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Video restoration, which aims to restore clear frames 34 @iy 23w -
from degraded videos, has numerous important applica- (18.3M)
tions. The key to video restoration depends on utilizing g %21 RNN MBP
inter-frame information. However, existing deep learn- =
ing methods often rely on complicated network architec- 5] e
tures, such as optical flow estimation, deformable convo- STEAN
lution, and cross-frame self-attention layers, resulting in L & (54N
high computational costs. In this study, we propose a sim- . EDVR
ple yet effective framework for video restoration. Our ap- 26 {Suetel. (20/6M)
proach is based on grouped spatial-temporal shift, which 0 100 200 300 400 500 600 700 800

is a lightweight and straightforward technique that can
implicitly capture inter-frame correspondences for multi-
frame aggregation. By introducing grouped spatial shift, we
attain expansive effective receptive fields. Combined with
basic 2D convolution, this simple framework can effectively
aggregate inter-frame information. Extensive experiments
demonstrate that our framework outperforms the previous
state-of-the-art method, while using less than a quarter of
its computational cost, on both video deblurring and video
denoising tasks. These results indicate the potential for our
approach to significantly reduce computational overhead
while maintaining high-quality results. Code is avaliable at
https://github.com/dasonglil/Shift—-Net.

1. Introduction

The popularity of capturing videos using handheld de-
vices continues to surge. However, these videos often suffer
from various types of degradation, including image noise
due to low-cost sensors and severe blurs resulting from cam-
era shake or object movement. Consequently, video restora-
tion has garnered significant attention in recent years.

The keys of video restoration methods lie in designing
components to realize alignment across frames. While sev-
eral methods [7, 38, 39, 53, 60] employ convolutional net-
works for multi-frame fusion without explicit alignment,

FLOPS (G)
Figure 1. Video deblurring on GoPro dataset [40]. Our models
have fewer parameters (disk sizes) and occupy the top-left corner,
indicating superior performances (PSNR on y-axis) with less com-
putational cost (FLOPS on x-axis).

their performance tends to be suboptimal. Most methods
rely on explicit alignment to establish temporal correspon-
dences, using techniques such as optical flow [46, 61]
or deformable convolution [11, 69]. However, these ap-
proaches often necessitate either complex or computation-
ally expensive network architectures to achieve large recep-
tive fields, and they may fail in scenarios involving large
displacements [27], frame noise [8, 63], and blurry regions
[7,48]. Recently, transformer [12,15,34] becomes promis-
ing alternatives for attaining long-range receptive fields. A
video restoration transformer (VRT) [32] is developed to
model long-range dependency, but its large number of self-
attention layers make it computationally demanding. In-
spired by the success of the Swin transformer [34], large
kernel convolutions [14, 35] emerge as a direct solution to
obtain large effective receptive fields. However, extremely
large kernels (e.g. kernel size > 13x13) does not necessar-
ily guarantee improved performance. (shown in 5).

In this study, we propose a simple, yet effective spatial-
temporal shift block to achieve large effective receptive field
for temporal correspondence. We introduce a Group Shift-
Net, which incorporates the proposed spatial-temporal shift
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Figure 2. Different modules for multi-frame aggregation: a) convolution [53], b) optical flow [32,42], ¢) deformable convolution [ 1 1,54,57],
d) self-attention [32,34] and e) our grouped spatial shift. Point-wise convolution, shortcut and normalization are omitted for simplicity.

blocks for alignment along with basic 2D U-Nets for frame-
wise feature encoding and restoration. The grouped spatial-
temporal shift process involves the separate shifting of input
clip features in both temporal and spatial dimensions, fol-
lowed by fusion using 2D convolution blocks. Despite its
minimal computational demands, the shift block offers large
receptive fields for efficient multi-frame fusion. By stacking
multiple spatial-temporal shift blocks, the aggregation of
long-term information is achieved. This streamlined frame-
work models long-term dependencies without depending on
resource-demanding optical flow estimation [19,47,61], de-
formable convolution [11,54,57], or self-attention [32].

