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Abstract

3D object detection techniques commonly follow a
pipeline that aggregates predicted object central point fea-
tures to compute candidate points. However, these can-
didate points contain only positional information, largely
ignoring the object-level shape information. This eventu-
ally leads to sub-optimal 3D object detection. In this work,
we propose AShapeFormer, a semantics-guided object-level
shape encoding module for 3D object detection. This is a
plug-n-play module that leverages multi-head attention to
encode object shape information. We also propose shape
tokens and object-scene positional encoding to ensure that
the shape information is fully exploited. Moreover, we in-
troduce a semantic guidance sub-module to sample more
foreground points and suppress the influence of background
points for a better object shape perception. We demon-
strate a straightforward enhancement of multiple existing
methods with our AShapeFormer. Through extensive exper-
iments on the popular SUN RGB-D and ScanNetV2 dataset,
we show that our enhanced models are able to outperform
the baselines by a considerable absolute margin of up to
8.1%. Code will be available at https://github.
com/ZechuanLi/AShapeFormer

1. Introduction
As an important scene understanding task, 3D object de-

tection [13,20,47] aims to detect 3D bounding boxes and se-
mantic categories in 3D point cloud scenes. It plays an im-
portant role in many downstream tasks, such as augmented
reality [2, 3], mobile robots [18, 41, 52], and autonomous
navigation [1,36,37,39]. Object detection has made signifi-
cant progress in the 2D domain [15,22,33]. However, owing
to the sparse and irregular nature of the point cloud data, 2D
detection techniques are generally not readily applicable to
the 3D object detection task.
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Figure 1. (Top) VoteNet [29] seed points contain many back-
ground points, leading to sub-optimal candidate points, which are
also intrinsically weak as they fail to account for object shape
and contour features. (Bottom) The proposed AShapeFormer se-
lects more relevant seed points, leading to more appropriate can-
didates that additionally encode the object shape information ac-
tively. This results in high quality 3D object detection.

Inspired by their 2D counterparts, early attempts in
3D object detection, e.g., [16, 39], mapped irregular point
clouds to regular 3D voxels, thereafter using 3DCNNs for
feature extraction and object detection. However, voxeliza-
tion inevitably loses fine-grained information of the point
clouds, which adversely affects the detection performance.
With the advances that allow direct processing of the point
clouds with deep neural models, e.g., [30, 31], recent meth-
ods aim at directly predicting the 3D bounding boxes from
the original unordered point clouds. Among these tech-
niques, VoteNet [29] and its variants [7, 12, 28, 45, 46, 50]
have achieved remarkable performance.

These point-wise methods follow a common underlying
pipeline which includes first aggregating certain predicted
point features into candidate points. The candidate points
are later used to estimate the 3D bounding box information,
e.g., center, size, and orientation, along with the associated
semantic labels. As illustrated in Fig. 1, despite their ex-
cellent performance, these methods still face a few major
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challenges. (1) The final prediction relies strongly on the
quality of the candidate points. However, these points fail
to encode important object-level features such as contours
and the shape of the 3D objects. (2) The methods must
regress over the candidate points, and these points are often
influenced by the background points. This propagates the
error to cause offsets in the eventual predictions. Current
attempts to mitigate these issues rely on generating new fea-
tures [7, 45] or sampling more points [42]. However, these
are resource intensive solutions, which must still rely on the
vote point regression quality.

To address the problems, we introduce a novel plug-n-
play neural module, named AShapeFormer. It can be easily
assembled with many existing 3D object detection methods
to provide a considerable performance boost. Our key driv-
ing insight is that by utilizing implicit object-level shape
features, a detector can be made aware of the object shape
distribution. Specifically, our module utilizes multi-head at-
tention to encode the object shape information. We aggre-
gate the object shape features using a self-attention mecha-
nism. Inspired by ViT [10] and BERT [19], we introduce a
shape token as the output of the final shape feature to avoid
information loss caused by simplistic operations, e.g., pool-
ing. Additionally, we devise a semantic guidance mecha-
nism to sample more foreground points and assign different
weights to their features, which improves the shape feature
generation. Semantic segmentation scores are also utilized
during the aggregation of vote points to reduce the influence
of irrelevant vote points and obtain better candidates.

