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Abstract

This paper considers the synthetic-to-real adaptation of
point cloud semantic segmentation, which aims to segment
the real-world point clouds with only synthetic labels avail-
able. Contrary to synthetic data which is integral and
clean, point clouds collected by real-world sensors typi-
cally contain unexpected and irregular noise because the
sensors may be impacted by various environmental condi-
tions. Consequently, the model trained on ideal synthetic
data may fail to achieve satisfactory segmentation results
on real data. Influenced by such noise, previous adversar-
ial training methods, which are conventional for 2D adap-
tation tasks, become less effective. In this paper, we aim to
mitigate the domain gap caused by target noise via learn-
ing to mask the source points during the adaptation pro-
cedure. To this end, we design a novel learnable masking
module, which takes source features and 3D coordinates as
inputs. We incorporate Gumbel-Softmax operation into the
masking module so that it can generate binary masks and be
trained end-to-end via gradient back-propagation. With the
help of adversarial training, the masking module can learn
to generate source masks to mimic the pattern of irregular
target noise, thereby narrowing the domain gap. We name
our method “Adversarial Masking” as adversarial training
and learnable masking module depend on each other and
cooperate with each other to mitigate the domain gap. Ex-
periments on two synthetic-to-real adaptation benchmarks
verify the effectiveness of the proposed method.

1. Introduction
Recently, point cloud semantic segmentation task at-

tracts increasing attention because of its important role in
various real-world applications, e.g., autonomous driving,
augmented reality, etc. Despite remarkable progress [5,
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LiDAR scan collected from real world (SemKITTI)

Figure 1. Comparison between a synthetic LiDAR scan (upper)
and a real scan (lower). Both original point clouds and projected
LiDAR images are given. Black points denote noise and other col-
ors denote points from different classes. Compared with synthetic
data which is integral and clean, point clouds collected from the
real world typically contain unexpected and irregular noise which
may impede the adaptation.

19, 30, 33, 39, 40, 62, 63], most algorithms are designed
for the fully-supervised setting, where massive annotated
data is available. In the real world, it is costly and time-
consuming to annotate large amounts of data, especially
for labeling each point in the segmentation task. Syn-
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thetic data is easy to obtain and its label can be automat-
ically generated, which largely reduces the human effort
of annotating data. However, it is usually infeasible to di-
rectly apply networks trained on synthetic data to real-world
data due to the apparent domain gap between them. In
this paper, we consider the synthetic-to-real domain adap-
tation [7, 10, 29, 38, 42, 45, 56, 68] for point cloud segmen-
tation. Specifically, we aim to utilize the fully-annotated
synthetic point clouds (source domain) and unlabeled point
clouds collected from imperfect real-world sensors (target
domain) to train a network to support the segmentation of
real-world point clouds (target domain).

Domain adaptation solutions [8, 9, 20, 21] aim to dis-
cover and mitigate the domain shift from source to target
domain. Through comparing the synthetic and real-world
point clouds, we observe that the domain shift can be largely
attributed to the unexpected and irregular noise existing in
the target domain data. As with [53], we consider “noise”
to be the missing points of certain instances/objects, where
all pixel channels are zero. Such noise may be caused by
various factors such as non-reflective surfaces (e.g., glass).
As shown in Fig. 1, the synthetic point cloud is integral
and clean, but the real one contains large amounts of noisy
points. A model trained on clean source data may find it
hard to understand the scene context under the distraction
of noises and thus cannot achieve satisfactory segmentation
results on target point clouds.

Previous domain adaptation methods [4, 13, 14, 18, 28,
31, 32, 38, 61] (e.g., adversarial training), which have been
proven effective in the 2D visual tasks, can be applied
to this 3D segmentation setting. For example, Squeeze-
SegV2 [54] employs geodesic correlation alignment [37] to
align the point-wise feature distributions of two domains.
However, without explicitly modeling and dealing with the
noise, these methods bring quite weak benefits to the adap-
tation performance. Recently, several works attempt to deal
with the target noise to mitigate the domain gap. Rochan
et al. [43] randomly select target noise masks and apply the
selected mask to source samples. Wu et al. [53] compute
one dataset-level mask and apply it to all source samples.
Zhao et al. [67] use CycleGAN [69] to perform noise in-
painting which is then used to learn synthetic noise gen-
eration module. The issues of these previous works are
two-fold: 1) they cannot adaptively determine the injected
noises according to the context of source samples; 2) the
generated mask cannot be guaranteed to reduce the domain
shift. Thus, these methods may achieve sub-optimal results.