Notably, while temporal shift module (TSM) [33] was
originally proposed for video understanding, it is not ef-
fective for video restoration. Our method distinguishes
itself from TSM in three fundamental ways: a) Alterna-
tive bi-directional temporal shift. TSM [33] employs bi-
directional channel shift during training, causing misalign-
ment of channels across three frames, which in turn in-
creases the difficulty of multi-frame aggregation. Con-
versely, our method utilizes alternative temporal shifts, ef-
fectively circumventing this issue. b) Spatial shift. In addi-
tion, our approach also incorporates a spatial shift for multi-
frame features. We divide the features into several groups,
each with distinct shift lengths and directions in the 2D
dimension. This grouped spatial shift offers multiple can-
didate displacements for matching misaligned features. c)
Feature fusion. To seamlessly merge various shifted groups,
the kernel size of the convolution is set equal to the base
shift length. By combining elements b) and c), the spatial-
temporal shift achieves large receptive fields (e.g. 23 x 23).

The contributions of this study are two-fold: 1) We pro-
pose a simple, yet effective framework for video restora-
tion, which introduces a grouped spatial-temporal shift for
efficient and effective temporal feature aggregation 2) Our
framework surpasses state-of-the-art methods with much
fever FLOPs on both video deblurring and video denoising
tasks, demonstrating its generalization capability.

2. Related Work

A series of methods have been proposed to explore fem-
poral information for video restoration.

Temporal alignment. Temporal alignment is a vital step to
model temporal correspondences of misaligned frames in
videos. Early learning-based methods [2,24,29,48,52] em-
ploy traditional image alignment methods [58] to model the
motions. To handle complicated motions, Xue et al. [61]
propose task-oriented flow by fine-tuning a pretrained op-
tical flow model [43] on different video restoration tasks.
Dynamic filters [23, 68] are also proposed to achieve mo-
tion compensation. Tian et al. [54, 57] propose to utilize
deformable convolution [! 1] for feature alignment. Chan
et al. [5] leverage the optical flow to guide the deformable
alignment for stable training [4], which is also adopt by the
latest transformer-based method VRT [32]. Such alignment
techniques increase the model complexity and might fail in
the case of large displacement [27], noise [8,63,67], blurry
regions [7,48]. Zhu et al. [7] demonstates that optical flow
or deformable convolution cannot estimate the alignment
information well because of the significant influence of the
motion blur. A series of methods [7, 38, 53] are proposed
to utilize convolution networks to handle motion implicitly.
However, the networks with small kernel sizes usually have
narrow receptive fields [37], which limits the model capac-
ity to address large displacements.

Long-term information aggregation. To obtain the long-
term information from distant frames, learning-based meth-
ods can be classified as sliding window-based methods and
recurrent methods. Sliding window-based methods [42, 53]
usually take several adjacent frames as input and output the
center restored frame. The information can only be aggre-
gated within the fixed sliding window. In contrast, several
methods [3,5,20,38,48] utilize the recurrent framework for
long-term information aggregation. The faulty prediction
and misalignment are accumulated frame by frame, which
may deteriorate the long-term dependency modeling [6].

Shift operations. Wu et al. [59] combine shift operation
and 1 x 1 convolution as an efficient alternative to 3 x 3
convolution. Its variants [10,21] further propose learnable
active shifts. Zhang et al. [660] adopt shift and 1 x 1 con-
volution for efficient image super-resolution. Lin et al. [33]
propose a temporal shift module (TSM) for video under-
standing. Rong et al. [44] apply temporal shift on wavelet
transforms for burst denoising. Liu et al. [34] perform self-
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Figure 3. Overview of the Group Shift-Net. It adopts a three-stage design: feature extraction, multi-frame fusion, and final restoration.
Grouped spatial-temporal shift blocks are proposed to achieve multi-frame aggregation.

attention with shifted windows to boost the performance of
vision transformer [15]. Recently, a series of MLP-based
architectures [31,56,62] couple the spatial shifts with multi-
layer perceptron to achieve competitive performances in
high-level visions tasks. Liang et al. [32] propose a video
restoration transformer (VRT), where one video is parti-
tioned into 2-frame clips at each layer and shifted for every
other layer to perform temporal self-attention. However, it
has a large number of self-attention layers and is computa-
tional costly. We extend shift operations to derive a large
receptive field with small kernel convolutions.

3. Method

Most previous methods in video restoration adopt com-
plicated architectures, such as optical flow [0 1], deformable
convolution [ | 1], and self-attention layers [32]. We propose
a simple, yet effective grouped spatial-temporal shift block
to establish temporal correspondences implicitly.

