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Abstract

We tackle the task of Azimuth (angular dimension) super-
resolution for Frequency Modulated Continuous Wave
(FMCW) multiple-input multiple-output (MIMO) radar.
FMCW MIMO radar is widely used in autonomous driv-
ing alongside Lidar and RGB cameras. However, com-
pared to Lidar, MIMO radar is usually of low resolution
due to hardware size restrictions. For example, achieving
1◦ azimuth resolution requires at least 100 receivers, but a
single MIMO device usually supports at most 12 receivers.
Having limitations on the number of receivers is problem-
atic since a high-resolution measurement of azimuth angle
is essential for estimating the location and velocity of ob-
jects. To improve the azimuth resolution of MIMO radar,
we propose a light, yet efficient, Analog-to-Digital super-
resolution model (ADC-SR) that predicts or hallucinates
additional radar signals using signals from only a few re-
ceivers. Compared with the baseline models that are ap-
plied to processed radar Range-Azimuth-Doppler (RAD)
maps, we show that our ADC-SR method that processes raw
ADC signals achieves comparable performance with 98%
(50 times) fewer parameters. We also propose a hybrid
super-resolution model (Hybrid-SR) combining our ADC-
SR with a standard RAD super-resolution model, and show
that performance can be improved by a large margin. Ex-
periments on our Pitt-Radar dataset and the RADIal dataset
validate the importance of leveraging raw radar ADC sig-
nals. To assess the value of our super-resolution model for
autonomous driving, we also perform object detection on
the results of our super-resolution model and find that our
super-resolution model improves detection performance by
around 4% in mAP. The Pitt-Radar and the code will be
released at the link.

1. Introduction
We address the task of azimuth angle super-resolution

for Frequency Modulated Continuous Wave (FMCW) [25]
Multiple Input Multiple Output (MIMO) [26] radar in au-
tonomous driving. In addition to Lidar and RGB cam-
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Figure 1. Previous work perform super-resolution from low-
resolution and high-resolution Range-Azimuth maps after apply-
ing Discrete Time Fourier Transform (FFT). Instead, we aim to
predict more ADC uncaptured signals before they are transformed
into Range-Azimuth (RA) maps.

eras, Radar has been commonly used for autonomous ve-
hicles [4, 5] due to its robustness in adverse weather condi-
tions (e.g., fog, snow, rain) with longer wavelength. FMCW
MIMO radar uses a line array of receiver antennas to cap-
ture reflected signals of multiple chirps sent out by a line
array of transmitters. We can characterize the location
(orientation and distance) and velocity of nearby objects
from a radar’s Range-Azimuth-Doppler (RAD) map. The
RAD map is computed using the Discrete Time Fast Fourier
Transform (FFT) [11, 26] on the discretized receiver sig-
nals after Analog-to-Digital conversion (ADC). In the do-
main of autonomous driving, MIMO [26] radar devices typ-
ically have low resolution due to the physical constraint on
the size of the sensors. For example, a device with eight
antenna receivers has at most an angle resolution of about
15◦ [11]. Thus, it is important to develop new technologies
which can increase the azimuth resolution of radar sensing,
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without requiring a large sensor size.
For MIMO radar [26], both range resolution and velocity

(Doppler) resolution can be improved by setting different
bandwidths (the range of frequencies used for signal pulses)
and frame times (duration of a single signal pulse). How-
ever, azimuth resolution is strictly dependent on the radar
sensor’s hardware specifications, such as antenna size, and
cannot be improved by changing the parameters of the radar
sensor [15, 34], which restricts radar imaging performance.
To improve the azimuth resolution of radar Range-Azimuth
(RA) maps, some work proposes to use regularization ap-
proaches from signal processing [31, 32, 35] and deep mod-
els [2, 10] for azimuth super-resolution. However, such
prior work is limited to processing the RA maps (not even
using Doppler information) as shown in Figure 1. Since
RAD and RA maps are the transformed data after keep-
ing the magnitude only after FFTs, the information loss re-
garding the relationship between each receiver may lead to
limited performance for azimuth super-resolution. In addi-
tion, how to enhance the azimuth resolution from process-
ing ADC signals also remains challenging.