In this paper, we aim to mitigate the domain shift caused
by the target noise by learning to adaptively mask the source
points during the adaptation procedure. To reach this goal,
we need to deal with two problems: 1) how to learn a spa-
tial mask that can be adaptively determined according to the
specific context of a source sample, and 2) how to guaran-

tee the learned masks help narrow the domain gap. To solve
the first problem, we design a learnable masking module
named “Adaptive Spatial Masking (ASM)” module, which
takes source Cartesian coordinates and features as input, to
generate point-wise source masks. We incorporate Gumbel-
Softmax operation into the masking module so that it can
generate binary masks and be trained end-to-end via gra-
dient back-propagation. To solve the second problem, we
incorporate adversarial training into the masking module
learning process. Specifically, during training, we add an
additional domain discriminator on top of the feature ex-
tractor. By encouraging features from two domains (fea-
tures of masked source samples and those of normal tar-
get samples) to be indistinguishable, the masking module is
able to learn to generate masks mimicking the pattern of tar-
get noise and narrow the domain gap. Note that these two
designs cooperate with each other to better align features
across domains and improve the adaptation performance.

In a nutshell, our contributions can be summarized as:

• We notice that the pattern of target noise is unexpected
and irregular. Thus, we propose to model the target
noise in a learnable way. Previous works, which don’t
explicitly model the target noise or ignore such char-
acteristics, are less effective.

• We propose to adversarially mask source samples to
mimic the target noise patterns. In detail, we design a
novel learnable masking module and incorporate ad-
versarial training. Both components cooperate with
each other to promote the adaptation.

• Experiments on two synthetic-to-real adaptation
benchmarks, i.e. SynLiDAR → SemKITTI and Syn-
LiDAR → nuScenes, demonstrate that our method can
effectively improve the adaptation performance.

2. Related Works

Point Cloud Semantic Segmentation aims to classify
the point clouds into predefined semantic categories in a
point-wise manner. Previous researches in this area could
be categorized into three streams: 1) point-based meth-
ods propose to handle this task in a point-wise manner and
aggregate the contextual information through MLP (Mul-
tiple Layer Perception ) [11, 40, 41], GCN (Graph Con-
volutional Network) [52, 60], or newly designed convolu-
tions [48, 55, 59, 66]. These methods typically require mas-
sive computation, making them hard to satisfy the latency
constraint in real-world applications. 2) Voxel-based meth-
ods [26] try to convert point clouds into 3D voxels and em-
ploy 3D convolutions to learn the geometric distributions.
Some researchers [65,70] study the partition strategy in the
3D space, while some researchers [16,47] propose new con-
volution architectures to handle the sparse 3D voxels. Also,
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(a) Discriminator’s output of a target
sample

(b) Discriminator’s output of a source sample

(c) Discriminator’s output of the noise-injected source sample

Source Target Source Target

(c) Discriminator’s output of the noise-injected source sample

(b) Discriminator’s output of a source sample

(a) Discriminator’s output of a target sample

Figure 2. Heatmap of discriminator’s output, where color red in-
dicates the target domain and blue denotes the source. As shown
in (a) and (b), source samples and target ones are well identified
by the domain discriminator. However, in (c), injecting noise ex-
tracted from a random target sample to the source sample can eas-
ily fool the discriminator.

the heavy computation cost of 3D CNN hampers their appli-
cability to real-world applications. 3) projection-based so-
lution is another routine focusing on transforming 3D point
clouds into 2D grids so that 2D convolutions can be utilized
directly. Various architectures [6, 36, 53, 54, 58] in this di-
rection have been proposed to cope with the projected 2D
images, and have been proven to be effective and efficient.
Moreover, projection-based methods also receive increasing
attention on other tasks [34, 46] for their low computation
cost. In this paper, we choose the projection-based archi-
tecture to perform our adaptation task as they strike a better
balance between performance and efficiency.

Domain Adaptation for Semantic Segmentation aims
to adapt a segmentation model from a labeled domain to an
unlabeled domain. Research here can be coarsely grouped
into three categories, i.e., 2D, 3D, and cross-modal (e.g.,
[23]). Here we only consider the single-modality scenario.

The 2D adaptation methods focus on the adaptation with
appearance features from images and have received wide
attention recently. There are several ways to deal with this
problem. One way is to align the features to minimize the
domain gap [25, 27, 49]. For example, AdaptSeg [49] em-
ploys adversarial training to align the outputs from two do-
mains. Instead, ADVENT [51] uses adversarial training to
align the entropy of outputs across domains. PLCA [25]
proposes a different perspective, which associates cross-
domain pixels via cycle consistency and encourages the
similarities of associated pixels to mitigate the domain gap.
Another way [71, 72] tries to overcome the distribution
shift with self-training, which assigns pseudo labels to tar-
get samples with high confidence. There are also some
works [64] combining both of these two solutions to form a
multi-stage training. However, without explicitly consider-

ing the specific domain gap existing in point clouds, these
methods may bring quite weak benefits to the adaptation.