3.1. Overview of Group Shift-Net

Given consecutive degraded frames {I; € Rh>wxcin} T
where T' denotes the frame number, Group Shift-Net out-
puts the high-quality frames {O; € RF*wxcout}T — Ag
shown in Fig 3, our framework adopts a three-stage de-
sign: 1) feature extraction, 2) multi-frame feature fusion
with grouped spatial-temporal shift, and 3) final restoration.
Feature extraction. Each frame [; usually suffers from dif-
ferent types of degradation (e.g. noise or blur), which af-

fects temporal correspondences modeling. Inspired by [6],
2D U-Net-like structures [45] are adopted to mitigate nega-
tive impacts of degradation and extract frame-wise features.
Multi-frame feature fusion. At this stage, we propose a
grouped spatial-temporal shift block to shift different fea-
tures groups of neighboring frames to the reference frame
to establish the temporal correspondences implicitly. The
key-frame feature f; € RP*%X¢ is fully aggregated with
those of the neighboring frames to obtain the corresponding
aggregated feature A; € R"*w>¢  Spatial-temporal shifts
of different directions and distances are adopted to provide
multiple candidate displacements for matching the frames.
By stacking multiple grouped spatial-temporal shift blocks,
our framework can achieve long-term aggregation.

Final restoration. At last, U-Net-like structures take the
low-quality input frames {I;}" and corresponding aggre-
gated features {A;}7 as input and produces each frame’s
final result O;. The loss function L is formulated as

T
1
L:T;HHi—OiHL (1)

3.2. Frame-wise Processing

For feature extraction of stage 1 and final restoration of
stage 3, we stack IV 2D slim U-Nets consecutively to ex-
tract features and conduct restoration effectively. Stacking
multiple U-Nets [41] was explored before, which leads to a
deeper network depth and a larger receptive field than a sin-
gle U-Net [64] with the same computational cost. At each
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Figure 4. The operations of Grouped Spatial-temporal Shift (GSTS). We stack the forward temporal shift (FTS) blocks (Left) and backward
temporal shift (BTS) blocks (Right) alternatively to achieve bi-directional propagation. Grouped spatial shift provides multiple candidate
displacements within large spatial fields and establish temporal correspondences implicitly.

U-Net, we utilize residual blocks [17] to extract features.
Average pooling and bilinear upsampling is adopted to ad-
just feature resolutions. The output features of the previous
U-Net are directly passed to the next U-Net as input. The
number N and channels of stacked U-Nets are adjusted to
meet different requirements of computational cost.

3.3. Grouped Spatial-temporal Shift

In multi-frame fusion, frame-wise feature f; is aggre-

gated with neighboring features { f;_¢, ..., fi++} to obtain
temporally fused features F;. We adopt a 2D U-Net struc-
ture [45] for multi-frame fusion and keep skip connections
in the U-Net. We replace several 2D convolution blocks
by stacking multiple grouped spatial-temporal shift (GSTS)
blocks to effectively establish temporal correspondences
and conduct multi-frame fusion. The GSTS blocks are not
applied at the finest scale to save the computational cost.
A GSTS block consists of three components: 1) a tempo-
ral shift, 2) a spatial shift, and 3) a lightweight fusion layer,
organized in the way shown in Figure 4.
Grouped temporal shift. It is observed in our experiment
(Table 4) that, handling three frames simultaneously [33]
would increase the difficulty of multi-frame fusion. To
avoid it, our temporal shift processes only two adjacent
frames. Grouped temporal shift blocks are either a forward
temporal shift (FTS) block fusing { f;_1, f;} (Figure 4 Left)
or a backward temporal shift (BTS) block fusing { f;+1, fi}
(Figure 4 Right). To achieve bi-directional aggregation, we
stack FTS blocks and BTS blocks alternatively.