In order to tackle the challenge of azimuth angle super-
resolution on the ADC signals, we propose a light, yet
efficient, ADC super-resolution (ADC-SR) model for az-
imuth resolution. Since the azimuth resolution is related
to the number of receivers each capturing independent sig-
nals, we aim to predict uncaptured signals from halluci-
nated receivers. For example, the model takes ADC signals
recorded with 4 receivers and outputs the predicted ADC
signals with 8 receivers, as shown in Figure 1. To the best
of our knowledge, our ADC-SR is the first to apply deep
models to ADC signals for azimuth super-resolution. In ad-
dition, the hallucinated ADC signals can then be processed
with FFTs [26] to obtain high-resolution RAD maps for fur-
ther use in autonomous driving such as object detection.
We note that we can further refine the RAD maps with the
RAD super-resolution (RAD-SR) model. To evaluate and
compare our approach with other baseline models, we have
collected a dataset named Pitt-Radar which contains ADC
signals. Compared with RAD-SR which relies on RAD
data, our ADC-SR achieves comparable performance with
fewer network parameters. We also show that our hybrid
pipeline named Hybrid-SR combining ADC-SR and RAD-
SR improves the baseline model by a large margin. More-
over, since naive bilinear downsampling of the RAD map
does not truly reflect the outputs of lower-resolution radar
sensors, we propose a more theoretically grounded way of
downsampling for training later.

To assess the value of our super-resolution model for
autonomous driving, we also evaluate the performance
of existing object detectors trained along with our super-
resolution models. The improvements in the experiments
demonstrate our approach is applicable to downstream tasks

in autonomous driving. The contributions of this paper can
be summarized as follows:

• We propose an azimuth super-resolution model named
ADC-SR which takes into complex ADC radar signals
and predicts the signals from unseen receivers, which
is able to produce higher-resolution RAD maps.

• We propose a hybrid model named Hybrid-SR for im-
proved performance on RAD-SR when combined with
our ADC-SR. To make comparisons with all of the
baseline models, a downsampling method is also pro-
posed for evaluation.

• We propose a MIMO radar dataset named Pitt-Radar
which contains ADC signals for benchmarking.

• Our developed model not only achieves satisfactory
azimuth super-resolution on our collected Pitt-Radar
and one benchmark dataset but also improves the ex-
isting object detector by a large margin.

2. Related Works
Radar azimuth super-resolution. To improve the az-
imuth resolution in Range-Azimuth maps, many works
leveraging signal processing techniques have been pro-
posed. Since the azimuth signal can be modeled as a
convolution of a target distribution and an antenna pat-
tern [9, 33], the azimuth resolution can be improved by
deconvolutions. Several deconvolution methods have been
proposed to such as Wiener filtering (WF) [7], truncated
singular value decomposition (TSVD) [8], Tikhonov reg-
ularization (REGU) [8], Richardson–Lucy (RL) [6], and
iterative adaptive approach (IAA) [20]. Sparse regular-
ization has been proposed as another line of methods by
solving a regularization problem using split Bregman al-
gorithm (SBA) [31, 32, 35]. While these non-deep mod-
els only achieve limited performance, recently some deep
methods are also proposed to address the azimuth super-
resolution in Range-Azimuth maps. Armanious et. al. [2]
propose an adversarial network for super-resolution on
micro-Doppler imagery. Geiss et. al. [10] apply Unet on the
super-resolution of weather radar maps. However, Range-
Azimuth maps are transformed with FFTs ADC signals and
few works have been explored for the super-resolution di-
rectly on the ADC signals.

Radar for autonomous driving. Radar is resilient to fog,
rain, and snow, but one drawback to radar is that it pro-
duces low-resolution images, which makes it very challeng-
ing for the tasks of object recognition or semantic segmen-
tation in autonomous driving. Current automotive datasets,
such as NuScenes [5] and RADDet [30], contain radar data
using technology that relies on MIMO radar. Some works
for object detection on these datasets also are proposed in
[21, 27, 28]. While MIMO configurations are able to de-
rive informative velocity features using multiple sent chirp
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Table 1. Publicly available Radar datasets for object detection in autonomous driving. We only list commonly used datasets.