There are several works dealing with the 3D segmenta-
tion adaptation scenario [43,44,53,55]. SqueezeSegV2 [54]
fills the missing intensity channel for the synthetic point
cloud and adopts geodesic correlation alignment [37] to
perform point-wise feature alignment. As SynLiDAR [57]
provides the intensity information, we directly utilize the
intensity information along with coordinate information to
train our model in this paper. Wu et al. [53] notice the do-
main shift is largely caused by the target noise, and pro-
pose to impose noise masks on source samples, where the
mask is denoted as the point-wise frequency of noise over
the whole target dataset. Analogously, Rochan et al. [43]
perform masking on source samples with a randomly se-
lected noise mask from the target domain. However, the
points from the same spatial positions of two point clouds
may have different surroundings or contexts and thus they
should not share the same probability to be noise. Zhao
et al. [67] employ CycleGAN [69] to perform target noise
inpainting which is then used to learn synthetic noise gen-
eration module. However, the noise generation module is
trained by target inpainting results and thus may still be af-
fected by domain shift. Moreover, different from ours, the
noise generation of [67] cannot be optimized towards reduc-
ing domain shift. CoSMix [44] proposes an augmentation
technique that mixes scans from two domains in a semantic-
aware manner. Nevertheless, the distraction of noises can-
not be alleviated with the mixing between two domains.

3. Methodology

In the following sections, we first provide necessary pre-
liminaries (§ 3.1) for domain adaptive point cloud seg-
mentation. Second, we introduce the Adversarial Masking
method (§ 3.2). Finally, we give the training objectives for
the adaptation process (§ 3.3).

3.1. Preliminaries

In domain adaptive point cloud segmentation, we are
provided with annotated source scans S = {(P s

i ,M
s
i )}

Ns

i=1

and unlabeled target scans T = {(P t
i )}

Nt

i=1, where Pi ∈
Rni×4 denotes the set of points with coordinates (x, y, z)
and intensity, Mi ∈ Rni denotes the ground-truth annota-
tion for the point cloud, and ni is the number of points in the
i-th scan. For more efficient processing, we employ spher-
ical projection to transform each raw point cloud P into
2D image I ∈ RH×W×5, and the labels are transformed to
Y ∈ RH×W accordingly. The details are presented below.
We aim to train a segmentation model on S and T to make
accurate predictions on target points.

Spherical Projection. For more efficient processing,
we transform the sparse point clouds into 2D images with
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Figure 3. Illustration of the Adversarial Masking Framework. In this paper, we aim to mitigate the domain gap induced by target
noise via masking source samples to mimic the target patterns. First, we propose a module, named Adaptive Spatial Masking (ASM),
which can learn to mask the source points. Then we train the ASM-equipped model in an adversarial way. The two key components of
our framework (i.e. ASM and adversarial training) collaboratively contribute to the final adaptation performance. Specifically, adversarial
training encourages ASM to mimic target noises, while ASM eases the adversarial training to better align features across domains.

spherical projection like [53, 54]. Specifically, for a point
with coordinate (x, y, z), we project it into a 2D LiDAR
image with coordinates (p, q):

[
p
q
] = [

1
2 (1− arctan21(y, x)/π) ·W

(1− (arcsin(z · r−1) + fup) · f−1) ·H ], (1)

where r =
√
x2 + y2 + z2 is the range of this point.

f = fup + fdown is the vertical field-of-view of the LiDAR
sensor. For each projected point with coordinate (p, q), we
concatenate its Cartesian coordinates (x, y, z), range (r),
and intensity, then obtain the projected LiDAR image I
with the shape H ×W × 5. The intensity channel models
the strength of LiDAR beams. As such, raw point clouds
with sparse and unordered structures are transformed into
2D images, so that 2D convolutions can be applied directly.

Domain Adversarial Training (DAT). Domain adver-
sarial training [12, 17, 50] has been proven effective in
aligning the feature distributions across domains. During
training, an additional domain discriminator is introduced
to classify the features into different domains. Through ad-
versarial training, the network is encouraged to generate
features that are indistinguishable across domains. Con-
sequently, domain-invariant features can be learned, hence
benefiting the adaptation performance.

Specifically, let D denote the discriminator, the above
min-max game can be formed as (the original GAN loss
[15]):

min
G

max
D

VGAN (G,D) = EIt∼T [log(D(G(It)))])

+EIs∼S [log(1−D(G(Is)))]),
(2)

where G denotes the feature extractor of the model.

