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Abstract

Open Set Domain Adaptation (OSDA) transfers the
model from a label-rich domain to a label-free one con-
taining novel-class samples. Existing OSDA works over-
look abundant novel-class semantics hidden in the source
domain, leading to a biased model learning and trans-
fer. Although the causality has been studied to remove the
semantic-level bias, the non-available novel-class samples
result in the failure of existing causal solutions in OSDA.
To break through this barrier, we propose a novel causality-
driven solution with the unexplored front-door adjustment
theory, and then implement it with a theoretically grounded
framework, coined Adjustment and Alignment (ANNA), to
achieve an unbiased OSDA. In a nutshell, ANNA consists of
Front-Door Adjustment (FDA) to correct the biased learn-
ing in the source domain and Decoupled Causal Align-
ment (DCA) to transfer the model unbiasedly. On the one
hand, FDA delves into fine-grained visual blocks to discover
novel-class regions hidden in the base-class image. Then,
it corrects the biased model optimization by implementing
causal debiasing. On the other hand, DCA disentangles the
base-class and novel-class regions with orthogonal masks,
and then adapts the decoupled distribution for an unbiased
model transfer. Extensive experiments show that ANNA
achieves state-of-the-art results. The code is available at
https://github.com/CityU-AIM-Group/Anna.

1. Introduction
Unsupervised Domain Adaptation (UDA) [5, 8, 11, 13]

has been well studied to transfer a model from a labeled
domain to an unlabeled novel one, notably saving the label-
ing labor for model re-implementation. However, existing
UDA research follows a strong assumption that the two do-
mains must share the same class space, which cannot make
correct predictions for novel-class samples. This severely
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limits real-world applications [25, 29], e.g., product recom-
mendation and pathology identification with unseen classes.

Aiming at addressing this issue, Open Set Domain Adap-
tation (OSDA) [3, 17, 20, 29, 35] has been studied, which
also needs to recognize the novel-class samples in the target
domain as unknown. As shown in Figure 1(a) (top), follow-
ing a similar pipeline, most existing works [3,17,20,29,35]
utilize labeled base-class data to train a closed-set classi-
fier in the source domain. Then, in the target domain, they
adjust the model with two objectives, i.e., exploring novel
samples to achieve base/novel-class separation (novel-class
detection) and adapting the base-class distribution (domain
alignment). Based on this pipeline, these works can suc-
cessfully recognize some novel samples in the unlabelled
target domain and align the base-class distribution well.

While achieving great success, existing works [17, 20,
29] only consider base-class semantics in the source do-
main, ignoring the novel-class spreading everywhere. This
leads to a semantic-level bias between the base and novel
class, further yielding a biased domain transfer for OSDA.
To explore the deficiency of this bias, we visualize the
base/novel-class activated regions, as shown in col. 1-2 of
Figure 1(a) (bottom). It can be observed that existing ap-
proaches can successfully find the base-class regions con-
sistent with the image-level ground-truth chair, but can-
not discover novel-class semantics, e.g., the yacht, sea, and
ground, etc. (The base and novel regions are highlighted
in Figure 1(c) for better view.) Further, we conduct a per-
pixel prediction on deepest features without global average
pooling (col. 3), illustrating that the novel regions are mis-
classified as some non-correlated base classes. These obser-
vations imply that this semantic-level bias severely affects
the judgment of the classifier even though the classifier can
give a correct prediction for the whole image.

Recently, several causality-based approaches [36,44,45]
have been proposed to solve the semantic-level bias in the
closed-set setting. These works [36,44,45] first conduct per-
class statistics over the whole dataset to decouple the con-
text, and then use decoupled components to correct the bi-
ased model training in a class-balanced manner. This causal
solution can successfully avoid biased model learning since
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Figure 1. Illustration of the general pipeline (top) and observed bias (bottom) with the base/novel-class activation and per-pixel prediction
(we conduct dense classification on each pixel of the 7×7 ResNet-50 [9] feature and highlight the pixels with the same result in the same
color.) for (a) existing OSDA approaches, (b) our solution, and (c) base and novel regions in each image.

the knowledge of all classes contributes to training each
sample. Hence, the rational idea is to explore the causal-
ity to solve the newly observed OSDA bias.

However, it is intractable to implement existing causal
solutions [36, 45] in OSDA since the context is unobserv-
able in open-set setting [42,43]. Existing works [36,45] use
backdoor adjustment theory [26] to remove the bias, which
relies on the observable context with available data samples.
Differently, in OSDA, the context is unobservable [42] since
novel-class samples are missing in the source domain [29]
and labels are non-available in the target domain, leading to
the failure [42] of existing backdoor solutions [36, 44, 45].
Although the front-door adjustment [26] can break through
this unobservable dilemma [26] by decoupling data samples
instead of context1, it is still tricky to implement a semantic-
level decoupling [36,45] on each data sample since each im-
age is only assigned a single class label in classification [9].
Fortunately, as shown in Figure 1(c), we observe that each
image can be decoupled into base/novel-class regions in this
open-set setting, which motivates us to use the unexplored
yet effective front-door adjustment [26] to remove the bias.
Thus, we aim to correct the biased learning in the source
domain and then align the decoupled cross-domain distribu-
tion to achieve unbiased OSDA. See Sec. 3 for a theoretical
analysis with Structural Causal Model.