Radar Device Dataset FOV Range Azimuth Doppler Point Cloud ADC

Scaning radar
Oxford Radar RoboCar [3] 360 ✓ ✓ ✗ ✗ ✗

RADIATE [24] 360 ✓ ✓ ✗ ✗ ✗
MulRan [12] 360 ✓ ✓ ✗ ✗ ✗

MIMO radar

CRUW [29] <180 ✓ ✓ ✓ ✗ ✗
Nuscenes [5] <180 ✗ ✗ ✓ ✓ ✗
Zendar [17] <180 ✓ ✓ ✓ ✗ ✗

CARRADA [18] <180 ✓ ✓ ✓ ✗ ✗
RADDet [30] <180 ✓ ✓ ✓ ✗ ✗

RadarScenes [23] <180 ✗ ✗ ✓ ✓ ✗
RADIal [21] <180 ✓ ✓ ✓ ✓ ✓

Pitt-Radar (Ours) <180 ✓ ✓ ✓ ✓ ✓

signals, it has low azimuth resolution. On the other hand,
some datasets such as Oxford Radar RoboCar [3] and RA-
DIATE [24] are collected with 360◦ scanning radar using
a Navtech [1] device. This scanning device measures each
azimuth using a moving antenna and provides as high of
an azimuth resolution as Lidar. Some works for object de-
tection using scanning radar are proposed in [14, 19]. Yet,
scanning radar currently does not provide Doppler features
as MIMO radar. In this work, we focus on applying azimuth
super-resolution specifically for MIMO radar which has all
features of the range, azimuth, and Doppler.

3. Radar Datasets
3.1. Current datasets

Currently, in autonomous driving, there are two types
of Frequency Modulated Continuous Wave (FMCW) [25]
radar devices used: 1) scanning radar and 2) MIMO radar.
Scanning radar usually employs the Navtech [1] radar,
which provides 360◦ high-resolution range-azimuth maps.
However, scanning radar does not provide the Doppler
feature as MIMO radar which uses several transmitters
and receivers to measure the range, azimuth, and Doppler
information through FFTs. Compared with scanning radar,
MIMO has low azimuth resolution in RAD maps. The
overview of the current datasets is summarized in Table 1.

Scanning Radar. There are currently few available datasets
providing radar data from scanning radar such as Oxford
Radar RoboCar [3], RADIATE [24], and MulRan [12].
Though these datasets are of high resolution and have 360◦

field of view (FOV), they do not have the Doppler feature
or even raw ADC signals. In addition, they only provide
data in bird-eye-view Range-Azimuth 2D format.

MIMO Radar. There are many available autonomous driv-
ing datasets that provide MIMO radar, as shown in Ta-
ble 1. As we can see from the table, all of these datasets
using MIMO radar provide a Doppler feature and most of
them provide range-azimuth-Doppler maps. However, only
RADlal [21] and our collected dataset provide additional

Camera view Range-Azimuth

Figure 2. Samples of Pitt-Radar.

ADC signals for use.

3.2. Pitt-Radar

In order to train and evaluate the super-resolution models
trained on ADC radar signals, we collect a dataset named
Pitt-Radar in Pittsburgh, PA, USA. The data were collected
on a Lexus SUV that was equipped with stereo cameras, a
LIDAR, a high-precision GPS device, and a Texas Instru-
ments AWR1843BOOST radar sensor. The stereo cameras
were logged at 15 Hz, the LIDAR was logged at 10 Hz, the
GPS was logged at 25 Hz, and the radar was logged at 30
Hz. The log contains high-precision timestamps and was
synchronized offline. The Texas Instrument’s radar exposes
many parameters in their mmWave Studio software pack-
age. The parameters include operating frequency, idle time,
frequency slope, number of ADC samples, and sampling
rate. We present the examples of the dataset in Figure 2 and
more details for the experimental settings of the dataset can
be obtained later in the experiment. We note that the differ-
ence between our dataset and RADlal [21] lies in we have
multiple device setups (e.g., 128, 256, and 512 range sam-
ples) while RADlal [21] only provides data with one setup.
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4. The Proposed Approach

4.1. Problem Formulation and Overview

Given ADC radar signals from few receivers, we aim to
predict unseen ADC radar signals which are able to pro-
duce a higher resolution of RAD maps. Specifically, we
are given ADC radar signals IADC ∈ CNrec×Nchirp×Nadc

from Nrec receivers, where each receiver receives signals of
Nchirp chirps of Nadc ADC discrete complex samples. Our
goal is to produce super-resolved ADC radar signals ISR

adc,
which is close to IHR

adc with more NHR
rec receivers, from ILR

adc

with few NLR
rec receivers. For example, the high-resolution

ADC signals IHR
adc are recorded from 4 receivers and 3 trans-

mitters while low-resolution data ILR
adc are recorded from 1

or 2 transmitters. In practice, the field of view (FOV) of
all the ADC data is identical. In addition, all raw ADC
data Iadc can be transformed into Range-Azimuth-Doppler
(RAD) maps Irad ∈ CNRange×NAzimuth×NDoppler through
Fast Fourier Transforms (FFTs) for downstream tasks such
as object detection.