1 We use the arctan2 function in the Numpy library (www.numpy.org).

3.2. Adversarial Masking

Our framework is illustrated in Fig. 3. Following the
general practice in domain adaptation, the network is shared
across source and target domain data. The network consists
of a backbone (G) to extract features and a task classifier
(F) to distinguish the samples into different categories. Dur-
ing training, we insert our designed masking module (ASM)
into the backbone to mask source points and attach an ad-
ditional discriminator (D) on top of the backbone to assign
domain labels to features from both domains. On the one
hand, the domain discriminator is trained to differentiate
masked source samples and target samples. On the other
hand, the ASM is encouraged to learn to mask source points
to mimic the target noise patterns, and features are trained
to be domain-invariant to confuse the domain discriminator.
As a result, the adversarial training and the masking module
work collaboratively to narrow the domain discrepancy.

Target Noise Hinders Adversarial Training. As ad-
versarial training has been proven effective in 2D visual do-
main adaptation tasks, e.g., image classification, semantic
segmentation, it is natural to see if adversarial training can
help learn domain-invariant features in this 3D synthetic-
to-real adaptation scenario. As shown in Fig. 2, we observe
an interesting phenomenon that the discriminator converges
quickly and can easily differentiate most of target points
from the source ones. In contrast, injecting noise (from
a random target sample) to source samples helps alleviate
such an issue, i.e., the features of many source points can
confuse the domain discriminator in terms of their domain
labels. We assume that in plain adversarial training, target
noise may serve as a shortcut for the discriminator to clas-
sify samples into different domains. Only with adversarial
training, it is hard to discover the noise patterns of the target
and meanwhile align feature distributions across domains.
Thus, we propose to explicitly model the noise patterns of
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Figure 4. Illustration of Adaptive Spatial Masking (ASM). The
proposed ASM takes source Cartesian coordinates and source fea-
tures as input, and outputs two differentiable binary maps which
divide points into two groups, i.e., preserved and ignored. Then
we impose the first mask on original source features.

the target and adaptively inject noise into source samples in
order to ease the conventional adversarial training.

Adaptive Spatial Masking (ASM) Module. As dis-
cussed above, the way of randomly injecting target noise to
source samples can alleviate the issue of adversarial training
to an extent. However, such a way may not be an optimal
choice because it cannot adaptively determine the distribu-
tion of injected noise according to the specific context of
each source sample. Moreover, the pattern of injected noise
may be irregular, and the copy-and-paste way of injecting
noise may not accurately capture those irregular patterns.

Thus, we design a learnable module to perform spatial
masking on source samples. We name our module as Adap-
tive Spatial Masking (ASM) module. To be concrete, we
present the diagram of ASM in Fig. 4. The module con-
sists of two embedding branches and one fusion head that
all employ 1×1 convolutions. First, the two branches take
source Cartesian coordinates Os ∈ RH′×W ′×3 (i.e. the
x, y, z channels of projected LiDAR image but downsam-
pled to H ′×W ′ to match the size of feature map) and source
features Es ∈ RH′×W ′×k as inputs respectively. Then, the
embedded features from two branches are fused via a fusion
head to generate the desired source mask. Finally, we calcu-
late the element-wise product between the learned mask and
original source features. Then the masked source feature is
forwarded through the remaining layers for predictions.

Note that we attach a Gumbel-Softmax [22] layer to the
end of the fusion head. The output of Gumbel-Softmax
has two channels, each of which has spatial size H ′ ×W ′.
We use the first channel to indicate which points should be
preserved and the second channel to indicate which points
should be ignored. Then, the first channel is utilized to mask
the source features with the element-wise product. Note
that Gumbel-Softmax enables us to apply binary masks dur-
ing the forward process, while supporting gradient back-
propagation to update the parameters of our network. In
contrast, the plain softmax layer cannot actually zero out
source points, and thus leads to inferior results. We will

show an empirical comparison of these designs in Sec. 4.3.
As shown in Fig. 3, we insert ASM (i.e., denoted with

color blue) after a specific shallow layer to inject noises to
source samples. Note that we don’t directly insert ASM
after the input of the projected LiDAR image. It is be-
cause that we empirically find the shallow features are
also useful to learn a better source mask, while the input
only contains the coordinate information. In our imple-
mentation, we place ASM after the first convolution block
(i.e., conv-bn-relu). Note that ASM is only applied to
source samples during the training process. So we simply
remove ASM module for the inference on target samples.