We provide successful demonstration of boosting both
point-based [28, 29] and Transformer [23] baselines with
our method, achieving strong performance gains. Our ex-
perimental results (§ 4.1) show that AShapeFormer boosts
the multi-class mean average precision (mAP) up to 3.5%
on the challenging SUN RGB-D dataset [38] and 8.1% on
the ScanNet V2 dataset [9]. Highlights of our contributions
include the following.

• We propose a plug-and-play active shape encoding
module named AShapeFormer, which can be com-
bined with many existing 3D object detection networks
to achieve a considerable performance boost.

• To the best of our knowledge, our method is the first to
combine multi-head attention and semantic guidance
to encode strong object shape features for robust clas-
sification and accurate bounding box regression.

• We demonstrate a considerable mAP boost on SUN
RGB-D (mAP@0.25) and ScanNet V2 datasets by en-
hancing the state-of-the-art methods with our module.

2. Related Work
Due to its key importance in several downstream tasks,

3D object detection has recently attracted significant inter-
est of the research community. According to the different

backbones, indoor 3D object detection methods are mainly
divided into the following categories.
1. Voxel-based methods: Projecting the 3D point cloud
to a regular 3D voxel representation can resolve the prob-
lems caused by the sparse and irregular nature of the point
clouds. VoxNet [25] first used 3D convolutional network
layers [21] for feature extraction and detection of point
clouds exploiting voxelization. 3D-SIS [16] maps 2D image
data to voxels, and realizes the fusion of multi-modal data
to achieve better object detection and instance segmentation
performance at the cost of more complex training process.
GSDN [14] employs sparse convolution [48] to improve the
efficiency of 3D convolution. Its encoder-decoder structure
is built from sparse 3D convolution blocks. FCAF3D [34]
adopts the basic architecture of GSDN to improves it as
an anchor-free method. This is claimed to improve the
efficiency and performance of the original proposal. Al-
though 3D convolution can effectively process point cloud
voxels, the process of voxelization inevitably damages the
fine-grained information [39] in the point clouds. Moreover,
the operation of filling zeros [51] in voxelization also intro-
duces noise, which is detrimental to the detection accuracy.
2. Voting-based methods: With the emergence of meth-
ods to directly process 3D point clouds under neural mod-
elling, e.g., PointNet [30] and PointNet++ [31]; it has
become viable to directly detect 3D objects in the origi-
nal point clouds. Numerous point-based detection meth-
ods have recently appeared in the literature. Among them,
VoteNet [29] has attracted considerable attention for the in-
door 3D object detection. It redefines the traditional Hough
voting process as an object center point regression prob-
lem through MLPs, and generates object proposals by sam-
pling from multiple voting points within the same cluster.
MLCVNet [46] introduces a context module based on the
VoteNet to learn the contextual information of the scene,
which helps in semantic understanding during the detection.
H3DNet [50] selects the optimal solution from multiple vot-
ing results, and uses multiple geometric primitives to pro-
vide more and more accurate constraints to the bounding
box. VeNet [45] uses customized modules for the VoteNet
before, during and after voting, to gain an accuracy advan-
tage. BRNet [7] proposes a representative point genera-
tion module to trace back virtually generated representative
points from the voting, so that the network can take some
advantage from the object shape.
3. Transformer-based methods: Transformers [40] have
achieved excellent performance in the field of NLP [19, 32]
and 2D images [4, 10, 17, 27, 43]. They have also gradually
started to surface in the techniques for point cloud process-
ing. 3DETR [26] first proposed an end-to-end transformer
model for 3D object detection, which almost maintains the
vanilla Transformer architecture. Groupfree3D [23] uses
a Transformer block to replace the group operation af-
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Figure 2. Schematics of AShapeFormer in action: Given an input point cloud of N points with XYZ coordinates, and optional corre-
sponding RGB image I , we sample seed points using a backbone. The sampled seed points are processed by a voting module. The seed and
vote points are used by our AShapeFormer module. Within AShapeFormer, the Semantics Guided Module (SGM) pays more attention to
the foreground points, while Shape Former additionally incorporates object-level shape features with multi-head attention, also employing
positional encoding (PE). The Channel Attention Module (CAM) fuses the shape information enriched features with candidate features to
provide candidates to a detection head that predicts the bounding boxes.