The overview of our proposed pipeline: Hybrid-SR is
presented in Figure 3, which is composed of two separate
yet sequential stages: 1) ADC super-resolution (ADC-SR)
and 2) RAD super-resolution (RAD-SR). First, in the ADC-
SR stage, we introduce an ADC-ConvNet with S upsample
factor which takes ILR

adc as input and produces the intermedi-
ate feature FSR

adc ∈ R2∗S∗Nrec×Nchirp×Nadc . Then the fea-
ture FSR

adc is transformed to ISR
adc with the feature pixel shuf-

fling module. The hallucinated ADC signals ISR
adc can be

processed into informative RAD ISR
rad maps with FFTs. Sec-

ond, in order to refine the super-resolved RAD maps ISR
rad,

we introduce a RAD-Unet which takes into ISR
rad and pro-

duce the refined ISSR
rad in the RAD-SR stage. During infer-

ence, we can either apply Hybrid-SR, ADC-SR, or RAD-
SR independently for either the input formats of ADC sig-
nals or RAD data.

4.2. Downsampling by removing transmitters

In order to train the super-resolution models, we need
to prepare the high-resolution and low-resolution pairs.
Specifically, we sample the ADC pair IHR

adc , ILR
adc or RAD

pair IHR
rad , ILR

rad for training. Theoretically, the field of
view (FOV) of RAD pair IHR

rad , ILR
rad needs be matched so

the range-azimuth maps can be aligned spatially. Thus,
we maintain the same FOV when downsampling the high-
resolution data by removing the antennas correctly from
IHR
adc to produce ILR

adc .
Since the FOV depends on the distance between each re-

ceiver (density of the receivers) [11], the density needs to
be the same after removing the receivers. We now present
a preliminary introduction of virtual antenna receivers [11]
as shown in Figure 4 and how we maintain FOV. If we are
given 4 receivers uniformly spaced with distance d and 3

transmitters in Figure 4a the signals we observe from the
4 receivers can be rearranged to signals from 12 virtual re-
ceivers with distance d using one transmitter, shown in Fig-
ure 4b. Since the time of sending signals for the 3 transmit-
ters are different (see Figure 4c), the 4 physical receivers
are able to distinguish which kinds of signals they receive.
Therefore, the direct way to downsample the IHR

adc correctly
to produce ILR

adc and maintain density is to remove the side
transmitters, e.g., Tx 1 or Tx3. Then, the RA maps we ob-
tain from IHR

rad and ILR
rad will also have the same FOV and

are spatially aligned (see the input and ground truths in Fig-
ure 6).

4.3. Azimuth super-resolution from ADC signals

In order to produce ISR
adc close to IHR

adc , we propose the
ADC super-resolution (ADC-SR) for learning the mapping
between ILR

adc and IHR
adc . Unlike traditional super-resolution

tasks in image super-resolution [13], super-resolution of
radar data is more complicated since it has 1) complex val-
ues and 2) predicting missing signals from unseen receivers
is different from classical pixel upsampling.

To address the first issue with complex values, we sepa-
rate the real and imaginary parts into two channels. Specif-
ically, Iadc ∈ CNrec×Nchirp×Nadc will be transformed to
I

′

adc ∈ R2×Nrec×Nchirp×Nadc with two channels. We
then introduce ADC-SRNet denoted as EADC to produce
super-resolved feature maps: FSR

adc = EADC(I
LR
adc) ∈

R2∗S∗Nrec×Nchirp×Nadc , where S indicates the upsampling
factor. To produce the correct format of ISR

adc, we introduce
feature pixel shuffling function g to reshape the intermedi-
ate features into ISR

adc:

ISR
adc = g(EADC(I

LR
adc)) ∈ CS∗Nrec×Nchirp×Nadc , (1)

which has S times more receivers than ILR
ADC . In order

to train the ADC-SRNet (EADC), we employ the ADC
loss using L2 distance between low-resolution and high-
resolution ADC signal pairs:

