch size is 24, and the learn-

ing rate decay follows the cosine attenuation schedule from

2×10−4 to 2×10−5. We follow the augmentation pipeline

including random flipping, rotating, reversing sequence or-

der, and random cropping patches with size 224 × 224 in

IFRNet [26]. The flow predictions from the pre-trained

LiteFlowNet [18] are served as the pseudo ground truth la-

bel for supervising the intermediate flows. λchar, λcss, and

λflow are set as 1, 1, and 0.002, respectively. The code im-

plemented by MindSpore framework is also provided.

4.2. Benchmarks
We evaluate our AMT on various benchmarks contain-

ing diverse motion scenes for a comprehensive comparison.

PSNR and SSIM [59] as common evaluation metrics are uti-

lized for comparison. The statistics of benchmarks used in

the main paper are presented as follows.

Vimeo90K [65]: Vimeo90K is the most commonly used

evaluation benchmark in recent VFI literature. There are

3,782 triplets of 448× 256 resolution in the test part.

UCF101 [54]: UCF101 dataset contains videos with var-

ious human actions, and we adopt the test partition in

DVF [32], which consists of 379 triplets of 256× 256 size.

SNU-FILM [8]: SNU-FILM dataset contains 1,240 frame

triplets, whose width ranges from 368 to 720 and height

ranges from 384 to 1280. With respect to motion magni-

tude, it is partitioned into four exclusive parts, namely Easy,

Medium, Hard, and Extreme.

Xiph [36]: Xiph dataset, consisting of eight video clips

with a 4K resolution, was originally proposed by Niklaus
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Method Vimeo90K [65] UCF101 [54]
SNU-FILM [8] Xiph [36] Latency Params FLOPs

Easy Medium Hard Extreme 2K 4K (ms/f) (M) (T)

AdaCoF [27] 34.38/0.972 35.20/0.970 39.85/0.991 35.08/0.976 29.47/0.925 24.31/0.844 34.86/0.928 31.68/0.870 52 21.8 0.36

M2M-VFI [14] 35.49/0.978 35.32/0.970 39.66/0.991 35.74/0.980 30.32/0.936 25.07/0.860 36.44/0.943 33.92/0.899 40 7.6 0.26

RIFE [17] 35.65/0.978 35.28/0.969 40.06/0.991 35.75/0.979 30.10/0.933 24.84/0.853 36.19/0.938 33.76/0.894 29 9.8 0.20

IFRNet-S [26] 35.59/0.979 35.28/0.969 39.96/0.991 35.92/0.979 30.36/0.936 25.05/0.858 35.87/0.936 33.80/0.891 25 2.8 0.12

IFRNet-B [26] 35.80/0.979 35.29/0.969 40.03/0.991 35.94/0.979 30.41/0.936 25.05/0.859 36.00/0.936 33.99/0.893 30 5.0 0.21

AMT-S 35.97/0.983 35.35/0.971 39.95/0.994 35.98/0.983 30.60/0.940 25.30/0.865 36.11/0.940 34.29/0.901 51 3.0 0.12

ToFlow [65] 33.73/0.968 34.58/0.967 39.08/0.989 34.39/0.974 28.44/0.918 23.39/0.831 33.93/0.922 30.74/0.856 88 1.4 0.62

DAIN [1] 34.71/0.976 34.99/0.968 39.73/0.990 35.46/0.978 30.17/0.934 25.09/0.858 35.95/0.940 33.49/0.895 664 24.0 5.51

CAIN [8] 34.78/0.974 35.00/0.969 39.95/0.990 35.66/0.978 29.93/0.930 24.80/0.851 35.21/0.937 32.56/0.901 71 42.8 1.29

BMBC [42] 35.01/0.976 35.15/0.969 39.90/0.990 35.31/0.977 29.33/0.927 23.92/0.843 32.82/0.928 31.19/0.880 2234 11.0 2.50

ABME [43] 36.22/0.981 35.41/0.970 39.59/0.990 35.77/0.979 30.58/0.937 25.42/0.864 36.53/0.944 33.73/0.901 560 18.1 1.30

IFRNet-L [26] 36.20/0.981 35.42/0.970 40.10/0.991 36.12/0.980 30.63/0.937 25.27/0.861 36.21/0.937 34.25/0.895 80 19.7 0.79