ter voting. It extracts context information adaptively, and
realizes the interaction between candidate-candidate and
candidate-original point clouds. TokenFusion [44] proposes
a fusion method of multi-modal data using Transformers,
which can be used in a variety of visual tasks. Although
the Transformer-based methods have achieved good perfor-
mance in 3D object detection, their convergence is problem-
atic. This is because these methods use complex networks
where the attention module requires a large number of input
point clouds, which considerably adds to the computing and
memory requirements of the training process.
Object shape awareness: Besides the three categories of
methods discussed above, the dimension of object shape
awareness in the existing literature also relates to our cen-
tral idea. We can find instances where approaches implic-
itly or explicitly aim to perceive the object shape to achieve
performance gains. For example, RBGNet [42] generates
a certain number of rays centered on the voting point and
uses the category of the points on the rays to perceive the
surface geometry. However, a large number of manual pa-
rameters and feature extraction branches increase the com-
plexity of the network and require a very long training time.
BRNet [7] generatively backtracks the points to capture lo-
cal structural features in the original point cloud. It essen-
tially converts VoteNet into a two-stage detection method.
HGNet [6] perceives the local shape information by model-
ing the relative position between the point clouds. However,
object-level shape information is not used in the method,
which still hinders accurate 3D bounding box estimation.

3. Proposed Approach
This section describes the technical details of our ap-

proach Active Shape Encoding via TransFormer (AShape-
Former). An overview of the approach is first provided in
§ 3.1. In § 3.2 to § 3.5, we elaborate on the components
and the learning objective of our technique. To discuss the

method, we adopt a VoteNet [29] based backbone to extract
features and sampling seed points for the AShapeFormer,
and also use its detection head to output the 3D bounding
boxes. However, it is emphasized that our central module is
easily assembled with other detectors, e.g., [23, 28], due to
the plug-n-play nature of AShapeFormer.

3.1. Overview
As illustrated in Fig. 2, the input to our method is a 3D

point cloud P . It can optionally also contain the RGB im-
age I of the scene. First, a PointNet++ [31] backbone is
used to sample seed points. If the input data includes im-
ages, we optionally add a 2D backbone. The backbone ex-
tracts input features while sampling the seed points, and
then obtains vote points through a voting step. The seed
and vote points are fed to the AShapeFormer module. There
are three main sub-modules in AShapeFormer, namely Se-
mantics Guided Module (SGM), Channel Attention Module
(CAM), and ShapeFormer. To better encode the object-level
shape information, SGM gives more attention to the fore-
ground points when sampling the seed points, and adap-
tively weights different features. ShapeFormer encodes
the object-level shape features through a multi-head atten-
tion mechanism. CAM adaptively fuses shape features and
the candidate features. Finally, the features enriched with
object-level shape information are fed to the detection head
to provide the 3D bounding boxes.

3.2. Object-Level Shape Encoding
In this section, we introduce a naive shape encoding

method and propose Channel Attention Module (CAM) to
fuse the object-level shape feature and candidate feature.
Indoor 3D object detection generally follows a pipeline that
aggregates some predicted object centre features into can-
didate point features. Let us denote a set of seed points as
{si}Mi=1, where si = [xi; fi], with xi ∈ R3 and fi ∈ R3,
and a set of vote points as {vi}Mi=1, where vi = [yi; gi] ∈
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Figure 3. Object-Level Shape Encoding without SGM and
ShapeFormer. Notations: M&M denotes MLP followed by Max-
pooling. FC is fully connected layer.