LADC = L2(g(EADC(I
LR
adc)), I

HR
adc ), (2)

4.4. Azimuth super-resolution from RAD maps

In order to additionally refine the radar data with RAD
format, we propose a baseline model for RAD super-
resolution (RAD-SR) which learns the mapping between
ILR
rad and IHR

rad . Both of the RAD data can be obtained
by applying Fast Fourier Transforms (FFTs) [11] on ILR

adc

and IHR
adc . While RAD data may contain complex val-

ues, we usually only keep the magnitude of the RAD data
for radar object detection [30]. Thus, we can derive the
RAD magnitude radar maps as Irad = ∥FFTs(Iadc)∥ ∈
RNRange×NAzimuth×NDoppler . Since both ILR

rad and IHR
rad

have the same 3D shape, the super-resolution task in RAD
can be formulated as 3D image-to-image translation task.
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Figure 3. Overview of our proposed hybrid super-resolution (Hybrid-SR) model. Our Hybrid-SR has two streams: ADC-SR and RAD-
SR. In the ADC-SR stage, we introduce an ADC-ConvNet with S upsample factor which takes ILR

adc as input and produces intermediate
features FSR

adc , which are then super-resolved ISR
adc using the 3D pixel shuffling module. The ADC data is then processed into informative

RAD ISR
rad maps with FFTs. Then, our RAD-Unet takes ISR

rad and produces the finalized ISSR
rad in the RAD-SR stage.
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Figure 4. Illustration of virtual antennas with receivers (Rx) and
transmitters (Tx). The signals produced by 4 receivers and 3 trans-
mitters can be transformed virtually into 12 receivers.

Therefore, we employ RAD-Unet (ERAD) employing Unet
with 3D convolutions to produce ISR

rad by taking into ILR
rad as

input:

ISR
rad = ERAD(ILR

rad) ∈ RNRange×NAzimuth×NDoppler . (3)

To train the RAD-Unet, we utilize the RAD loss using L2
distance between low-resolution and high-resolution RAD
data:

LRAD = L2(ERAD(ILR
rad), I

HR
rad ), (4)

We note that traditional non-deep upsampling methods
(i.e., interpolation or extrapolation) or deep methods [13]
may not work since the shapes of ILR

RAD and IHR
RAD are iden-

tical in terms of the pixel resolution. As we see the input and
ground truth in Figure 6, the main difference lies in the size
and shape of the local responses inside the Range-Azimuth
maps.

While we have presented two super-resolution ap-
proaches ADC-SR and RAD-SR, both ADC-SR and RAD-
SR can be combined sequentially as our final model:
Hybrid-SR. Specifically, the input of RAD-Unet (ERAD)
would be the RAD maps generated ADC-SR and we can
derive the output RAD maps as:

ISSR
rad = ERAD(∥FFTs(ISR

adc)∥), (5)

where

ISR
rad = ∥FFTs(ISR

adc)∥ ∈ RNRange×NAzimuth×NDoppler .
(6)

We can train the entire pipeline using the total hybrid loss:

LHybrid = LADC + LRAD. (7)

Though both ADC-SR and RAD-SR are two indepen-
dent streams to perform super-resolution, ADC-SR is as-
sumed to be more effective since it leverages the ADC sig-
nals before FFTs are applied, which is also supported later
in the experiments. Because of FFTs, RAD radar Irad
will always have the same shape NRange × NAzimuth ×
NDoppler regardless of how many receivers the RAD maps
are produced from. This will also make super-resolution
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Figure 5. The proposed pipeline for adapting our azimuth super-
resolution model to the existing detector, i.e., RADDet [30].

harder for RAD if the model is deployed to unknown re-
ceivers in the real world. Thus, our new proposed ADC-SR
is more applicable.

4.5. Adapting our model to object detectors

In order to leverage our proposed models for au-
tonomous driving, we present the pipeline for adapting az-
imuth super-resolution to an object detector using RAD-
Det [30] in Figure 5. For either ADC signals or RAD
data, we apply the corresponding azimuth super-resolution
model. Specifically, we apply ADC-SR or Hybrid-SR on
the ADC signals and RAD-SR on the post-processed RAD
data. We would like to note that, our azimuth super-
resolution models can be treated as a plug-and-play tool for
fine-tuning the existing models. Later in the experiments,
we will also show that our models can even directly bring
the performance gain without fine-tuning the detectors.