Adversarial Masking. With the proposed masking
module, the model can inject noise to source samples by
zeroing out shallow features of partial source points. How-
ever, we cannot guarantee that the generated mask can
mimic the patterns of target noise and thus mitigating the
domain gap. To solve this, we integrate the ASM-equipped
model with an adversarial training paradigm. Specifically,
with ASM, the corresponding discrimination and genera-
tion loss of adversarial training are

min
θD

Ldis = EIt∼T [(1−D(G(It)))2] + EIs∼S [(D(Ḡ(Is)))2],

min
θG,θASM

Lgen = EIs∼S [(1−D(Ḡ(Is)))2], (3)

where Ḡ is the backbone with ASM module inserted and
θASM , θG, θD denote the parameters of ASM module,
backbone and discriminator respectively. Note that differ-
ent from the loss format in Eq. 2, we choose LSGAN [35]
in our implementation for its better stability.

3.3. Training Objective

Overall, the model is optimized with three objectives,
i.e., cross-entropy loss (Lce), Lovasz-Softmax loss [2]
(Llov), and the adversarial training loss (Lgen, Ldis):

min
θG,θASM ,θF

L = Lce + Llov + λLgen (4)

min
θD

Ldis (5)

where θF denotes the parameters of the classifier and the
cross-entropy loss is calculated as:

Lce = −
H,W∑
h,w

log[F (Ḡ(Is)(h,w, Yh,w))]. (6)

The segmentation model and the domain discriminator are
updated alternatively with objective Eq. 4 and Eq. 5, respec-
tively. Note that Yh,w is the label for the pixel at position
(h,w) of a projected LiDAR image.
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Table 1. Experiments results of SynLiDAR [57] → SemKITTI [1] with SqueezeSegV3-21 [58] as the backbone.
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Source Only − 4.2 12.8 6.7 0.9 3.7 9.6 14.3 1.4 0.3 23.2 47.6 5.0 54.3 21.4 27.0 23.2 3.1 15.2±0.3

AdaptSeg [49] 2D 0.6 5.9 3.4 1.9 5.4 8.2 13.6 60.0 1.7 37.8 36.4 3.7 31.8 17.3 40.1 20.9 4.4 17.2±0.3

ADVENT [51] 2D 16.6 9.3 8.0 2.1 3.8 8.4 16.5 46.7 3.0 31.4 34.7 6.8 44.5 20.4 28.9 20.0 4.0 17.9±0.3

CBST [71] 2D 7.6 9.0 4.8 1.2 1.1 10.5 11.1 8.8 1.9 20.0 48.5 8.9 35.8 20.3 25.2 28.6 4.9 14.6±0.5

CCM [27] 2D 10.2 8.1 5.1 1.9 3.3 9.7 14.4 52.1 2.7 30.6 39.3 3.9 38.8 18.8 26.9 24.2 4.2 17.3±0.4

PLCA [25] 2D 7.8 7.1 4.0 3.1 3.8 14.3 18.1 44.4 10.2 19.8 44.9 4.6 43.9 12.6 21.2 26.3 3.6 17.0±0.3

SqueezeSegV1 [53] 3D 43.7 7.4 5.1 4.6 5.8 6.5 13.9 36.7 3.1 31.0 37.4 7.4 28.9 26.2 29.9 27.1 5.0 17.4±0.3

SqueezeSegV2 [54] 3D 20.4 8.0 4.0 2.4 5.1 8.0 17.3 59.4 3.2 34.9 39.4 8.4 41.3 21.9 32.2 29.0 4.7 20.0±0.4

ePointDA [67] 3D 18.8 8.0 6.1 2.6 3.6 6.4 14.6 50.8 9.4 32.7 33.3 8.2 27.6 22.4 30.2 26.9 7.2 18.2±0.6

LiDAR-Net [24] 3D 22.3 7.2 10.3 2.0 2.3 8.1 18.8 43.2 5.6 33.5 32.6 4.9 29.8 26.5 22.5 21.4 5.4 17.4±0.4

CoSMix [44] 3D 15.1 4.3 3.2 1.0 1.4 5.4 5.5 47.6 2.9 32.9 54.1 7.8 58.1 24.8 41.0 32.1 3.0 20.0 ±0.6

RandMask+ADV 3D 42.0 10.0 13.0 2.4 4.7 8.2 20.7 30.5 3.7 29.2 37.7 5.0 30.7 22.9 26.7 24.7 4.1 18.6±0.3

FreqMask+ADV 3D 22.9 9.3 5.3 2.2 3.0 5.4 13.9 50.6 3.8 31.9 38.1 6.5 32.0 25.4 38.1 25.5 4.6 18.7±0.3

SpatialDropout+ADV 3D 30.1 7.3 3.2 3.1 5.1 10.3 11.6 44.3 3.2 30.4 40.1 7.7 30.8 22.3 27.9 23.9 3.9 18.0±0.2

Ours 3D 19.7 13.8 9.7 2.1 4.1 8.0 8.2 64.5 8.0 36.0 54.6 6.7 58.0 24.7 35.8 29.1 4.2 22.8±0.3

Oracle − 91.9 25.5 42.0 42.7 26.1 32.9 54.7 94.2 42.8 82.0 80.8 39.9 84.5 48.9 72.2 54.0 28.8 55.5±0.2

4. Experiments

4.1. Setup

Datasets. In this paper, we perform experiments
on two synthetic-to-real benchmarks, i.e., SynLiDAR→
SemKITTI and SynLiDAR→ nuScenes.