R3+C . Here, xi and yi are the coordinates of the seed and
vote points, respectively; and the vote point yi is the center
point of the object where xi location is predicted by the vot-
ing module. The fi and gi denote the features of the seed
and vote points, respectively.

In the pipeline, K candidate points {vj}Kj=1 are obtained

by sampling from M vote points {vi}Mi=1. Local grouping
based on ball query [31] centered on {vj}Kj=1 is done to ob-
tain a set of candidate clusters {C1, C2, . . . , CK}. As shown
in Fig. 3, each cluster C =

{
v1j , v

2
j , . . . , v

n
j

}
gets a single

vector representation as

p(C) = MaxPool (MLP (C)) , (1)

where p(C) is the candidate feature. A few existing meth-
ods [28, 29] directly feed p(C) to the detection head to pre-
dict the 3D bounding box. However, these center point
features do not particularly help the network to perceive
object-level information, which is sub-optimal. To sidestep
the issue, BRNet [7] and RBGNet [42] aim at enabling ob-
ject shape perception by generating pseudo-representative
points. This improves the detection performance, ascertain-
ing the importance of shape information in the task. How-
ever, these operations not only require a large number of
hyper-parameters, but also ignore an important fact that as
compared to the pseudo-representative point sets, real seed
point clusters can describe the shape information of objects
more accurately. This is a key insight used in our method.
As illustrated in Fig. 3, we encode the object-level shape
feature using the seed points located on the same object.

The vote points belonging to the same object are much
more compact than the seed points. Hence, using indices of
the candidate local grouping is beneficial for grouping seed
points into cluster O =

{
s1j , s

2
j , . . . , s

n
j

}
, which belong to

the same object. To get a single vector representation of the
object shape p(O), a naive approach can be similar to the
candidate point local grouping, i.e., using MLP and Max-

pooling
p(O) = MaxPool (MLP (O)) . (2)

We consider the above naive option at this stage to em-
phasize on the plug-n-play nature of our module as well
as to keep the flow of discussion. We eventually use a so-
phisticated ‘ShapeFormer’ sub-module § 3.3 to account for
the object shape. In any case, candidate features p(C) and
object-level shape features p(O) are distributed in different
feature spaces. Hence, in order to fuse these features, we
propose the Channel Attention Module (CAM). As shown
in Fig. 3, CAM consists of fully connected layers with sig-
moid activations. It adaptively learns weights for the fea-
tures in different spaces such that they seamlessly fuse in
the later processing. The candidate and shape features are
combined through CAM as follows

p(S) = Concat (CAM(p(C),CAM (p(O)) , (3)

where p(S) is the new candidate feature, which is enriched
with object-level shape information. The p(S) is eventually
fed to a detection head to generate the 3D bounding boxes.
We note that our experimental results (§ 4.3) also find the
naive object-level shape encoding method proposed in this
section reasonably effective. However, the explicit contri-
bution of shape information goes beyond that. In our expe-
rience, the naive method still suffers from two main prob-
lems. (1) It experiences loss of fine-grained information in
the interaction of shape key points. (2) It is marred by in-
terference of the background points. These problems are
resolved with the use of the proposed ShapeFormer and the
Semantic Guided Module (SGM), discussed below.

3.3. ShapeFormer
Multi-head attention [4, 19, 40] is known for its ability

to model contextual information. Its permutation invariant
properties are also ideal for point cloud processing. How-
ever, its high computational requirement hinders its use for
point clouds. We circumvent this issue by dealing with ob-
ject specific points in our approach.

We introduce a shape encoding module based on a multi-
head attention, named ShapeFormer - see Fig. 4. As com-
pared to the naive shape encoding method discussed in the
preceding section, ShapeFormer allows stronger shape en-
coding. In a naive construction, one gets a single vector rep-
resentation of the object shape with an operation like max
pooling, inevitably losing fine-grained information [35].
Addressing that, we prepend a learnable embedding shape
token to the sequence of point features, whose state at the
output of the ShapeFormer serves as the object-level shape
feature. Specifically, given the seed points cluster on the
same object (shape key points) O =

{
s1j , s

2
j , . . . , s

n
j

}
, its

corresponding features are F =
{
f1
j , f

2
j . . . , fn

j

}
. The in-

put z(0) of ShapeFormer is

z(0) =
[
f0
j ;F

]
+ PE(O), (4)
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Figure 4. ShapeFormer: A shape feature is encoded into shape
token through self-attention, avoiding information loss caused by
common strategies, e.g., pooling.