In a temporal shift, multi-frame features f; € Rhxwxe
are split (i.e. grouped) equally along the channel dimension
to obtain two feature groups: f2 and f?, where f2, f? €
R">w>3 In the forward shift, f¢ is not shifted and is ag-
gregated with the forward-shifted feature f? ; from time
¢ — 1. In the backward shift, f is backward-shifted to be
aggregated with f? | for restoring ; ;. In other words,
both FTS and BTS blocks keep half of the feature channels
(one feature group) for characterizing visual appearance at
current time ¢ and shift the other half of channels (the other
feature group) for propagating information for inter-frame
aggregation. For simplicity, in the following paragraphs,
we explain the details of the FTS block (i.e. how f{ is ag-
gregated with f ), and the BTS block is similarly defined.
Grouped spatial shift. Concatenating f¢ and f° , for
restoring frame ¢ does not account for the spatial misalign-
ment between two frames ¢ and i-1. Therefore, we per-
form additional spatial shift on the propagated feature group

b | € RMWX3 (o achieve a large spatial range for spa-
tial misalignment. Specifically, we first equally split (i.e.
group) f? ; along the channel dimension to obtain M fea-

ture slices f? ; ,, € R"*wX3% where m = 1,..., M is
the slice index. For each feature slice f? , ., we spatially

shift it by (Az,,, Ay,,) pixels in the = and y directions to
obtain the shifted feature slice f{’_Lm:

O = Shift(f2 1 Az, Ayi). )

Az = kz % (s = 1) + 1, |Aym| = ky x (s — 1) + 1,
where £, k, are integers and s is defined as the base length
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Method ‘ EDVR Suetal. STFAN TSP MPRNet MSDI NAFNet RNN-MBP VRT Ours-s Ours Ours+
PSNR 26.83 27.31 28.59  31.67 32.66 33.28 33.69 33.32 3481 3522 3549 35.88
SSIM 0.843 0.826 0.861 0.928 0.959 0.964 0.967 0.963 0.972 0975 0976 0.979
Params (M) | 20.6 15.3 5.37 16.17 20.1 241.3 67.8 16.4 18.3 4.1 10.5 12.3

FLOPS (G) | 194.2 38.7 354 357.9 760.1 336.4 63.3 496.0 7213 47.1 146.5 151.3

Table 1. Quantitative companson on GoPro [40] test set.

RNN-MBP

Video 881, Frame 214 RNN-MBP

VRT Ours Ground Truth

Figure 5. Video deblurring on GoPro [40] test set. Our method recovers more details than other methods.

of spatial shift. When the spatial shift causes void pixels in
the border, we set them to zero. For a Ax,,, pixels shift, the
corresponding feature group is shifted spatially by Az,,-1
pixels, followed by a depth-wise 3 x 3 convolution, which
handles objects across two shifts and achieve smooth trans-
lation between two adjacent shifted feature slices. Then we
concatenate all feature groups ffil m along the channel di-

mension to obtain the spatially shifted feature ff’il:

ibLl = Concat(fl 1L1v-e s zbilM) 3)

For example, when M = 9 and Ax,,, Ay, € {-1,0,1},
the spatial shift operation creates 9 feature slices and shifts
the different slices by the 9 directions. In our implementa-
tion, we set M = 25 and Az, Ay,, € {-9,-5,0,5,9}
to enlarge the alignment and fusion’s receptive fields, so as
to handle large displacements across frames.

Fusion layer. We utilize a fusion layer F' to aggregate
multi-frame features f¢, f* |, f¥ . The fusion layer F
contains two lightweight convolution blocks and each block
adopts the combination between NAFNet [9] and Super
Kernels [51], utilizing point-wise convolutions, depth-wise
convolutions and gated layers to avoid heavy computation.

The output fused feature fz of frame ¢ is calculated as

b—l) +F( la,

f; = Concat(f2, LD @

The output feature fz is fed to the next GSTS block. To
effectively merge shifted features, the kernel size of convo-
lutions is set to be equal to the base shift length s.

3.4. How Grouped Spatial Shift Help Restoration?

We provide visualization and analysis to explore how
different shifted features groups help video restoration. We
input two neighboring frames into Group Shift-Net. To an-
alyze the feature map of grouped spatial shifts, we sample

LAM of shift — LAM of shift +~ LAM of shift 1
Figure 6. Local attribute visualization [16] of four shift directions.
The saturation of red dots represent contribution weights of differ-
ent areas in restoration of the marked local patch.