To address the problems mentioned above, we pro-
pose a theoretically grounded framework, Adjustment and
Alignment (ANNA) for OSDA (see Figure 1(b) (top)) with
causality, which consists of Front-Door Adjustment (FDA)
to address the biased learning in the source domain, and
Decoupled Causal Alignment (DCA) to transfer the model
to the target domain unbiasedly. Specifically, in each base-
class image, FDA delves into fine-grained visual blocks to
discover novel-class regions, serving for correcting biased
model learning with causal adjustment. As for the DCA
module, we disentangle cross-domain images into base-
class and novel-class regions with orthogonal masks, and
then align the decoupled distribution free of bias. As shown

1See supplementary materials for a more detailed explanation.

in Figure 1(b) (bottom), after eliminating the OSDA bias,
the model can capture labeled base-class regions (col. 1)
and unlabeled novel-class regions (col. 2) well. Besides,
the per-pixel prediction (col. 3) gives a closer look at model
inference, showing that ANNA fully considers fine-grained
novel semantics like humans before making an image-level
prediction. Our main contributions are as follows,

• This work represents the first attempt that observes and
formulates the ever-overlooked semantic-level bias in
OSDA. To address this issue, we propose a theoreti-
cally grounded framework, Adjustment and Alignment
(ANNA) with causality, achieving an unbiased OSDA.

• We propose a Front-Door Adjustment (FDA) module
to correct the biased closed-set learning, discovering
and fully using novel-class regions hidden in images.

• We design a Decoupled Causal Alignment (DCA) to
achieve an unbiased model transfer, which decouples
cross-domain images with fine-grained regions and
aligns the decoupled distribution unbiasedly.

• Extensive experiments on three benchmarks verify that
ANNA achieves state-of-the-art performance. ANNA
achieves the best HOS on all 12 sub-tasks of the chal-
lenging Office-Home benchmark.

2. Related Work
Closed-Set Domain Adaptation (CSDA). CSDA transfers
the model from a labeled source domain to an unlabeled
counterpart with a shared class space. Some works [4, 5,
8, 14, 19, 38, 46] deploy tailor-designed discriminators to
align the distribution via adversarial learning [8]. Some
works [11–13, 15, 31] measure domain discrepancy and
adapt via metric learning. Moreover, various self-training
techniques [18,21] are developed to discover reliable target-
domain samples for better semantic discriminability. Due
the shared class space, CSDA models cannot recognize
novel classes with limited real-world applications.
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Open Set Domain Adaptation (OSDA). OSDA is the ex-
tension of CSDA that allows the target domain to contain
novel classes. Saito et al. [29] raises the OSDA setting
that novel-class samples only appear in the target domain
for practical application. Recent advances mainly focus on
two streams of the research, i.e., 1) separating the known
and unknown samples in the unlabeled target domain with
score-based similarity [17,20], adversarial learning [10,29],
rotation-invariance [3], binary classification [17], and 2)
aligning the cross-domain known distribution with adver-
sarial alignment [17], pseudo-labeling [20, 35]. However,
existing approaches ignore the biased learning in the source
domain with limited novel-class discriminability, which is
addressed by the proposed causality-driven solutions.
Causality-based Debiasing. Causality has been widely
studied in various computer vision tasks [23, 24, 32, 32, 36,
37, 39, 42–44] to correct the biased model learning. Most
existing works [36, 39, 44, 45] rely on the backdoor ad-
justment theory [26] for debiasing, which decouples the
confounder [26], e.g., context [36, 45] at the dataset level
and use decoupled components to correct the biased learn-
ing [36,45]. Wang et al. [36] explore the bias caused by the
object co-occurrence and then solve it via backdoor adjust-
ment [26]. Zhang et al. [45] implement the backdoor ad-
justment [26] in weakly-supervised semantic segmentation
to generate unbiased pseudo-masks. These works [36, 45]
address the bias in closed-set with deployable backdoor ad-
justment [26], relying on the observable context with avail-
able samples. Differently, due to the unobservable context
in OSDA, we leverage the unexplored front-door adjust-
ment [26] theory (see Figure 2) to address the biased OSDA.

3. Preliminaries and Motivation
Problem Formulation. In OSDA, we have labeled source
data {Iis, Y i

s }
Ns
i=1 and unlabeled target data {Iit}

Nt
i=1 drawn

from inconsistent distribution Ps ̸= Pt. Both domains share
K base classes, while the target domain also contains extra
K ′ target-private novel classes, which are uniformly con-
sidered as unknown [29] (class K + 1). OSDA aims to
recognize both base/novel classes in the target domain by
solving the 1) Open-set and 2) Cross-domain challenge [3].
Structural Causal Model. In OSDA, we formulate the
causality among the pixel-level feature X , image-level rep-
resentation Z, image-level label Y and unobservable open-
set context C [36] in Figure 2. The node indicates the causal
variable, and the directed edge is a specific operation with
the causality from the cause (head) to the effect (tail).

X → Z → Y indicates the causality of image recogni-
tion. Given X extracted from the feature extractor, the deep
model first abstracts image-level representation Z through
pooling [9] (X → Z), and then separates the high-level em-
bedding into different classes with a classifier (Z → Y ).

X ←− C → Y . The unobservable context prior C deter-

Figure 2. The proposed Structural Causal Model for OSDA.

mines the composition of each image [36, 45] (X ←− C),
e.g., putting a chair (base-class) next to a yacht (novel-
class). Moreover, C determines the label distribution with a
specific class prior [36, 45], justifying C → Y .