SynLiDAR [57] is a synthetic LiDAR dataset for point
cloud segmentation, which is collected from a simulated
driving scene environment. This dataset collects 198,396
scans with 19482 M points, covering various scenes on Un-
real Engine 4 platform. This dataset provides point-wise
annotations for 32 classes that are in line with SemKITTI.

SemKITTI [1] is a large-scale point cloud dataset for
point cloud segmentation. This dataset is collected from a
Velodyne HDL-64E LiDAR and contains 22 sequences with
41000 frames. This dataset contains annotations for 25 cat-
egories. Following [58,70], we choose sequences 00-10 for
training except sequence 08 for validation.

nuScenes-lidarseg [3] is another LiDAR dataset that col-
lected from real world. This dataset is collected from a dif-
ferent LiDAR sensor, i.e., a 32-beam LiDAR with FOV of
[−30◦, 10◦]. Following its guideline, 850 scenes are chosen
for training and the other 150 scenes for validation.

For SynLiDAR → SemKITTI and SynLiDAR →
nuScenes, part of the labels are merged to match across do-
mains, the detailed mapping is provided in the appendix.

Evaluation. Following common practice [19,59,70], we
adopt mean intersection over union (i.e., mIoU) as the eval-
uation metric, which is averaged over all classes. Note that
we report the averaged results over 3 random runs. No post-
processing is applied, e.g., conditional random field.

Implementation. For the segmentation task, we choose
two representative backbones, i.e., SqueezeSegV3-21 [58]
and SalsaNext [6]. The ASM employs the Straight Through
variant of Gumbel-Softmax [22]. The model is optimized

using momentum SGD with momentum of 0.9 and weight
decay 1 × 10−4. Warmup is applied for the first epoch
to linearly increase the learning rate to the base learn-
ing rate. Then learning rate decays exponentially. The
base learning rate is set to 4 × 10−3 and 2 × 10−3 for
SynLiDAR→SemKITTI and SynLiDAR→nuScenes, re-
spectively. The discriminator is optimized using Adam op-
timizer with learning rate of 1 × 10−3, and its architecture
is presented in the Appendix. The batch size is set to 24 and
the model is optimized for 50 epochs totally. The output
channel of the embedding branch in ASM is set to 32. The
λ in Eq. 4 is set to 0.001.

4.2. Comparisons with Previous Methods

We compare our method with previous 2D and 3D
domain adaptation methods. The “2D” and “3D” indi-
cate the settings that the methods are originally designed
for. For 2D methods, we re-implement representative
methods, i.e., CBST [71], PLCA [25], AdaptSeg [49],
and ADVENT [51]. As for 3D adaptation techniques,
we re-implement SqueezeSegV1 [53] SqueezeSegV2 [54],
ePointDA [67], LiDAR-Net [24], and CoSMix [44] with
the identical backbone. Besides, we also present the re-
sults with three variants of source masks, i.e., “Spatial-
Dropout” that randomly drops the source points spatially,
“RandMask” randomly selects masks from the target sam-
ples, and “FreqMask” where points are randomly dropped
according to the point-wise frequency map of target noise
over the dataset. We use “ADV” to denote the adversarial
training paradigm and use “Oracle” to denote the full super-
vision baseline. For a fair comparison, all presented results
use the same supervision on source samples, i.e., Lce+Llov.