⊕
is element-wise addition.

where f0
j is the shape token and PE(·) is the positional en-

coding function - explained in detail shortly. The input z is
operated on by learnable weight matrices Wq , Wk and Wv

to obtain query q, key k and value v as

q = zWq, k = zWk, v = zWv. (5)

The attention module performs the following computation.

y′ =
∑

softmax

(
qk⊺√
d

)
v, (6)

y = Concat
(
y′(0), y′(1), . . . , y′(m−1)

)
, (7)

where y′ is the output of single attention head and m is the
number of the attention heads. Subsequently, it performs

o = A (F (A (y))) , (8)

where A(·) denotes add and normalization operations and
F(·) denotes a FFN with two linear layers with ReLU acti-
vation. The calculations expressed as Eq. (6)-(8) comprise
one layer of ShapeFormer. The output of the lth layer is

ol =
[
f
0(l)
j , f

1(l)
j , f

2(l)
j , . . . , f

n(l)
j

]
, (9)

The shape token f
0(l)
j is fed to an MLP to get the shape

feature p(O) : p(O) = MLP
(
f
0(l)
j

)
.

Object-Scene Positional Encoding. Learned positional
encoding can benefit transformer based modules [19, 27,
32, 40]. In ShapeFormer, we must pay more attention to
the relative positional relationships between the shape key
points and the object centers. These relations allow us to
encode shape information at object level. Therefore, we
propose Object-Scene Positional Encoding, which not only
encodes the absolute position of the point cloud, but also

Figure 5. Semantics Guided Module: Semantic scores assign dif-
ferent weights to different points and guide sampling in the back-
bone.

⊗
denotes element-wise multiplication.

enables object-level positional encoding. Specifically, our
positional encoding consists of two components

PE = PEs + PEo, (10)

where PEs is Scene-level positional encoding and PEo is
Object-level encoding. We compute these as

PEs = MLP
([
scj ; s

1
j , s

2
j . . . , s

n
j

])
, (11)

PEo = MLP
([
0; s0j − scj , s

1
j − scj . . . , s

n
j − scj

])
, (12)

where scj denotes the candidate coordinates, snj represents
the shape key point coordinates. 0 is a zero vector with the
same dimension as s.
3.4. Semantics Guided Module

The background points in a scene affect local feature ex-
traction [5, 11, 49], which inevitably affects the shape en-
coding adversely through the shape key points. Although
foreground points are selected for voting during training, we
cannot supervise them during testing. Therefore, we further
improve our AShapeFormer with a Semantics Guided Mod-
ule (SGM) to alleviate the influence of background points
in shape features. As illustrated in Fig. 5, we feed the
seed point features fi to MLP layers to predict the point
cloud semantic segmentation score, which is proportional
to the probability that the point cloud belongs to the fore-
ground points [5]. If the point cloud lies within the ground
truth range of the object bounding box, we consider the
point cloud as the foreground point, otherwise it belongs
to the background. We compute the foreground confidence
pi ∈ [0, 1] as

pi = σ (MLPs (fi)) , (13)

where MLPs represents multiple MLP layers and σ(·) is
the sigmoid activation. Binary cross-entropy loss function
is used for the semantic segmentation. The segmentation
score is used as a weight to adjust the contribution of differ-
ent seed points on the shape feature as

f̃i = pi ⊗ fi, (14)

where ⊗ denotes element-wise multiplication. The re-
weighted features f̃i are fed to the ShapeFormer module for

1016



shape encoding. We use the same strategy to re-weight the
vote features for better vote aggregation. The SGM module
helps AShapeFormer reduce or even eliminate the influence
of background points on object shape perception, and better
use the features of foreground points to encode more accu-
rate shape information.