Hence, as the observation in [36, 45], open-set context
C prevents the unbiased learning from X to Y [26]. To
break through this barrier, we implement the front-door ad-
justment [26] with do-calculus [26] as follows, (see supple-
mentary materials for the proof.)

P (Y |do(X)) =
∑

X′⊆X

∑
Z

P (Y |Z,X ′)P (X ′)P (Z|X).

(1)
Then, we ground the adjustment formula in OSDA, which
considers the base and novel regions X = {Xb, Xn} in
each image (see Figure 1(c)). With the link of pooling op-
eration (X → Z), we also have Z = {Zb, Zn}. Thus, the
summation symbols in Eq. 1 can be opened:

P (Y |do(X)) = P (Y |Zb, Xb)P (Xb)P (Zb|X)

+ P (Y |Zn, Xn)P (Xn)P (Zn|X)

+ P (Y |Zn, Xb)P (Xb)P (Zn|X)

+ P (Y |Zb, Xn)P (Xn)P (Zb|X).

(2)

Based on the proposed causal formulation, we can natu-
rally have P (Zb|Xb) = P (Zn|Xn) = 1 and P (Zb|Xn) =
P (Zn|Xb) = 0, due to the fact that the pooling operation
(X → Z) won’t change the semantic-level role of X [16].
Then, we have, (see supplementary materials for the proof.)

P (Y |do(X)) = P (Y |Xb)P (Xb)P (Xb|X)

+ P (Y |Xn)P (Xn)P (Xn|X),
(3)

where P (Xb/n) is the marginal distribution of base/novel-
class at the dataset level, P (Xb/n|X) measures the ratio of
base/novel-class semantics for given images, P (Y |Xb/n) is
the optimized posterior for an unbiased classifier.
Remark 1. Open-set challenge. With Eq. 3, we can ob-
serve that existing works [3, 17, 29] wrongly assume X =
Xb and optimize P (Y |Xb) with a closed-set classification
(Figure 1(a)) in the source domain. Thus, to address this
bias, we propose FDA (Sec. 4.1) to optimize P (Y |do(X)).
FDA first discovers novel regions Xn in each image X to
make P (Y |Xn) and P (Xn|X) measurable, and then intro-
duces an unbiased learning objective LFDA by optimizing
P (Y |do(X)) with P (Y |Xb) and P (Y |Xn).
Remark 2. Cross-domain challenge. Eq. 3 can be further
analyzed by introducing the well-proved Covariate Shift [2,
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Figure 3. Illustration of the proposed ANNA framework. We utilize 1st image in each batch to clarify the workflow of each module. GAP
indicates the global average pooling for feature abstraction. Causal variables are highlighted with circles.

30], i.e., different domains have inconsistent marginal dis-
tribution P (X) and consistent P (Y |X). Thus, P (Xb/n),
the domain gap will attack, should be aligned to ensure the
applicability of unbiased P (Y |do(X)) under cross-domain
scenarios2. Existing OSDA solutions [3, 17, 29] only align
base-class distribution P (Xb), failing to achieve an unbi-
ased transfer with misaligned P (Xn). Differently, we pro-
pose DCA (Sec. 4.2) to adapt both P (Xb/n), which gener-
ates orthogonal masks to decouple the batch-level observa-
tion drawn from P (Xb/n) for a decoupled adaptation,

4. Adjustment and Alignment (ANNA)
The overall workflow is shown in Figure 3. With batch-

wise source data {Iis, Y i
s }Bi=1 and target data {Iit}Bi=1, we

use shared feature extractor to obtain pixel-level features
Xs/t, which are sent to (a) Front-Door Adjustment (FDA)
and (b) Decoupled Causal Alignment (DCA) for unbiased
OSDA. In FDA, we first re-characterize the image feature
Xs with fine-grained visual blocks {xi

s}Ni=1 and then dis-
cover inherent novel regions Xn = {xi

n}
Nm
i=1, serving for

implementing P (Y |do(X)) with an unbiased learning loss
LFDA. DCA transforms cross-domain images Xs/t into
block-based representation {xi

s/t}
N
i=1, and decouples it into

base and novel regions with orthogonal masks Mb/n. Then,
it aligns the decoupled distribution P (Xb/n) to remedy the
domain gap with an unbiased transfer loss LDCA.

4.1. Front-Door Adjustment

With batch-wise source data {Iis, Y i
s }Bi=1, we extract

pixel-level image features Xs ∈ RB×D×H×W and send
them to FDA. FDA corrects the biased closed-set learning
by implementing the front-door formula as Eq. 3.
Discovering Novel Regions Xn. As modeling P (Y |Xn) in
Eq. 3 relies on available novel samples Xn, we delve into
fine-grained visual blocks to discover intrinsic novel-class

2Intuitively, in OSDA, target-private novel-class images [29] tend to
result in a larger covariate shift on P (Xn)

regions hidden in base-class images. Specifically, we use
visual blocks to re-characterize the image into fine-grained
representation Xs = {xi

s}Ni=1, N = B×H×W , and deploy
it on pixel-level features instead of original images to avoid
multi-times forward propagation [27, 33]. Then, we cate-
gorize the visual blocks into three types to comprehend the
image compensation and clarify each type in Figure 4(a).