In Table 1 and Table 2, we present the results on SynL-
iDAR → SemKITTI and SynLiDAR → nuScenes, respec-
tively. First, compared with the source-only baseline, our
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Table 2. Experiments results of SynLiDAR [57] → nuScenes [3] with SalsaNext [6] as the backbone.
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mIoU
Source Only − 0.4 1.0 3.7 0.2 2.1 16.0 17.0 24.2 0.1 14.9 8.6 36.0 25.5 11.5±0.3
AdaptSeg [49] 2D 0.7 0.5 13.2 0.7 2.2 17.0 13.8 44.3 0.4 18.3 10.6 39.2 27.5 14.5±0.3
ADVENT [51] 2D 0.5 1.6 11.4 0.7 2.1 18.0 18.3 43.2 0.7 19.2 10.3 40.2 27.2 14.8±0.3
CBST [71] 2D 0.4 0.2 8.2 0.4 1.3 5.5 13.4 38.2 0.7 15.0 10.4 26.0 30.8 11.6±0.5
CCM [27] 2D 0.8 4.9 14.1 2.4 2.2 17.6 14.8 32.1 0.6 15.7 12.1 24.6 25.3 12.9±0.5
PLCA [25] 2D 0.5 8.5 12.3 1.4 1.1 19.3 16.6 33.9 3.6 16.6 4.8 33.1 22.2 13.4±0.3
SqueezeSegV1 [53] 3D 0.7 5.7 19.7 0.8 2.9 17.9 19.0 33.8 0.3 14.9 15.1 26.5 23.5 13.9±0.4
SqueezeSegV2 [54] 3D 0.7 2.5 10.6 0.6 4.1 19.5 14.6 33.4 0.2 17.3 6.2 43.5 23.7 13.6±0.3
ePointDA [67] 3D 0.4 3.0 9.8 0.6 3.0 18.5 13.8 31.9 0.3 15.0 8.2 35.6 23.4 12.6±0.3
LiDAR-Net [24] 3D 0.6 4.0 10.1 0.8 2.7 18.8 13.3 34.1 0.5 14.9 8.8 38.7 20.1 12.9±0.3
CoSMix [44] 3D 0.3 2.6 0.5 0.4 0.6 7.1 1.7 60.1 14.3 11.9 8.6 33.4 18.1 12.3 ±0.4
RandMask+ADV 3D 0.5 6.0 17.4 1.6 2.6 18.9 15.0 33.1 0.5 15.7 8.0 38.9 27.1 14.3±0.3
FreqMask+ADV 3D 0.5 6.7 19.0 1.1 3.1 22.3 14.1 31.1 0.4 16.6 7.3 40.0 26.5 14.5±0.3
SpatialDropout+ADV 3D 0.5 8.6 19.9 1.6 1.7 13.9 16.5 50.7 3.6 16.9 8.9 30.6 20.3 14.9±0.3
Ours 3D 0.9 1.2 26.9 2.2 2.6 17.4 18.2 57.4 0.8 21.8 7.6 43.9 20.1 17.0±0.3
Oracle − 25.3 71.8 85.1 34.3 44.0 65.3 63.2 95.3 69.3 70.7 71.1 81.2 73.9 65.4±0.3

method achieves apparent improvements, i.e., +7.6% mIoU
absolute gain on SemKITTI and +5.5% mIoU on nuScenes,
which justifies the necessity of performing adaptation. Sec-
ond, compared with 2D techniques, our method still holds
its superiority, e.g., our method outperforms AdaptSeg by
5.6% and 2.5% mIoU on SynLiDAR → SemKITTI and
SyncLiDAR → nuScenes respectively. Especially, we no-
tice that CBST shows inferior performance, which may
be because of the low quality of pseudo labels resulting
from the large gap between source and target point clouds.
Third, compared with 3D solutions, our method also at-
tains superior results, e.g. on SemKITTI, we achieve 2.8%
and 4.6% absolute gain compared to SqueezeSegV2 and
ePointDA, respectively. Moreover, even with adversarial
training, various non-learnable masking strategies (Rand-
Mask, SpatialDropout, FreqMask) fail to achieve compet-
itive results against ours. This is because these masking
strategies cannot be adaptively adjusted according to the
different contexts, and adversarial training is not able to im-
pact the imposed source masks as they are not learnable.

4.3. Ablation Studies

Effect of Adaptive Spatial Masking (ASM). First, in
Fig. 2, we show qualitatively that injecting noise can ease
the adversarial training. And the quantitative comparison
in Table 1 and 2 with other masking strategies (Spatial-
Dropout, RandMask, FreqMask) also verifies that ASM de-
rives better masks for easing the adaptation.

Effect of different branches of masking module. As
discussed in Sec. 3.2, we use two embedding branches in
the proposed ASM module. We evaluate the contribution
of the two branches in Table 3 (a), where branch e receives
source feature as input and branch o receives source Carte-
sian coordinates as input. It can be seen that removing either
of them leads to an obvious drop in mIoU compared to the
result using both branches. This verifies that both branches

Table 3. Ablation studies on Adaptive Spatial Masking. Experi-
ments are conducted on SynLiDAR [57] → SemKITTI [1].