LAM of shift |
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Method ‘ EDVR Suetal. STFAN TSP PVDNet ARVo STDAN ERDN RNN-MBP VRT Ours-s Ours Ours+

SSIM

PSNR 28.51 30.01 31.15 3213 3231  32.80
0.864  0.887 0905 0927 0926 0.935

33.05 3331 33.32 3427 34.18 34.58 34.69
0.937  0.940 0.963 0.965

0.965 0.968 0.969

Table 2. Quantitative comparison on DVD [50] test set.

Input

Video IMG_0033, Frame 30

Video 720p-240fps_2, Frame 70 ERDN
Figure 7. Video deblurring results on DVD [50]. Our method performs better at reconstructing details of leaves and the moving tire.

a 16 x 16 grid area from the resultant feature map. Local
attribution map (LAM) [16] is performed to analyze contri-
bution weights of all shifted features in restoring the 16 x 16
grid. The contribution weights are visualized as the red dots
in Figure 6. When the color of dots is more saturated, the lo-
cal area is more important in restoration. It is shown that the
shifted features are more important in restoring O;, when a
shift direction is similar to the motion between /;_1 and ;.
Moreover, our method could obtain expansive effective re-
ceptive fields for temporal correspondence establishment.

4. Experiments

We conduct experiments and ablation study on two tasks:
video deblurring and video denoising.
Datasets. For video deblurring, we train and evaluate our
method on GOPRO [40] and DVD [50] datasets. GO-
PRO [40] dataset contains 2,103 and 1,111 frames as train-
ing and test sets, respectively. DVD [50] includes 5,708
frames for training and 1,000 frames for testing. For video
denoising, we follow Huang et al. [18] to train our model
with noise level o € U [0,50] on DAVIS [25] dataset and
test it on DAVIS [25] of different noise levels.
Model Scaling. We provide small model (denoted as
“Ours-s”), base model (denoted as “Ours”) to meet different
computational requirements. For both models, We replace
the convolution blocks by multiple GSTS blocks in Stage-

PVDNet TSP

STDAN

~ Ground Truth

VRT Ours Ground Truth

2’s UNet. We further observe that merely replacing con-
volution blocks in decoders of Stage-2’s UNet (denoted as
“Ours+”) could boost the performances further. The details
of different models are in Appendix.

Implementation details. Our network is end-to-end
trained. The base shift length s is set to 5. The networks
are trained with a batch size of 8 for 750 epochs. The re-
parameterization technique [ 13] is adopted to optimize con-
volutions in GSTS. The patch size is set as 256 x 256. Hor-
izontal and vertical flips are adopted for data augmentation.
We use the Adam optimizer [26] and the learning rate is de-
creased from 4 x 107 to 1 x 10~7 according to the cosine
annealing strategy [36]. At inference of video deblurring,
“Ours-s” processes 100 frames simultaneously. “Ours” and
“Ours+” process only 50 frames due to the memory limit.

4.1. Video Deblurring Results

Quantitative comparison. We compare our method with
state-of-the-art deblurring methods including EDVR [57],
Suetal. [50], STFAN [68], TSP [42], MPRNet [64], MSDI-
Net [28], NAFNet [9], RNN-MBP [7], STDAN [65], ERDN
[22] and VRT [32]. As shown in Tables 1 and 2, “our+” out-
performs VRT [32], the most competitive method, by 1.07
dB and 0.42 dB PSNR on GoPro and DVD, respectively,
with only 21% of its flops. For a more intuitive comparison,
we provide the PSNR-Params-FLOPS plot in Figure 1. The
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Dataset o

VLNB DVDNet FastbVD EMVD-L PaCNet Huangetal. FloRNN Tempformer VRT Ours-s Ours Ours+

10| 38.85 38.13 38.71 38.57 39.97 39.67 40.16 40.17 40.82 40.55 40.75 40.85
20| 35.68  35.70 35.77 35.39 36.82 36.33 37.52 37.36 38.15 37.84 38.19 38.24
DAVIS 30| 33.73  34.08 34.04 33.89 34.79 34.62 35.89 35.66 36.52 36.25 36.62 36.68
40| 32.32  32.86 32.82 32.40 33.34 33.40 34.66 34.42 35.32 3511 3547 35.56
50| 31.13  31.85 31.86 31.47 32.20 32.41 33.67 33.44 3436 3420 3453 34.64
Params (M) - - 2.5 9.6 2.87 13.95 11.8 - 183 37 108 129
FLOPS (G) - - 41.8 69.5 - 48.5 189.7 - 7213 472 146.8 1732

Video deer, Frame 10

Input

PaCNet

Video tractor, Frame 5
Figure 8. Video denoising results on DAVIS [25] test set. Our method reconstructs more details of textures and texts.

two versions of our model occupy the top-left corner, show-
ing the best performances with less computational cost. No-
tably, “Ours-s” surpasses STFAN [08] by a significant 6.63
dB PSNR with the fewest parameters.