(1) Labeled Base regions Xlb. We define the main body
consistent with image-level labels as LB. According to the
labeling habit, data collectors tend to label the commonly
seen object with obvious characters, e.g., large scale.

(2) Unlabeled Base regions Xub. We consider the
object in a base class that hasn’t been correctly labeled.
For example, although curtain is a base-class in Office-
Home [34], the curtain in 1st image hasn’t been labeled due
to the more notable bed (LB). These blocks harm the feature
learning due to its inconsistent semantics with labels.

(3) Potential Novel regions Xn. Except for LB and UB,
all the other blocks could be considered as the PN, e.g., the
door and window in 1st image.

Based on our OSDA analysis (Eq. 3), we aim to discover
Xn to conduct front-door adjustment. To avoid the influ-
ence of Xlb, the correctly classified highly-confident blocks
should be eliminated, since the image classification has in-
duction capacity on label-matched regions. As for remov-
ing Xub, we utilize the intrinsic cues in the score-ranking,
considering the semantic affinity, i.e., the co-occurrent ob-
jects3 have similar semantics compared with non-correlated
counterparts [40] in a specific scene. Taking 2nd image of
Figure 4 as an example, the selected visual block containing
desk-lamp (∈ Xub) tends to generate a higher score in the
computer channel compared with the non-correlated class
bike in this indoor scene [40].

To this end, we freeze the classifier and forward-
propagate all fine-grained visual blocks {xi

s}Ni=1 indepen-
dently to obtain per-class confidence {ỹis}Ni=1, ỹ

i
s ∈ RK+1,

3Each x ∈ Xub must appear with the labeled block in Xlb together.
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Figure 4. (a) Illustration of the three types of visual blocks, i.e.,
Labeled Base (LB: Xlb), Unlabeled Base (UB: Xub), and Potential
Novel (PN: Xn). (b) Toy examples for estimating P (Xb/n|X)

which are used to discover novel regions Xn as follows,
Xlb = {xs|argmax(ỹs) = ŷs},
Xub = {xs|ŷs ∈ Top-K(ỹs) ∧ argmax(ỹs) ̸= ŷs},
Xn = {xs|xs /∈ Xlb ∧ xs /∈ Xub},

(4)

where ŷs is the image-level label for the selected local vi-
sual block. Considering the poor semantic in the early train-
ing stage, we only utilize the discovered blocks Xn satisfy-
ing |Xn| < |Xlb| to prevent the risky selection.
Estimating P (Xb/n|X). To measure the P (Xb/n|X) in
Eq. 3, we estimate the probability P̃ (Xb/n|X) in each train-
ing batch by counting the number of LB and PN blocks as
follows, (see Figure 4(b) for two toy examples.)

ηb = P̃ (Xb|X) =
|Xlb|

|Xlb|+ |Xn|
,

ηn = P̃ (Xn|X) =
|Xn|

|Xlb|+ |Xn|
,

(5)

where P̃ (Xb/n|X) is the estimated conditional probability
for each training batch. It is worth noting that we ignore
Xub to avoid the influence of inconsistent semantics.
Unbiased Learning by Optimizing P (Y |do(X)). Then,
based on the discovered novel visual blocks Xn, we can nat-
urally implement the unbiased optimization objective (con-
sistent with Eq. 3) as follows,

LFDA = ηbLb + ηnLn, (6)

where ηb/n = P̃ (Xb/n|X), Lb is implemented with the
standard closed-set classification loss [29] for P (Y |Xb)
and Ln = − 1

|Xn|
∑

xn∈Xn
log(p(ỹn = K + 1|xn))

aims to maximize the novel-class probability on Xn for
P (Y |Xn). Moreover, for the terms P (Xb/n) in Eq. 3, we
follow [36, 45] to use an evenly distributed approximation
with balanced constant entries P (Xb/n) = 0.5, thereby, in-
dependent of the model optimization. Considering that the
feature extractor may overfit some non-informative back-
grounds, we add a gradient scaling layer after the feature
extractor as [29] for Ln, which scales the gradient with a
constant λ ∈ [0, 1] during back-propagating Ln to relieve
such influence. (See Sec.5.4 for experimental analysis.)

4.2. Decoupled Causal Alignment

After correcting the biased learning in the source do-
main, DCA is proposed to transfer the model to the target
domain unbiasedly. DCA first decouples each image X into
base and novel class regions through generating orthogonal
masks Mb/n and then aligns the decoupled distribution to
achieve an unbiased cross-domain transfer.
Orthogonal Mask Generation. To estimate and align the
decoupled distribution unbiasedly, we propose a set of or-
thogonal masks to decouple base and novel class regions in
each image. Specifically, we first transform source and tar-
get image features Xs/t ∈ RB×D×H×W into fine-grained
blocks Xs/t = {xi

s/t}
N
i=1, N = B × H ×W . Consider-

ing the abundant discriminative cues hidden in the output
space [5, 38], we freeze the classifier and forward propa-
gate {xi

s/t}
N
i=1 independently to obtain the per-class predic-

tions {ỹis/t}
N
i=1 for K + 1 classes. Then, we establish the

base-class mask Mb by looking at the first K channels (for
base classes) and generate the novel-class mask Mn with
the K + 1-th channel(for unknown) as follows,