5. Experiments
5.1. Datasets

We use Pitt-Radar and RADIal [21] for training and eval-
uating our super-resolution models. On the other hand, we
use RADDet [30] for evaluating the performance of object
detection when combining radar super-resolution models
with one existing detector proposed in [30].
Pitt-Radar. Pitt-Radar contains around 10,000 ADC radar
frames in total with 4 receivers and 3 transmitters. We use
the first half of the 5,000 frames for training and the second
half of the 5,000 frames for testing.
RADIal. RADIal [21] contains 91 sequences for a total
of 2 hours using 4 radar devices each has 3 transmitters
and 4 receivers. Each sequence contains raw ADC signals
recorded with their native frame rate. There are approxi-
mately 25,000 radar frames. We only use the first 5,000
frames for training the super-resolution models and the sec-
ond 5,000 frames for testing.
RADDet. RADDet [30] provides a total number of 10,158

radar frames with 8 virtual receivers and only has data with
RAD format. This dataset provides the 3D RAD annota-
tions and 2D bird-eye-view annotations. It also contains the
pre-selected train/test split where 80% of the radar frames
are for training.

5.2. Settings and evaluation protocols

Azimuth super-resolution. To evaluate our super-
resolution models, we use the low-resolution data with the
middle 4 receivers and high-resolution radar data with all
12 receivers as ground truths. We evaluate the performance
of the 3D RAD map reconstruction and 2D RA map
reconstruction. Specifically, given different formats of
input data for each model, e.g., ADC signals for ADC-SR
and RAD data for RAD-SR, we can always produce the
same output format: RAD maps with FFTs. We can
also further derive the RA maps by taking summation
over the Doppler dimension. Thus, we can compute the
performance of reconstruction using the metrics of mean
square error (MSE) and peak signal-to-noise ratio (PSNR).

Object detection. To test the performance of object de-
tection, we apply our super-resolution model on the Radar-
Resnet detector proposed by RADDet [30]. Specifically,
we also utilize their both RAD YOLO head and 2D YOLO
head for predicting different types of bounding box loca-
tions. Following RADDet [30], we evaluate the model us-
ing mean average precision (mAP) in the COCO evalua-
tion [16] with different IOU: 0.1, 0.3, 0.5, and 0.7 for a fair
comparison.

5.3. Implementation details

We implemented our model using PyTorch. Following
the device setup in RADIal [21] and RADDet [30], the num-
ber of chirps Nchirp is 256. The number of ADC samples
Nadc in signals is 256 for Pitt-Radar and RADDet, and 512
for RADIal due to device settings. While we have recorded
our Pitt-Radar using different settings of ADC samples, e.g.,
512, 256, or 128, which can lead to different range resolu-
tions, we use the ones identical to RADDet. The number
of receivers Nrec is set as 4 for low-resolution and set as
12 for high-resolution during training. For RAD radar FFT
process, the range sample size Nrange is the same as the
number of ADC samples Nadc via range-FFT. The num-
ber of Doppler samples NDoppler is the same as Nchirp via
Doppler-FFT. The azimuth size NAzimuth is set as 256 with
zero paddings before applying azimuth-FFT. More details
for how FFTs work to derive range, azimuth, and Doppler
information can be obtained in [26]. For ADC-SRNet, we
employ 6 residual blocks using 3D convolutions and skip-
connections similar to SRGAN [13]. For RAD-Unet, we
employ 3D convolutions following 2D Unet [22]. The dif-
ference lies in the upsampling blocks inside the RAD-Unet
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Table 2. Comparisons with baseline models on the radar azimuth
super-resolution by evaluating reconstruction of RA maps.

Method Input Pitt-Radar RADlal

MSE ↓ PSNR ↑ MSE ↓ PSNR ↑
2D SRGAN RA 21.4 23.2 25.7 25.2
2D UNet RA 12.5 30.1 11.3 29.6

3D SRGAN RAD 17.6 28.2 18.5 27.3
RAD-SR RAD 5.8 33.9 4.4 35.1

ADC-SR ADC 6.2 33.1 5.1 34.6
Hybrid-SR ADC 0.9 39.6 1.0 38.9

Table 3. Comparisons with baseline models on the radar azimuth
super-resolution by evaluating reconstruction of RAD cubes.