Through the backbone, due to the guidance of semantic
information, we can sample more seed points without wor-
rying about the background points. Our experiments (§ 4.3)
ascertain that more foreground seed points and vote points
are obtained through SGM.

3.5. Network Loss
We train the entire network end-to-end using the loss

function of the newly proposed AShapeFormer, defined as

L = λ1Lsgm +λ2Lvote +λ3Lbox +λ4Lcls +λ5Lobj, (15)

where λ’s are the balancing factors. Lsgm is used to su-
pervise the foreground/background seed points prediction
in SGM, which we define as follows

Lsgm = − 1

M

M∑
i=1

[p̂i ln (pi) + (1− p̂i) ln (1− pi)] , (16)

where pi and p̂i denote the predicted segmentation score
and the ground-truth score (1 for foreground and 0 for back-
ground). M is the total number of input points.

The loss terms Lvote , Lobj , Lcls and Lbox in Eq. (15)
indicate the per-point vote regression loss, the objectness
loss, the object classification loss, and the bounding box
loss, respectively. These loss terms are inspired by the label
assignment strategy of VoteNet [29]. We provide details
of these losses along with balancing factor settings in the
supplementary material.

4. Experiments
4.1. Setup and Implementation Details

Due to its plug-n-play nature, the proposed AShape-
Former can be assembled to several backbones. In our
experiments, we show its assembly with VoteNet [29],
imVoteNet [28] , RBGNet [42] and GroupFree3D [23].
To generate foreground/background labels for the sample
points, we regard all the points within the labeled 3D bound-
ing boxes as foreground points, and the points outside the
boxes as the background points. We optimize the networks
using the Adam algorithm, which is trained on an RTX
3090 GPU with batch size of 8. We set the initial learn-
ing rate to 0.004 when training on the SUNRGBD dataset
and 0.008 when training on the Scannet dataset, and de-
cay it by 0.1 in the steps of [120, 140, 180]. We train the
network from scratch for a total of 200 epochs. We also
implement our method on the 3D object detection toolbox
MMdetection3D [8]. Our implementation is consistent with
the MMdetection3D framework, and uses the Adamw [24]

algorithm. More training details are provided in the supple-
mentary material.

We evaluate the performance of the proposed AShape-
Former on two popular datasets of indoor scenes, namely;
ScanNet dataset [9] and SUN RGB-D dataset [38].

4.2. Comparisons with State-of-the-art
We compare our method with the existing state-of-the-

art on ScanNet V2 and SUN RGB-D dataset, considering
methods such as VoteNet [29] imVoteNet [28], BRNet [7],
GroupFree3D [23], TokenFusion [44] etc.
Quantitative comparison. The results on SUN RGB-D
are summarized in Table 1. As a plug-n-play module,
our enhancements outperform the baselines by remarkable
performance gains. For instance, we achieve an absolute
gain of more than 3.5% and 1.7% for VoteNet [29] and
imVoteNet [28], respectively. Note that, considering the
plug-n-play nature of our contribution, mAP@0.25 is a very
challenging metric because 3D object detectors have al-
ready achieved remarkable performance on this metric. It
is hard to achieve a high gain under this metric. In particu-
lar, our AShapeFormer applied to imVoteNet* [28] achieves
65.8% on map@0.25, which outperforms all the existing
methods. This ascertains that our method is effective even
for highly optimized techniques. Table 2 summarizes the
results on ScanNetV2. Taking VoteNet [29] as the baseline,
our method achieves remarkable 4.5% and 8.1% improve-
ments at mAP@0.25 and mAP@0.5, respectively. Apply-
ing AShapeFormer to the more recent Transformer method
GroupFree3D [23] and RBGNet [42] also has a significant
improvement.