Mi
b,s/t = Detach(

K∑
k=1

p(ỹis/t = k|xi
s/t)),

Mi
n,s/t = Detach(p(ỹis/t = K + 1|xi

s/t)),

(7)

where Detach(·) is a gradient detach operation to prevent
the gradient back-propagation, and p(ỹis/t = k|xi

s/t) indi-
cates the confidence of class k for the visual block xi

s/t.
Hence, the block with higher base-class confidence tends to
generate a larger entry in Mb while giving a smaller value
for Mn, and vice versa. This simple yet effective mecha-
nism can decouple the fine-grained regions in both domains.
Unbiased Transfer by Aligning P (Xb/n). Based on the
decoupled regions, we transfer the model by aligning the
cross-domain decoupled distribution. It is worth noting that
our method is philosophically different from existing biased
OSDA approaches [3, 17, 20, 25, 35], since they only align
base-class distribution by removing the novel-class sam-
ples. Specifically, we implement a double-head discrimi-
nator to align decoupled fine-grained regions, which con-
sists of a base-class head fb(·) and a novel-class head fn(·)
followed by a binary cross-entropy loss:

LDCA =−
|Xs|∑
i=1

{b,n}∑
o

Mi
o,sDlog(fo(x

i
s))

−
|Xt|∑
i=1

{b,n}∑
o

Mi
o,t(1−D)log(fo(x

i
t)),

(8)

where D is the domain label, Mb/n is the orthogonal mask.
With the guidance of Mb/n, two decoupled components fo-
cus on independent regions to adapt the P (Xb/n) respec-
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Office-Home

Method E2E Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum [17] ✗ 50.8 63.4 56.3 68.7 59.7 63.7 81.1 50.5 62.1 53.0 63.9 57.9 61.4 63.5 62.5 69.8 63.2 66.3
STAmax ✗ 46.0 72.3 55.8 68.0 48.4 54.0 78.6 60.4 68.3 51.4 65.0 57.4 61.8 59.1 60.4 67.0 66.7 66.8
OSBP [29] ✓ 50.2 61.1 55.1 71.8 59.8 65.2 79.3 67.5 72.9 59.4 70.3 64.3 67.0 62.7 64.7 72.0 69.2 70.6
UAN [41] ✗ 62.4 0.0 0.0 81.1 0.0 0.0 88.2 0.1 0.2 70.5 0.0 0.0 74.0 0.1 0.2 80.6 0.1 0.2
DAOD [7] ✓ 72.6 51.8 60.5 55.3 57.9 56.6 78.2 62.6 69.5 59.1 61.7 60.4 70.8 52.6 60.4 77.8 57.0 65.8
PGL [20] ✗ 63.3 19.1 29.3 78.9 32.1 45.6 87.7 40.9 55.8 85.9 5.3 10.0 73.9 24.5 36.8 70.2 33.8 45.6
OSLPP [35] ✗ 55.9 67.1 61.0 72.5 73.1 72.8 80.1 69.4 74.3 49.6 79.0 60.9 61.6 73.3 66.9 67.2 73.9 70.4
ROS [3] ✗ 50.6 74.1 60.1 68.4 70.3 69.3 75.8 77.2 76.5 53.6 65.5 58.9 59.8 71.6 65.2 65.3 72.2 68.6
Ours ✓ 61.4 78.7 69.0 68.3 79.9 73.7 74.1 79.7 76.8 58.0 73.1 64.7 64.2 73.6 68.6 66.9 80.2 73.0

Method Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum 55.4 73.7 63.1 44.7 71.5 55.0 78.1 63.3 69.7 67.9 62.3 65.0 51.4 57.9 54.2 77.9 58.0 66.4 63.4 62.6 61.9
STAmax 54.2 72.4 61.9 44.2 67.1 53.2 76.2 64.3 69.5 67.5 66.7 67.1 49.9 61.1 54.5 77.1 55.4 64.5 61.8 63.3 61.1
OSBP 59.1 68.1 63.2 44.5 66.3 53.2 76.2 71.7 73.9 66.1 67.3 66.7 48.0 63.0 54.5 76.3 68.6 72.3 64.1 66.3 64.7
UAN 73.7 0.0 0.0 59.1 0.0 0.0 84.0 0.1 0.2 77.5 0.1 0.2 66.2 0.0 0.0 85.0 0.1 0.1 75.2 0.0 0.1
DAOD 71.3 50.5 59.1 58.4 42.8 49.4 81.8 50.6 62.5 66.7 43.3 52.5 60.0 36.6 45.5 84.1 34.7 49.1 69.6 50.2 57.6
PGL 73.7 34.7 47.2 59.2 38.4 46.6 84.8 27.6 41.6 81.5 6.1 11.4 68.8 0.0 0.0 84.8 38.0 52.5 76.1 25.0 35.2
OSLPP 54.6 76.2 63.6 53.1 67.1 59.3 77.0 71.2 74.0 60.8 75.0 67.2 54.4 64.3 59.0 78.4 70.8 74.4 63.8 71.7 67.0
ROS 57.3 64.3 60.6 46.5 71.2 56.3 70.8 78.4 74.4 67.0 70.8 68.8 51.5 73.0 60.4 72.0 80.0 75.7 61.6 72.4 66.2
Ours 63.0 70.3 66.5 54.6 74.8 63.1 74.3 78.9 76.6 66.1 77.3 71.3 59.7 73.1 65.7 76.4 81.0 78.7 65.6 76.7 70.7