Method Input Pitt-Radar RADlal

MSE ↓ PSNR ↑ MSE ↓ PSNR ↑
3D SRGAN RAD 10.2 17.1 9.5 18.4
RAD-SR RAD 2.2 24.2 2.5 23.8

ADC-SR ADC 3.9 21.1 4.2 20.2
Hybrid-SR ADC 0.8 31.5 0.9 30.9

utilizing the trilinear upsampling method. We use the Adam
optimizer with a learning rate of 0.001 throughout all of the
experiments. The batch size is set as 4 on a single NVIDIA
2080 Ti GPU.

5.4. Results and comparisons in super-resolution

RA maps. To evaluate the azimuth super-resolution and
evaluate the effectiveness of different input types of radar
data, we compare our proposed azimuth super-resolution
models: ADC-SR, RAD-SR, and Hybrid-SR with some 2D
baseline models: SRGAN [13], 2D UNet [22], and 3D base-
line model: 3D SRGAN (with 3D convolutions). 2D base-
line models will take into the low-resolution 2D Range-
Azimuth (RA) as inputs. We present the reconstruction re-
sults of Range-Azimuth (RA) 2D maps in Table 2. First,
we observe that existing strong 2D image super-resolution
models such as SRGAN or Unet fail to conduct super-
resolution for Range-Azimuth maps. This indicates that
the 2D RA maps processed from 3D RAD maps may lead
to information loss which is essential for super-resolution.
Second, although 3D SRGAN takes as input RAD maps, it
still fails to reconstruct 2D RA maps compared with RAD-
SR. We credit the reason to that because the task of pro-
ducing high-resolution RA maps from low-resolution RAD
maps can not be formulated as the task of pixel-upsampling,
while this task is rather like image-to-image translation.
Thus, RAD-SR employing 3D Unet works better for recon-
structing high-resolution RA maps from RAD maps. Third,
ADC-SR achieves comparable performance as RAD-SR,
and our Hybrid-SR combining ADC-SR exhibits superior
reconstruction performance by taking into the ADC signals.
This infers that performing super-resolution using ADC sig-
nals can improve the reconstruction result.

Table 4. Comparison of network parameters

Method 3D SRGAN RAD-SR ADC-SR Hybrid-SR

Params. 90k 2512k 66k 2578k

RAD maps. Since RA maps are the post-processed data
by removing the Doppler feature, we further evaluate the
performance of reconstruction of entire 3D RAD maps.
To evaluate the RAD reconstruction, we also compare our
models (ADC-SR, RAD-SR, and Hybrid-SR) with 3D SR-
GAN while existing 2D models can not produce 3D data.
We summarize the results in Table 3. First, we can still ob-
serve the same situation for 3D SRGAN which fails to re-
construct the RAD maps. Second, our proposed ADC-SR in
Hybrid-SR taking into ADC signals outperforms RAD-SR
which only takes RAD maps as inputs for azimuth super-
resolution by a large margin. This also infers that perform-
ing super-resolution using raw ADC signals can have better
reconstruction.

Network parameters. To evaluate the efficiency of all of
our proposed azimuth super-resolution models, we present
the comparisons of the number of network parameters in
Table 4. We can observe that our ADC-SR is the lightest
model among the four compared models while it has com-
parable performance in azimuth super-resolution as RAD-
SR. This demonstrates that ADC-SR is able to perform ef-
ficient azimuth super-resolution when taking into the raw
ADC signals compared with RAD maps.

5.5. Results and comparisons in object detection

In order to assess the effectiveness of our proposed
azimuth super-resolution models for autonomous driving
tasks, we evaluate the performance gains brought by our
models on a previous radar object detector, i.e., Radar-
ResNet in RADDet [30]. There are two types of YOLO
heads used in RADDet: RAD YOLO head for producing
3D bounding boxes in RAD maps and 2D YOLO head for
2D boxes in RA maps.