Qualitative comparison. In Fig. 6 and Fig. 7, we visual-
ize the representative 3D object detection results from our
method and the baseline methods. These results demon-
strate that applying our method to the baseline detector
achieves more reliable detection results with more accu-
rate bounding boxes and orientations. As compared to the
baselines, our method can discover more missing objects.
For example, in Fig. 6 upper left corner, VoteNet misses
the challenging object, which is discovered by enhancing it
with AShapeFormer. Our method also eliminates false pos-
itives, e.g., the results in the second row of Fig. 6 show that
there are three chairs around each table. VoteNet detects 5
chairs, whereas our enhancement results are consistent with
the ground truth. Figure. 7 shows the visualization results
of imVoteNet+AShapeformer on the SUN RGBD dataset.
The second and third column both show the ability of our
method to eliminate false positives as result of using more
foreground point information in the process. In the first col-
umn, our method also detects two desks that are not labeled
in the scene. This implies that the indicator AP score, might
actually underestimate the performance of AShapeFormer.
We only provide representative examples in Fig. 6 and 7 to
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Model mAP@0.25 bed table sofa chair toilet desk dresser nightstand shelf bathtub
VoteNet [29] 57.7 83.0 47.3 64.0 75.3 90.1 22.0 29.8 62.2 28.8 74.4

VoteNet∗ [29] 59.7 84.8 49.6 67.8 77.6 87.4 24.3 29.3 61.9 32.1 82.1
BRNet [7] 61.1 86.9 51.8 66.4 77.4 91.3 29.6 35.9 65.9 29.7 76.2

Groupfree3D [23] 63.0 87.8 53.8 70.0 79.4 91.1 32.6 36.0 66.7 32.5 80.0
imVoteNet [28] 63.4 87.6 51.1 70.7 76.7 90.5 28.7 41.4 69.9 41.3 75.9

imVoteNet∗ [28] 64.5 88.5 51.6 73.2 79.2 90.2 30.9 38.0 67.3 46.4 79.7
RBGNet [42] 64.1 88.4 54.5 71.0 82.7 91.3 32.1 38.7 66.7 34.5 80.6
FCAF3D [34] 64.2 88.3 53.0 69.7 81.1 91.3 34.0 40.1 71.9 33.0 79.0

TokenFusion [44] 64.9 - - - - - - - - - -
DisARM [11] 65.3 87.5 52.7 74.1 80.7 91.6 33.3 39.8 69.5 43.7 79.9

Ours (VoteNet) 61.2(+3.5) 86.9 51.5 67.8 78.8 91.2 29.0 33.6 65.0 31.3 76.6
Ours (VoteNet∗) 62.2(+2.5) 86.9 51.3 69.3 78.9 90.2 28.2 34.6 65.9 35.6 80.7

Ours (imVoteNet) 65.1(+1.7) 89.2 53.7 72.9 78.3 90.8 30.2 43.2 70.0 46.5 76.1
Ours (imVoteNet∗) 65.8(+1.3) 87.6 55.2 72.8 80.9 92.5 31.2 45.8 67.7 43.7 80.9

Table 1. 3D object detection results on SUN RGB-D validation set with mAP@0.25. ∗ denotes that the model is implemented on
MMDetection3D. Ours (M) denotes that M is enhanced with our AShapeFormer. Our enhancement enables considerable performance
gain despite the highly competitive performance of existing methods on mAP@0.25. Best results in each column are green highlighted.

Figure 6. Representative qualitative results on ScanNet V2 dataset [9]. As compared to the baseline, i.e., VoteNet [29], AShapeFormer
enhancement not only enables detection of more challenging objects, but also reduces false positive detections. Best viewed on screen.

ScanNet V2 mAP@0.25 mAP@0.5
HGNet [6] 61.3 34.4

VoteNet [29] 58.6 33.5
VoteNet∗ [29] 63.8 44.2

MLCVNet [46] 64.5 41.4
3DETR [26] 65.0 47.0

GroupFree3D [23] 69.1 52.8
RBGNet [42] 70.6 55.2

Ours (VoteNet) 63.1(+4.5) 41.6(+8.1)
Ours (VoteNet∗) 66.6(+2.8) 47.8(+3.6)

Ours (GroupFree3D) 70.4(+1.3) 53.4(+0.6)
Ours (RBGNet) 71.1(+0.5) 56.6(+1.4)

Table 2. 3D object detection results on ScanNet V2 validation
set. A consistent improvement is achieved by enhancing existing
methods with the AShapeFormer module.

illustrate important points. More representative results are
also provided in the supplementary material.