Qualitative comparison. Figure 5 provides the visualiza-
tion of two hard deblurring cases. As one can see from the
full images, there exist severe blurry regions due to camera
shaking and object movement. On the zoomed-in patchs,
our model reconstructs much sharper letters, building struc-
tures and boundaries of moving legs.

4.2. Video Denoising Results

Quantitative comparison. We compare our method with
SOTA video denoising methods VLNB [1], DVDNet [52],
FastDVD [53], EMVD-L [38], PaCNet [55], Huang et al.
[18], FloRNN [30], Tempformer [49] and VRT [32]. It is
shown in Table 3 that we achieve best performances in 5
noise levels on with less computational cost. Moreover, our
small model performs better than previous lightweight mod-

Table 3. Quantltatlve comparison on DAVIS [25] test set.

Ground Truth

DVDNet FastDVD FloRNN

Ours Ground Truth

els, such as FastDVD [53], EMVD-L [38].

Qualitative comparison. Figure 8 visualizes the denois-
ing results of DAVIS [25] . Note the zoomed-in regions in
the red boxes. Other models generate over-smooth results,
while our model reconstructs more details in grass and texts.

4.3. Ablation Study

We demonstrate the effectiveness of each key component
in Group Shift-Net. All compared methods are trained and
evaluated with the same training settings of our base model.
Spatial Temporal shift. We evaluate the impact of grouped
spatial shift and alternative temporal shift in Table 4. At
first, We remove grouped spatial shift and merely apply al-
ternative temporal shift . The kernel size of convolution in
the fusion layers is set to be 3 x 3, which is widely used
previously [33,44]. It suffers a drop of 0.35 dB PSNR.
Then we replace alternative temporal shift by bi-directional
shift, where the fusion layer would aggregate % channels of
feature f;, & channels of feature f;_i, and  channels of

9828



Alternative Spatial

Temporal Shift ~ Shift | ToNR
3 X [ 3481
v X | 3514
7 7 349

Table 4. Ablation of grouped spatial-temporal shift.
5X5 9x9 17 x 17 25 x 25 33 x 33

Receptive Field

Ours w/o spatial | 35.14 3520  35.18 35.16 35.17
Receptive Field | 13 x 13 23 x 23 33 x 33
Ours 35.39 35.49 35.48

Table 5. Receptive field and spatial shift in a fusion layer.

Az, By {0} {0, £1} {0, £2, £3} {0, £3, I5}
PSNR 3520 3529 3537 3535
Az, Ay |{0, £4, 27} {0, £5, £9} {0, £6, £11} {0, £7, £13}
PSNR 3544 35.49 35.46 35.40
AZm, Aym | 10} {0, £5) {0, £5, £9} {0, £5, 9, £13]

PSNR _ [35.14 35.34 35.49 3547

Table 6. Ablation of (Az,, Ay, ) in grouped spatial shift.

feature f; 1. This operation causes a decrease of 0.33 dB
PSNR. The ablation illustrates the importance of grouped
spatial shift and alternative temporal shifts.