AMT-L 36.35/0.982 35.42/0.970 39.95/0.991 36.09/0.981 30.75/0.938 25.41/0.864 36.27/0.940 34.49/0.903 116 12.9 0.58

VFIFormer [34] 36.50/0.982 35.43/0.970 40.13/0.991 36.09/0.980 30.67/0.938 25.43/0.864 OOM OOM 1293 24.1 47.71

EMA-VFI† [68] 36.50/0.980 35.42/0.970 39.58/0.989 35.86/0.979 30.80/0.938 25.59/0.864 36.74/0.944 34.55/0.906 211 66.0 0.91

AMT-G 36.53/0.982 35.45/0.970 39.88/0.991 36.12/0.981 30.78/ 0.939 25.43 /0.865 36.38/0.941 34.63/0.904 250 30.6 2.07

Table 1. Quantitative comparison with SOTA methods. We divide the existing methods into three groups, according to the computational

complexity. For each group, the best result is shown in bold, and the second best is underlined. “OOM” denotes the out-of-memory issue

when evaluating on an NVIDIA RTX 3090 GPU. † means we disable the test-time augmentation [17] for a fair comparison.

et al. [38]. Following their original evaluation setting, we

reform this dataset to include “2K” version, obtained by

downscaling original frames, and “4K” version, created by

center-cropping 2K patches.

Except for these datasets, we provide the comparisons of

multi-frame interpolation in the supplement.

4.3. Comparison with the SOTAs
We compare our AMT with the state-of-the-art (SOTA)

methods, including ToFlow [65], DAIN [1], CAIN [8],

AdaCoF [27], BMBC [42], RIFE [17], ABME [43],

M2M-VFI [14], IFRNet [26], VFIFormer [34], and EMA-

VFI [68]. We utilize the code provided by IFRNet [26] for

benchmarks. The inference latency is the average running

time of a method on 1280 × 720 resolution for 1000 iter-

ations on an NVIDIA RTX 3090 GPU. To ensure a fair

comparison, we group the SOTA methods into three cate-

gories based on their theoretical computational complexity.

We then develop three models, called AMT-S, AMT-L, and

AMT-G, for each group.

Quantitative Comparison. As shown in Tab. 1, our small

model AMT-S achieves the best results among efficient VFI

methods on almost all benchmarks, especially for chal-

lenging settings. Specifically, Our AMT-S outperforms the

previous state-of-the-art method in effective VFI, IFRNet-

B [26], by 0.17dB on Vimeo90K while using only about

60% of its parameters and FLOPs. This gap becomes

more obvious on the Hard and Extreme partitions in SNU-

FILM, revealing the strong ability of our AMT in model-

ing large motions. For the large scale setting, our AMT-L

shows highly competitive results in contrast to the previ-

ous SOTA method IFRNet-L [26], with about 65% parame-

ters and 75% FLOPs of it. In terms of inference speed, our

method is comparable to IFRNet. Besides, our convolution-

based model competes favorably compared to the SOTA

Transformer-based models (i.e., VFIFormer [34] and EMA-

VFI [68]) in terms of accuracy and efficiency. Specifi-

cally, our AMT-G outperforms them in most casess, par-

ticularly when evaluated using the SSIM metric. Notably,

our model achieves about 5× faster inference speed than

VFIFormer and has only half the number of parameters of

EMA-VFI. It is important to note that VFIFormer requires a

two-stage training pipeline and 600 training epochs, while

our model only requires 300 epochs. Additionally, EMA-

VFI introduces a warm-up technique during training, which

our method does not utilize. We observe that the perfor-

mance of our method is saturated except for the Vimeo90K

dataset after increasing the scale of the model to a huge ver-

sion, which may indicate the overfitting problem.