4.3. Ablation Study and Discussion

We conduct an extensive ablation study to analyze the
efficacy of different sub-modules of our method. Table 3
compares the detection results of the naive method (§ 3.2),
ShapeFormer (§ 3.3) and SGM (§ 3.4) combined with the
vanilla VoteNet on the SUN RGB-D dataset when the IOU
is 0.25. It can be seen that when the naive shape encoding
is used (without Shapeformer and SGM) there is only incre-
mental performance improvement because the background
points are mixed in the encoding, and the pooling layer loses
shape information. The SGM utilizes guidance of seman-
tic information to not only sample more foreground points,
but also further suppress the contribution of the background
points in shape encoding. With the help of SGM, we can
better encode the shape feature of the object. Hence, as
compared to the original VoteNet, absolute performance
gain is 1.8%. The ShapeFormer is a standalone enhance-
ment that does not require Naive baseline. It gives better
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Figure 7. Qualitative results on SUN RGB-D dataset [38]. Best
viewed on screen. Our method often correctly detects those ob-
jects for which ground truth annotation is not provided. This im-
plies that mAP values of our method are under-estimated.

Figure 8. Semantic Guided Sampling and Voting. Best viewed on
screen. See supplementary for more results.

results than Naive + SGM option. Finally, when we use
ShapeFormer + SGM, we also avoid the loss of fine-grained
information in shape encoding, achieving a significant 3.5%
absolute performance improvement over VoteNet.

Figure 8 visualizes the positive impact of the SGM mod-
ule on seed point sampling and voting during testing. The
first row shows the seed points and vote points without the

VoteNet [29] ✓ ✓ ✓ ✓ ✓
Naive ✓ ✓

SF ✓ ✓
SGM ✓ ✓

mAP@0.25 57.7 58.9 59.5 59.9 61.2

Table 3. Contribution of sub-modules of AShapeFormer (SUN
RGB-D dataset). Naive is the naive approach from § 3.2. SF is
Shape Former (§ 3.3), SGM is Semantic Guided Module (§ 3.3).

Method mean size cls loss mean vote loss
VoteNet [29] 0.52 0.04

AShapeFormer 0.38 0.03

Table 4. Detection size error comparison on ScanNet V2.

SGM module [29]. It can be seen that the seed points
and vote points contain a large number of outliers. More
background points affect the quality of shape encoding ad-
versely. Scattered vote points containing a large number of
outliers cannot provide high-quality candidate points for the
detection head. The second row shows that with the help of
SGM, we find more foreground points, and the vote points
are also more compact and closer to the center, which is
beneficial to our shape encoding and vote aggregation.

The candidate points of vanilla VoteNet [29] are aggre-
gated from voting points. The vote points only contain the
positioning information of the object, which is sub-optimal.
Our method makes full use of the shape key points dis-
tributed on the surface of the object, which can encode the
shape of the object, so it can more accurately predict the size
and direction of the boxs. Table 4 summarizes a clearly fa-
vorable comparison of the prediction size errors of AShape-
Former and VoteNet [29] on the ScanNet dataset.

5. Conclusion
We proposes a plug-n-play module to improve the per-

formance of indoor 3D object detection by actively encod-
ing shape information of the object. We first sample the
shape key points of the object and re-weight their features
by guiding them with semantic information. Then, to avoid
the loss of fine-grained information, we utilize multi-head
attention to encode object shape features. Finally, object-
level shape features are fused with the candidate features
and fed to the detection head. Results show that our model
achieves state-of-the-art performance when assembled with
existing methods. In the future, we will explore to incor-
porate RGB images and point cloud completion methods to
encode more complete shape information in our technique.
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