Image-CLEF

Method E2E B→C B→I B→P C→B C→I C→P
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSNN [22] ✓ 92.3 63.0 74.9 79.6 61.0 69.1 68.3 59.3 63.5 65.3 47.3 54.9 84.3 47.0 60.4 75.3 46.3 57.3
STA [17] ✗ 93.3 51.7 66.5 86.0 60.7 71.2 77.7 48.7 59.8 61.3 69.7 65.2 91.7 66.7 77.2 84.0 54.0 65.7
OSBP [29] ✓ 87.0 81.0 83.9 85.3 65.7 74.3 66.3 66.7 66.5 62.0 58.0 59.9 89.0 80.0 84.3 87.7 53.7 66.7
DAOD [7] ✓ 79.4 82.0 80.7 78.4 90.9 84.3 72.1 80.8 76.3 51.3 47.1 49.1 79.0 88.6 83.6 74.5 78.9 76.7
ROS [3] ✗ 78.3 90.0 83.8 73.0 76.3 74.6 59.0 67.3 62.9 59.0 68.3 63.3 78.3 83.0 80.6 68.7 78.7 73.3
Ours ✓ 95.3 98.3 96.8 81.3 84.7 83.0 74.0 75.0 74.5 58.0 83.0 68.3 87.0 93.0 89.9 78.7 84.0 81.2

Method I→B I→C I→P P→B P→C P→I Average
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSNN 62.0 41.6 49.8 92.0 41.3 57.0 81.3 40.6 54.2 55.0 49.6 52.2 86.0 55.3 67.3 82.0 52.6 64.1 77.0 50.4 60.4
STA 62.3 54.0 57.9 94.0 53.7 68.4 80.7 59.0 68.2 61.3 43.7 51.0 93.7 47.7 63.2 90.0 51.0 65.1 81.3 55.1 65.0
OSBP 55.7 60.7 58.1 80.7 92.7 86.3 66.3 74.3 70.1 52.3 61.0 56.3 94.0 68.0 78.9 66.0 80.7 72.6 74.4 70.2 71.5
DAOD 54.5 56.9 55.7 80.3 82.0 81.2 73.3 80.8 76.9 51.7 51.0 51.3 79.0 82.0 80.5 79.6 86.6 83.9 71.1 75.8 73.3
ROS 58.0 59.7 58.8 88.7 92.7 90.6 78.0 76.0 77.0 47.3 59.3 52.7 71.3 90.3 79.7 79.7 81.3 80.5 69.9 76.9 73.1
Ours 56.0 78.0 65.2 94.3 97.7 96.0 80.7 82.7 81.7 54.0 73.7 62.3 94.0 93.7 93.8 85.0 83.3 84.2 78.2 85.6 81.4

Table 1. Comparison results (%) of Office-Home (top) and Image-CLEF (bottom). E2E indicates end-to-end (single-stage) training.

tively. Moreover, the ambiguous samples with balanced val-
ues in Mb and Mn could encourage to generate offsetting
signals in the two heads, relieving the sub-optimal transfer
between unreliable base-class and novel-class semantics.

4.3. Model Optimization

During the training stage of the proposed ANNA, we im-
plement the unbiased optimization objective as follows,

L = λ1LFDA + λ2LDCA + Lbase, (9)

where LFDA is for the unbiased learning in the source do-
main, LDCA is used for the unbiased transfer to the target
domain. Lbase = −0.5log(p(Ỹt = K+1|Zt))−0.5log(1−
p(Ỹt = K + 1|Zt)) (Zt is the target-domain image) is a bi-
ased baseline [29], based on which we justify the debiasing
effect. λ1/2 are empirically set 1.0 (see Table 4).

5. Experiments
5.1. Experimental Setup

Dataset Settings. Extensive experiments are conducted on
three benchmarks following the standard setting [3, 29, 35].
1) Office-Home [34] consists of 65 kinds of labeled im-
ages deriving from four specific domains, Art (Ar), Clipart

(Cl), Product (Pr), and Real World (Rw). We use the first
25 categories in alphabetic order as the known class and
the remaining 40 classes as unknown. 2) Image-CLEF [1]
is the sub-set of four large-scale and publicly available
databases, including Bing (B), Caltech-256 (C), ImageNet
(I) and PASCAL VOC-2012 (P), with 12 shared common
classes. We utilize the first 6 classes as the known class and
the rest as the unknown with 12 source-target combinations.
3) Office-31 [28] covers three domains, Amazon (A), Dslr
(D), and Webcam (W), with 31 classes, where the first 10
classes are known and the last 11 classes are unknown.
Evaluation Metrics. Following the main OSDA stream [3,
17, 29, 35], we use three evaluation metrics to compare
the performance, including the average class accuracy
over known classes (OS*), the accuracy of unknown class
(UNK), and the harmonic mean of OS∗ and UNK (HOS =
2OS∗×UNK

OS∗+UNK [3]). HOS can measure the unbiased property
and has been considered as the core metric in the latest
OSDA literature [3, 35] since it requires working well on
both base and novel classes in an unbiased manner.
Implementation Details. All experiments are conducted
with the ImageNet [6] pre-trained ResNet-50 [9] feature ex-
tractor with an 224×224 input scale as [29]. Each head in
DCA consists of a Gradient Reversal Layer [8], two stacked
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Office-31