Qualitative Comparison. In Fig. 4, we select the repre-

sentative hallucination-based, kernel-based, and flow-based

methods, including CAIN [8], AdaCoF [27], ABME [43],

RIFE [17], and IFRNet(-B/-L) [26]. We compare them with

our AMT on SNU-FILM [8] (Hard) dataset for visual com-

parison. It can be seen that previous VFI methods fail to

provide sharp edges of moving objects, especially when the

motion is complex. Due to our thorough consideration of

VFI-oriented flows, our AMT synthesizes the content at

motion boundaries faithfully and generates plausible tex-

tures with fewer artifacts. When the background objects are

heavily occluded by the foreground unilaterally, our AMT

can still obtain guidance from the reference frame in an-

other direction, while other methods are unable to synthe-

size these occluded objects. We provide more comparisons

in the supplement.
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Overlaid AdaCoF RIFE IFRNet-B AMT-S Ground Truth

Overlaid CAIN IFRNet-L ABME AMT-B Ground Truth

Overlaid AdaCoF [27] RIFE [17] IFRNet-S [26] AMT-S (Ours) Ground Truth

Overlaid CAIN [8] IFRNet-L [26] ABME [43] AMT-L (Ours) Ground Truth

Figure 4. Qualitative results from different VFI methods. We divide these methods into two groups by computational cost. Our AMT-S

and AMT-B synthesize precise boundaries of the objects with large motion and can reconstruct occluded regions with high fidelity.

Case Vimeo Hard Extreme

w/o Corr. Enc. 35.76 30.49 25.22

Unidir. CV 35.93 30.34 25.18

PWC CV 35.61 30.48 25.16

Full Model 35.97 30.60 25.30

(a) Correlation volume (CV) design. We

remove the correlation encoder (‘w/o Corr.

Enc.’), build a unidirectional CV (‘Unidir.

CV’), and build PWC-like [47] CV (‘PWC

CV’) for ablations, respectively.

Lookup Init Vimeo Hard Extreme

Initial meshgrid 35.92 30.52 25.23

RAFT Flow 35.93 30.34 25.18

Scaled Zero 35.97 30.56 25.26

Scaled Flow 35.97 30.60 25.30

(b) Lookup strategy. We investigate the

initial meshgrid, RAFT-like [56] lookup

(‘RAFT’), and the proposed lookup (‘Scaled’)

variants. We also investigate whether we use

bilateral flows to perform an initial lookup.

Case Vimeo Hard Extreme

Vanilla Guide 35.95 30.53 25.21

w/o Update 35.96 30.52 25.22

Full Model 35.97 30.60 25.30

(c) Content update. We investigate the content

update by using features from visible frames as

guidance (‘Vanilla Guide’) and discarding the

content update (‘w/o Update’), respectively.

1st 2nd 3rd Vimeo Hard Extreme

35.60 30.39 25.06

� 35.84 30.55 25.19

� � 35.92 30.58 25.28

� � � 35.97 30.60 25.30
single-scale 35.95 30.50 25.22

(d) Cross-scale update. We investigate the im-

pact of the update at different levels.

No. Vimeo Hard Extreme FLOPs (G)

1 35.84 30.52 25.25 116

3 35.97 30.60 25.30 121

5 36.00 30.63 25.33 127

7 36.01 30.57 25.25 135

(e) Number of fields. We investigate dif-

ferent numbers of flow pairs.

Case Vimeo Hard Extreme

w/o Residual 35.87 30.57 25.27

w/o Refine 35.89 30.51 25.19

Full Model 35.97 30.60 25.30

(f) Multi-field combination. We investigate

the residual component in Eqn. (4) and the

refinement step in Eqn. (6).

Table 2. Ablation experiments of AMT on Vimeo90K [65] and SNU-FILM [8] (Hard, Extreme) dataset. We report the PSNR values of

these variants, and the best result is shown in bold. The default setting is marked in gray .

4.4. Ablation Study
We conduct ablations to verify the effectiveness of two

key components (i.e., all-pairs correlation and multi-field

refinement) in our AMT. All ablated versions are based on

the AMT-S and evaluated on Vimeo90K [65] and the Hard

and Extreme partitions of SNU-FILM [8].

4.4.1 All-Pairs Correlation

Volume Designs. As illustrated in Tab. 2a, our bidirec-

tional correlation volumes thoroughly consider the corre-

spondences between input frames for the VFI task, leading

to a better performance than the unidirectional one. Be-

sides, using an exclusive encoder (i.e., correlation encoder)

for building the correlation volumes is necessary. We can

observe that the performance heavily drops when we utilize

features from the context encoder to construct the correla-

tion volumes. We also try to build the correlation volumes

following PWC-Net [55]. This variant performs worse than

any other one, for its partial correlation volume limits the

ability in modeling motion information sufficiently.