Module Modification mIoU

(a) Two Branches
Branch e (embedding only) 21.7
Branch o (coordinate only) 22.0

Both Branch 22.8

(b) Mask Type Plain Softmax (soft) 19.6
Gumbel-Softmax (binary) 22.8

(c) Masking Layer

Input 22.0
Ours 22.8

Middle 21.7
End of the backbone 21.6

(d) Update Strategy Lgen optimizes θASM only 21.6
Lgen optimizes θASM and θG 22.8

contribute to generating more effective masks.
Effect of Gumbel-Softmax. To evaluate the contri-

bution of Gumbel-Softmax, we compare the results with
training using plain Softmax which generates soft masks
(i.e., each mask value is within [0, 1]) for both forward and
backward processes. As shown in Table 3 (b), using plain
Softmax results in an obvious drop of mIoU, i.e., -3.2%
mIoU. This is because plain Softmax cannot actually zero
out source points, rendering it hard to mimic the target noise
patterns to mitigate the domain shift.

Effect of different masking layers. In Table 3 (c), we
compare the results of inserting ASM at different layers of
the network, including input (i.e., masking the projected Li-
DAR image), ours (i.e., after the first conv. layer), middle
(between the encoder and the decoder), and end of the back-
bone. From the table, we observe that inserting ASM at the
shallower layer can achieve better results, which avoids fea-
tures being affected by domain shift from the early stage.
Compared with the result of inserting ASM directly after
the input, ours achieves better results, verifying the impor-
tant role of exploiting shallow feature information in learn-
ing better masks. Besides, inserting ASM at the end of the
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(a) Ground Truth (b) Source-only Model (c) AdaptSeg (d) Ours

Figure 5. Visualization of Segmentation Results (SynLiDAR → SemKITTI). We compare our method (d) with (a) ground truth, (b)
source-only , and (c) AdaptSeg [49]. We present visualizations of both raw points (the first row) and projected point clouds (the second
row). We show representative crops of projected 2D images due to the space limit.

OursSpatialDropout

Figure 6. Statistics of ignored source points (SynLiDAR →
SemKITTI). Compared with performing masking randomly, our
method exhibits a different preference toward different classes.
For example, contrary to SpatialDropout, fewer points from class
“Building” are ignored and more points from “Road” are dropped.

backbone is worse but not that far from “Ours”. This is be-
cause masking at the end of the backbone also introduces
noises to the discriminator and the classifier.

Optimization strategy with ASM . We investigate the
optimization with the ASM module and present it in Table 3
(d). Only adversarially updating ASM leads to inferior re-
sults than updating both (i.e., θG and θASM in Eq.(4)). This
shows that besides adversarially updating ASM, adversari-
ally updating features also contributes to a better adaptation.

Analysis of masked samples To better understand the
masking module, in Fig. 6, we present the class distribution
of points that are ignored and compare with random dropout
using a similar ignore ratio. Compared with random
dropout, our result exhibits a different pattern/distribution,
e.g., our method ignores more points of class “Road” but
fewer points of class “Building” and “Vegetation”. How-
ever, our method outperforms it with a large margin, i.e.,
+4.8% on SemKITTI and +2.1% on nuScenes. This indi-
cates that our method can derive more reasonable noise dis-
tributions for mitigating the domain gap.

Sensitivity to hyper parameters. In Table 4, we present

Table 4. Sensitivity Analysis of λ (coefficient of Lgen).
Transfer 5× 10−4 1× 10−3 5× 10−3

SynLiDAR → SemKITTI 21.9 22.8 21.6
SynLiDAR → nuScenes 16.6 17.0 16.3

the sensitivity of our method to λ on both datasets. The per-
formance of our method first increases and then decreases a
little bit with the increase of λ from 5× 10−4 to 5× 10−3.
The bell shape of change verifies the regularization effect
of adversarial training on the adaptation performance. Note
that, within a wide range of choices of λ, our method con-
sistently outperforms previous solutions by a large margin,
which further verifies the effectiveness of our design.

Visualization In Fig. 5, we present the visualization
of segmentation results on SynLiDAR→SemKITTI. From
these figures, we observe that our method attains obvious
improvement against source-only baseline and previous ap-
proach, which is in line with the superior results of our
method shown in Table 1 and 2.

5. Conclusion
In this paper, we aim to mitigate the domain gap caused

by target noises in synthetic-to-real point cloud segmenta-
tion adaptation. To this end, we propose Adversarial Mask-
ing, where a masking module is designed to derive learnable
masks and the adversarial training paradigm encourages the
masking module to mimic injecting target noises to source
samples. The adversarial training and the masking module
cooperate with each other to promote domain-invariant fea-
ture learning. Extensive experiments are conducted to prove
the effectiveness of the proposed method.
Broader Impact and Limitations. Our method will not in-
troduce bias but it may be impacted by the bias contained in
the dataset. In terms of limitations, although our method
outperforms the source-only baseline by a large margin,
there is still a large gap to the oracle results. In future, we
will explore more effective ways to narrow the domain gap.
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