Receptive field in fusion layers. We change the base shift
length s to be 3,5,7. The corresponding receptive fields
of a fusion layer (depth-wise convolutions with kernel size
s+1) are 13 x 13,23 x 23, 33 x 33. We also remove spatial
shift and enlarge the kernel sizes of convolutions to achieve
similiar receptive field (denoted as “Ours w/o spatial”). The
kernel sizes of the depth-wise convolution are set to be 3,
5,9, 13, 17 and the corresponding receptive fields are 5 x
5,9%9,17x17,25x%x25,33 x 33, respectively. It is shown in
Table 5 that larger kernel convolutions cannot achieve better
performances. It might be because extremely large kernels
are stiill difficult to optimize. It is also observed that our
method surpasses optimizing larger kernels by about 0.3 dB
PSNR, which demonstrates the superiority of spatial shift.
Grouped spatial shift. We first set M = 25 and set the
kernel size in fusion layers to be 5. Then we change the
base shift length s from 1 to 7 and Ax,,,, Ay, as shown in
Table 6. Ax,,, Ay,, € {0} means that only temporal shift
is applied. It is observed that the model with Ax,,,, Ay,, €
{0, +5, £9} achieves the best performance. When the base
shift length s increases, the spatial shifts with larger recep-
tive fields achieve better performance. The models suffer
degraded performances when the shift length is larger than
the kernel size. It is because convolutions would not filter
shifted features seamlessly. Then we change the number M
of shifts and Az,,, Ay, are changed with the number M.
It is shown in Table 6 that the models with M = 49 and
M = 25 achieve the similar performances, which outper-
form the model with M = 9 by about 0.15 dB PSNR.
Temporal consistency. Following Tempformer [49], we
add noise with 12 different noise seeds on DAVIS to create
a dataset of 12-frame sequences. Mean absolute error be-
tween adjacent outputs is taken as the metric. Table 7 shows
that our method and VRT achieve similar consistency.
Replacing shift blocks with optical flow, DCN and self-
attention. We first replace our fusion layer in shift blocks

Method o =10 o =30 o =50
VRT [1.5x107° 1.6x10° 2.0x 10 °
Ours | 1.7x107° 1.7x10°° 1.9x10°°

Table 7. Temporal consistency evaluation of video denoising.

Deblurrin DAVIS denoisin

Method GoPro g =10 o=30 0:%0 Params FLOPs
GSTS + self-attn 34.67 40.54 36.28 34.17 | 11.1 M) 168.7 (G)
GSTS + DCN 33.74 40.02 35.65 33.43|17.9M) 2103 (G)
Optical Flow 34.14 40.07 35.68 33.55|142 M) 189.4(G)
self-attn 34.52 40.58 36.31 34.17 | 10.6 M) 153.6 (G)
DCN 33.66 39.91 3548 33.18 | 17.2(M) 203.8 (G)
Ours 35.49 40.75 36.62 34.53 | 10.8 (M) 146.8 (G)

Table 8. Replacing shift blocks with several variants.

B Deblurring | DAVIS (480 x 854) | DAVIS (240x427) | DAVIS (960 x 1708)

GoPro |0=10 0=30 0=50|0=10 =30 0=50|0c=10 =30 o=50
3| 3539 [40.65 36.47 34.34[39.07 34.71 32.65[43.20 38.92 36.93
51 3549 [40.75 36.62 34.53|39.13 34.82 32.77(43.20 39.05 37.11
7| 3548 [40.63 36.45 34.32|39.05 34.69 32.62|43.19 38.94 36.98
9| 35.33 [40.56 36.35 34.20(39.01 34.61 32.54|43.19 38.86 36.84

Table 9. Shift length s on different degradation and resolutions.

with DCN (denoted as “GSTS+DCN”) and cross-frame
(shifted window size=8) self-attention layers (denoted as
“GSTS+self-attn). Table 8 shows that our simple structure
achieves better performance than DCN and self-attention.
Then we replace shift blocks with optical flow (a pre-trained
SPyNet as initialization), DCN layers and cross-frame self-
attention layers (shifted window size = 8), separately. It is
observed in Table 8 that our method achieves better perfor-
mance with less computational cost.

Shift length s. We first evaluate shift length s on differ-
ent types of degradation, such as blur and noise. It is ob-
served in Table 9 that the network with s=5 achieves the
best performance on both video deblurring and denoising.
We further apply bicubic upsampling and bilinear down-
sampling on DAVIS (480x854) to obtain a downsampled
DAVIS dataset (240x427) and a upsampled DAVIS dataset
(960x1708). As shown in Table 9, the network with s=5
achieves the best performance at all resolutions.

5. Conclusion

In this paper, we propose a simple and effective frame-

work for video restoration that does not require complicated
architectures like optical flow, deformable convolution, or
self-attention. Instead, we introduce a simple spatial tempo-
ral shift block for implicit temporal correspondence model-
ing. Our method outperforms state-of-the-art methods with
less computational cost on video deblurring and denoising
tasks. We do not foresee any negative social impact result-
ing from this work.
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