Lookup Strategy. As shown in Tab. 2b, we can observe an

obvious performance drop while utilizing the vanilla lookup

strategy in RAFT [56]. For large motions, its performance

is even worse than the one that directly uses the initial mesh-

grid, which indicates this strategy provides unfaithful cor-

relation information for flow update. After we project the
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Overlaid w/o Multi-fields Ground Truthw/  Multi-fieldsOverlaid w/o Multi-field w/ Multi-field Ground Truth

Figure 5. Effect of multi-field refinement. Multi-field refinement

helps the network recover occluded regions better.

flows by scaling, the correlation volumes and flows share

the identical coordinate system, and the network takes ad-

vantage of the correct lookup process. Besides, the initial

flow pair from the context encoder gives a good initial point

for further lookup, which brings a performance gain.

Content Update. In our AMT, each update block receives

the intermediate content features as the context guidance

and updates it along with bilateral flows. If we replace the

context guidance with features from visible frames, the am-

biguous information will be introduced, leading to a perfor-

mance drop, as shown in Tab. 2c. Besides, we only keep

one head in each update block for only updating the flow

fields without updating the intermediate feature, resulting

in the decrease of PSNR values on large motions. It demon-

strates that all-pairs correlation is not only helpful for up-

dating flows but also for updating content.

Update Strategy. As shown in Tab. 2d, all updates across

levels are effective in our cross-scale update strategy. It is

worth noticing that if we discard all updates, which is equiv-

alent to a model without all-pairs correlation, the PSNR

value will decrease dramatically. This demonstrates the ef-
fectiveness of all-pairs correlation in our AMT. Besides,

only updating on the 1-st scale with 3× iterations degrades

the performance. The fact indicates that the cross-scale up-

date strategy can take full advantage of progressively re-

fined content features, leading to better motion modeling.

4.4.2 Multi-field Refinement

Number of Flow Fields. Tab. 2e illustrates the performance

gain with respect to the number of flow fields. We observe

that just using three pairs of flows bring a notable perfor-

mance gain, which reveals that ensuring the diversity of

flow fields is significant for VFI-oriented usage. The PSNR

values rises in pace with the increase of field number until

7 pairs, which indicates saturation. We employ 3 pairs in

our small model for efficiency (i.e., AMT-S) and use 5 pairs

in the larger models for better performance. In Fig. 5, we

investigate the effect of multi-field refinement on occlusion

handling. The results indicate that after employing multi-

field refinement, our AMT can synthesize the background

Flow Supervision Our Avg. Flow

Variance ( ) Variance ( )

Overlaid Our Avg. Flow Variance (t → 0)

Ground Truth RAFT [56] Flow Variance (t → 1)

Figure 6. Visualizations of average and variance map of three flow

pairs. We provide RAFT [56] flow for reference.

occluded by the foreground with more consistent textures.

Multi-Field Combination. We investigate a variant that re-

moves the residual component for each candidate frame in

Eqn. (4) but estimates the residual part in the final interpo-

lation result. As shown in Tab. 2f, the results of this vari-

ant underperform the original setting, which indicates we

need to compensate details for each frame candidate sepa-

rately. Besides, if we replace the convolution operators in

Eqn. (6) with an average operation, the performance will be

degraded (see Tab. 2f). This indicates that it is important for

our AMT to perform an adaptive fusion and refinement.

Discussion. For further discussion, we visualize the mean

and deviation of three estimated flow pairs. The results are

shown in Fig. 6. On the one hand, our average flow is gen-

erally consistent with the flow estimated from RAFT [56],

which approximates to the ground truth displacements. On

the other hand, we observe that the major diversities of

flows are at the motion boundaries and in the regions with

rich textures. This indicates that these regions need to in-

volve more potential pixel candidates for reconstruction.

Through these visualizations, we see that our method gener-

ate promising task-oriented flows, generally consistent with
the ground truth optical flows but diverse in local details.

5. Conclusion

Following the property of task-oriented flow, we have

introduced All-pairs Multi-field Transforms (AMT) for effi-

cient frame interpolation. It contains two essential designs,

including all-pairs correlation and multi-field refinement.

Through the two designs, our method could effectively han-

dle large motions and occluded regions during frame inter-

polation and achieve state-of-the-art performance on vari-

ous benchmarks with high efficiency.
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