Method E2E A→D A→W D→A D→W W→A W→D Average
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum [17] ✗ 95.4 45.5 61.6 92.1 58.0 71.0 94.1 55.0 69.4 97.1 49.7 65.5 92.1 46.2 60.9 96.6 48.5 64.4 94.6 50.5 65.5
STAmax ✗ 91.0 63.9 75.0 86.7 67.6 75.9 83.1 65.9 73.2 94.1 55.5 69.8 66.2 68.0 66.1 84.9 67.8 75.2 84.3 64.8 72.6
OSBP [29] ✓ 90.5 75.5 82.4 86.8 79.2 82.7 76.1 72.3 75.1 97.7 96.7 97.2 73.0 74.4 73.7 99.1 84.2 91.1 87.2 80.4 83.7
UAN [41] ✗ 95.6 24.4 38.9 95.5 31.0 46.8 93.5 53.4 68.0 99.8 52.5 68.8 94.1 38.8 54.9 81.5 41.4 53.0 93.4 40.3 55.1
OSLPP [35] ✗ 92.6 90.4 91.5 89.5 88.4 89.0 82.1 76.6 79.3 96.9 88.0 92.3 78.9 78.5 78.7 95.8 91.5 93.6 89.3 85.6 87.4
ROS [3] ✗ 87.5 77.8 82.4 88.4 76.7 82.1 74.8 81.2 77.9 99.3 93.0 96.0 69.7 86.6 77.2 100.0 99.4 99.7 86.6 85.8 85.9
Ours ✓ 93.2 76.1 83.8 82.8 88.4 85.5 75.4 91.1 82.5 99.4 99.6 99.5 76.0 87.9 81.6 100.0 96.8 98.4 87.8 90.0 88.6

Table 2. Comparison results (%) on the Office31 benchmark. E2E indicates end-to-end training.

Row FDA DCA Ar→Pr Pr→Cl Cl→Rw Rw→Ar Average
base novel OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

1 ✗ ✗ ✗ 64.4 71.8 67.9 50.1 71.7 59.1 67.9 72.0 69.8 66.3 68.2 67.0 62.2 70.9 65.9
2 ✓ ✗ ✗ 66.9 72.2 69.5 52.9 74.8 62.0 65.1 78.3 71.1 66.5 74.1 70.1 62.9 74.9 68.2
3 ✗ ✓ ✗ 69.5 68.6 69.1 51.6 77.8 62.1 66.3 75.1 70.4 67.6 73.3 70.4 63.7 73.7 68.0
4 ✗ ✗ ✓ 63.3 74.3 68.4 50.3 77.2 60.9 64.9 76.4 70.2 66.0 76.2 70.7 61.1 76.0 67.5
5 ✗ ✓ ✓ 69.0 74.4 71.6 50.2 80.1 61.7 67.2 78.4 72.4 62.7 79.8 70.2 62.3 78.2 69.0
6 ✓ ✓ ✓ 68.3 79.9 73.7 54.6 74.8 63.1 66.9 80.2 73.0 66.1 77.3 71.3 64.0 78.2 70.3

Table 3. Ablation studiy results (%) on Office-Home with four different sub-tasks. The base and novel indicate the base-class and novel-
class alignment heads in DCA, respectively. Row 1 indicates the reproduced baseline results with consistent implementation [3, 29].

λ1 λ2
Office-Home Image-CLEF

OS* UNK* HOS OS* UNK* HOS
0.5 1.0 66.2 73.1 69.5 78.6 83.6 80.9
1.0 1.0 65.6 76.7 70.7 78.2 85.6 81.4
2.0 1.0 64.9 76.2 70.1 76.1 87.2 81.2
1.0 0.5 64.2 75.3 69.3 77.2 81.6 79.0
1.0 1.0 65.6 76.7 70.7 78.2 85.6 81.4
1.0 2.0 64.9 75.1 69.6 78.0 84.9 81.3

Table 4. Sensitivity analysis on two benchmarks in terms of the
loss weight terms λ1/2. The default setting is λ1/2 = 1.0.

Liner-BN-LeakyReLU blocks and a binary domain classi-
fier. Our model is trained with the Stochastic Gradient De-
scent optimizer with a 0.001 learning rate, 32 batch-size, a
momentum of 0.9, and the most 100 epochs. The λ and K
in FDA are empirically set to 0.2 and 5, respectively.

5.2. Benchmark Comparison

Office-Home. We report the comparison results of Office-
Home in Table 1 (top). The proposed method achieves the
best average UNK (76.7%) and HOS (70.7%) over all 12
tasks, outperforming ROS [3], OSBP [29], and OSLPP [35]
with 4.3%, 10.4 % and 5.0% UNK and 4.5%, 6.0% and
3.7% HOS, respectively. Compared with the state-of-the-
art OSDA work OSLPP [35], our method comprehensively
surpasses it with 1.8% OS∗, 5.0% UNK, and 3.7% HOS, re-
spectively. Moreover, ANNA achieves the best results in all
12 sub-tasks for the HOS comparison and 10 of 12 tasks for
the UNK comparison, verifying the effect of our method.
Image-CLEF. The comparison is shown in Table 1 (bot-
tom). In this real-world benchmark, we observe that ANNA
achieves the best 81.4% HOS, which outperforms the other
OSDA counterparts by a large margin, e.g., yielding 8.3%
gains than ROS [3], 9.9 % than OSBP [29] and 8.1% than
DAOD [7], which verify our great potential for more com-
plex real-world scenes. Moreover, our method achieves
the best 85.6% UNK and a comparable 77.3% OS*, show-