RAD YOLO head. We evaluate the RADDet detector us-
ing different kinds of super-resolution models: RAD-SR,
ADC-SR, and Hybrid-SR when producing the RAD bound-
ing boxes. We would like to note that, we can still apply
inverse Fast Fourier Transform (IFFT) on RAD data for de-
riving the original ADC signals if the number of receivers
is known even if RADDet does not originally provide ADC
signals. We found that discrete IFFT will be correct nu-
merically by filtering out the tiny values (thresholding with
value 1e−6). We present the result of detection using RAD
YOLO head in Table 5. We report the performances both on
fixing and fine-tuning the detector plugging in our trained
super-resolution models. First, we observe that directly
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Table 5. Results of radar object detection using RAD YOLO head
following RADDet [30]

Method AP0.1 AP0.3 AP0.5 AP0.7

RADDet 0.764 0.563 0.251 0.059
RADDet (fix.) + RAD-SR 0.761 0.596 0.273 0.061
RADDet (fix.) + ADC-SR 0.765 0.582 0.262 0.063
RADDet (fix.) + Hybrid-SR 0.776 0.594 0.282 0.071
RADDet (fine.) + RAD-SR 0.774 0.601 0.278 0.067
RADDet (fine.) + ADC-SR 0.794 0.620 0.304 0.079
RADDet (fine.) + Hybrid-SR 0.802 0.631 0.312 0.085

Table 6. Results of radar object detection using 2D YOLO head
following RADDet [30]

Method AP0.1 AP0.3 AP0.5 AP0.7

RADDet 0.801 0.730 0.530 0.202
RADDet (fix.) + RAD-SR 0.811 0.736 0.541 0.223
RADDet (fix.) + ADC-SR 0.805 0.738 0.539 0.227
RADDet (fix.) + Hybrid-SR 0.827 0.741 0.542 0.235
RADDet (fine.) + RAD-SR 0.832 0.760 0.577 0.252
RADDet (fine.) + ADC-SR 0.835 0.761 0.579 0.250
RADDet (fine.) + Hybrid-SR 0.841 0.773 0.588 0.267

plugging in our models without fine-tuning the detector al-
ready brings performance gains. Second, fine-tuning the
detector using our pre-trained super-resolution models can
further improve the performance by a large margin. This
demonstrates that azimuth super-resolution models are suit-
able for detection tasks in autonomous driving.

2D YOLO head. We also evaluate the RADDet detector
using different kinds of super-resolution models: RAD-SR,
ADC-SR, and Hybrid-SR when producing the 2D bound-
ing boxes in RA maps. The results are presented in Ta-
ble 6. We can also observe that our models already bring
performance gain without fine-tuning the detector. In ad-
dition, fine-tuning the detector using our trained models as
data augmentations is able to bring additional performance
gains. This indicates our models support both types of
YOLO heads in the radar object detection task.

5.6. Visualization of RA maps

To qualitatively analyze the effectiveness of azimuth
super-resolution of our models, we compare the RA maps
produced by RAD-SR, ADC-SR, and Hybrid-SR with one
baseline 3D SRGAN in Figure 6. This figure shows the out-
puts of RA maps when taking into the same low-resolution
ADC signals or RAD maps as inputs. As we observe from
Figure 6, there are some phenomena that can be summa-
rized. First, 3D SRGAN struggles to reconstruct the high-
resolution RA maps since it does not learn how to sharpen
and separate the responses from low-resolution RAD maps.
Second, RAD-SR employing RAD-Unet is able to roughly
translate the low-resolution RAD maps to high-resolution
RAD maps with image-to-image translation modules. Yet,
though RAD-SR is able to produce the super-resolved RA
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Figure 6. Qualitative comparisons and analysis in reconstruc-
tion of Range-Azimuth (RA) maps.

maps close to ground truths, it still fails to separate some
regions of small responses. Third, ADC-SR and RAD-
SR taking into ADC signals directly are able to sharpen
the responses and have them well-matched to the ground
truths. This demonstrates models taking into ADC signals
are preferable for azimuth super-resolution.

6. Conclusions

To address the task of azimuth super-resolution in
MIMO radar, a type of FMCW radar device, we propose
an ADC super-resolution (ADC-SR) model for predicting
unseen signals. Our ADC-SR model utilizes 50 times fewer
parameters yet exhibits comparable performance than the
baseline RAD super-resolution model, demonstrating the
significance of leveraging ADC signals. Our Hybrid-SR
combining our ADC-SR with RAD-SR improves the RAD-
SR by a large margin on our collected dataset Pitt-Radar
where ADC signals are available for evaluation. The ex-
periments on plugging our models into the existing object
detector also support the generalization of our models.
Acknowledgement: We thank Denso for the sponsorship
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