Figure 5. Sensitivity analysis of the hyperparameter, including (a)
the K in discovering novel regions, and (b) the gradient scaling
factor λ in implementing the unbiased learning.

ing the adequate debiasing effect of the proposed method.
Among all 12 sub-settings, ANNA achieves the best HOS
in 10 of 12 tasks and the best UNK in 9 of 12 tasks, verify-
ing the effectiveness of our method.
Office-31. Comparison results on Office-31 are shown in
Table 2. ANNA gives the best average UNK (90.0%) and
HOS (88.6%) evaluated over six tasks, which verifies the
effectiveness of our method. Specifically, our method out-
performs OSBP [29], ROS [3], and OSLPP [35] with 4.9%,
2.7%, and 1.2% HOS, and surpass them 9.6%, 4.2% and
4.4% in UNK comparison, demonstrating the robustness of
our unbiased OSDA framework.

5.3. Ablation Study

As shown in Table 3, we conduct detailed ablation stud-
ies on Office-Home with four different settings and summa-
rize the following observations. 1) Compared with the base-
line model (65.9% HOS), introducing FDA (row 2, 68.2%
HOS) and full DCA (row 5, 69.0% HOS) both give signifi-
cant performance gains, verifying their individual effects.
2) Introducing FDA and DCA together (row 6) yields a
further gain with the best 64.0% OS*, 78.2% UNK, and
70.3% HOS, showing the mutual benefits of the two mod-
ules. 3) As for DCA, we observe that introducing novel-
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Figure 6. Visualization of (a) pixel-level and (b) image-level (Top-3 categories) predictions on the Office-Home benchmark. The color of
red and blue indicates base-class and novel-class (UNK) predictions, respectively.

Figure 7. T-SNE feature comparison between the proposed ANNA
(left) and baseline model (right) with Ar→Cl task.

class (row 4) alignment gives significant UNK gains (76.0%
UNK) compared with baseline (70.9% UNK), and imple-
menting the base-class alignment (row 3) improves OS*
from 62.2% to 63.7%, showing the orthogonal effects of
the decoupled two heads in the proposed DCA.

5.4. Sensitivity Analysis

Loss Weight Terms. We analyze the two loss terms λ1/2 in
Table 4. As for λ1, compared with the default λ1 = 1.0, set-
ting a smaller (λ1 = 0.5) value slightly improves OS* but
harms UNK and HOS significantly, due to the sub-optimal
debiasing effect. Increasing λ1 from 1.0 to 2.0 gives a
HOS decline from 70.7% to 70.1% (Office-Home) and from
81.4% to 81.2% (Image-CLEF), compared with λ1 = 1.0.
Moreover, we observe a slight decline in all evaluation met-
rics with a larger λ2 = 2.0 and smaller λ2 = 0.5.
Discovering Novel Regions. As shown in Figure 5(a), we
explore the effect of K in discovering novel regions (Xn)
with Ar→Cl task. With the increase of K, the number of
discovered novel regions Xn will decrease due to the more
strict region selection constraint. We could observe a nega-
tive effect on novel-class accuracy (UNK) and HOS with a
too-large K, verifying the effectiveness of the FDA.
Unbiased Learning. We analyze the effect of the gradient
scaling factor λ during optimizing LFDA, as shown in Fig-
ure 5(b). Setting a too-large value negatively affects both
UNK and HOS. The reason may be that the dense pixel-
level supervision can easily mislead the feature extractor to

overfit partial low-quality backgrounds, which is risky for
novel-class pattern learning with UNK decline.

5.5. Qualitative Results

Output-level Analysis. We visualize the (a) pixel-level and
(b) image-level results and illustrate Top-3 predictions for
each image, as shown in Figure 6. We observe that ANNA
discovers novel regions and recognizes them as unknown
through a per-pixel introspection (Figure 6(a)). Further, the
novel regions are used to guide the image-level recognition
without bias, yielding reasonable UNK scores (blue bars) in
Figure 6(b). Moreover, as shown in 1st image, we find that
the score of curtain ranks in the second position ahead of
other non-correlated categories, which verifies our practical
design of eliminating Xub (Sec. 4.1).
Feature-level Analysis. As shown in Figure 7, we conduct
a T-SNE feature comparison with the baseline. Our method
is able to separate the target novel-class and target base-
class more completely and thoroughly, benefiting a better
base/novel-class decision boundary. Moreover, our method
generates better embedding space in adapting target base-
class and source base-class with different feature clusters,
which is more discriminative and informative.

6. Conclusion

We observe the ever-overlooked bias in OSDA and
propose a novel and theoretically grounded framework,
Adjustment and Alignment (ANNA), to address it. ANNA
adopts a Front-Door Adjustment to overcome the biased
model learning in the source domain, which discovers the
novel-class regions and grounds the causal debiasing the-
ory with an unbiased learning loss. Besides, it leverages a
Decoupled Causal Alignment (DCA) module to unbiasedly
transfer the model to the target domain, disentangling the
base/novel-class regions and aligning the decoupled condi-
tional distribution. Extensive experiments on three standard
benchmarks verify its state-of-the-art performance.
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