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Abstract

Image-to-image translation is an important and chal-
lenging problem in computer vision and image process-
ing. Diffusion models (DM) have shown great potentials
for high-quality image synthesis, and have gained competi-
tive performance on the task of image-to-image translation.
However, most of the existing diffusion models treat image-
to-image translation as conditional generation processes,
and suffer heavily from the gap between distinct domains.
In this paper, a novel image-to-image translation method
based on the Brownian Bridge Diffusion Model (BBDM)
is proposed, which models image-to-image translation as a
stochastic Brownian Bridge process, and learns the trans-
lation between two domains directly through the bidirec-
tional diffusion process rather than a conditional gener-
ation process. To the best of our knowledge, it is the
first work that proposes Brownian Bridge diffusion process
for image-to-image translation. Experimental results on
various benchmarks demonstrate that the proposed BBDM
model achieves competitive performance through both vi-
sual inspection and measurable metrics.

1. Introduction

Image-to-image translation [14] refers to building a map-
ping between two distinct image domains. Numerous prob-
lems in computer vision and graphics can be formulated as
image-to-image translation problems, such as style trans-
fer [3,9,13,22], semantic image synthesis [21,24,34,36,37,
40] and sketch-to-photo synthesis [2, 14, 43].

A natural approach to image-to-image translation is to
learn the conditional distribution of the target images given
the samples from the input domain. Pix2Pix [14] is one
of the most popular image-to-image translation methods.
It is a typical conditional Generative Adversarial Network
(GAN) [26], and the domain translation is accomplished by
learning a mapping from the input image to the output im-

Figure 1. Comparison of directed graphical models of BBDM
(Brownian Bridge Diffusion Model) and DDPM (Denoising Dif-
fusion Probabilistic Model).

age. In addition, a specific adversarial loss function is also
trained to constrain the domain mapping. Despite the high
fidelity translation performance, they are notoriously hard
to train [1, 10] and often drop modes in the output distri-
bution [23, 27]. In addition, most GAN-based image-to-
image translation methods also suffer from the lack of di-
verse translation results since they typically model the task
as a one-to-one mapping. Although other generative models
such as Autoregressive Models [25, 39], VAEs (Variational
Autoencoders) [16,38], and Normalizing Flows [7,15] suc-
ceeded in some specific applications, they have not gained
the same level of sample quality and general applicability
as GANs.

Recently, diffusion models [12, 31] have shown compet-
itive performance on producing high-quality images com-
pared with GAN-based models [6]. Several conditional dif-
fusion models [2, 4, 28–30] have been proposed for image-
to-image translation tasks. These methods treat image-to-
image translation as conditional image generation by in-
tegrating the encoded feature of the reference image into
the U-Net in the reverse process (the first row of Figure 1)
to guide the diffusion towards the target domain. De-
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Figure 2. Architecture of our proposed Brownian Bridge Diffusion Model (BBDM).

spite some practical success, the above condition mecha-
nism does not have a clear theoretical guarantee that the
final diffusion result yields the desired conditional distri-
bution. Therefore, most of the conditional diffusion mod-
els suffer from poor model generalization, and can only be
adapted to some specific applications where the conditional
input has high similarity with the output, such as inpaint-
ing and super-resolution [2, 4, 30]. Although LDM (Latent
Diffusion Model) [28] improved the model generalization
by conducting diffusion process in the latent space of cer-
tain pre-trained models, it is still a conditional generation
process and the multi-modal condition is projected and en-
tangled via a complex attention mechanism which makes
LDM much more difficult to get such a theoretical guaran-
tee. Meanwhile, the performance of LDM differs greatly
across different levels of latent features showing instability.

In this paper, we propose a novel image-to-image trans-
lation framework based on Brownian Bridge diffusion pro-
cess. Compared with the existing diffusion methods, the
proposed method directly builds the mapping between the
input and the output domains through a Brownian Bridge
stochastic process, rather than a conditional generation pro-
cess. In order to speed up the training and inference pro-
cess, we conduct the diffusion process in the same latent
space as used in LDM [28]. However, the proposed method
differs from LDM inherently in the way the mapping be-
tween two image domains is modeled. The framework of
BBDM is shown in the second row of Figure 1. It is easy
to find that the reference image y sampled from domain B
is only set as the initial point xT = y of the reverse diffu-
sion, and it will not be utilized as a conditional input in the
prediction network µθ(xt, t) at each step as done in related
works [2, 4, 28, 30]. The main contributions of this paper
include:

1. A novel image-to-image translation method based on

Brownian Bridge diffusion process is proposed in this
paper. As far as we know, it is the first work of Brow-
nian Bridge diffusion process proposed for image-to-
image translation.

2. The proposed method models image-to-image trans-
lation as a stochastic Brownian Bridge process, and
learns the translation between two domains directly
through the bidirectional diffusion process. The
proposed method avoids the conditional information
leverage existing in related work with conditional dif-
fusion models.

3. Quantitative and qualitative experiments demonstrate
the proposed BBDM method achieves competitive per-
formance on various image-to-image translation tasks.

2. Related Work
In this section, we briefly review the related topics, in-

cluding image-to-image translation, diffusion models and
Brownian Bridge.

2.1. Image-to-image Translation

Isola et al. [14] firstly proposed a unified framework
Pix2Pix for image-to-image translation based on condi-
tional GANs. Wang et al. [40] extended the Pix2Pix frame-
work to generate high-resolution images. Unpaired transla-
tion methods like CycleGAN [43] and DualGAN [41] used
two GANs separately on two domains and trained them to-
gether with dual learning [11], which allows them to learn
from unpaired data. However, these one-to-one mapping
translation methods fail to generate diverse outputs. With
the aim of generating diverse samples, Lee et al. [19] pro-
posed DRIT++, but it requires that the condition image
and result image must have high structural similarity. Sev-
eral other GAN-based techniques have also been proposed
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for image-to-image translation such as unsupervised cross-
domain method [35], multi-domain method [5], few-shot
method [20]. Nevertheless, GAN-based techniques suffer
from the training instabilities and mode collapse problems.
In addition to GAN-based models, diffusion models [31]
have also achieved impressive results on image genera-
tion [6, 12], inpainting [29], super-resolution [29, 30], and
text-to-image generation [28].

2.2. Diffusion Models

A T -step Denoising Diffusion Probabilistic Model
(DDPM) [12] consists of two processes: the forward pro-
cess (also referred to as diffusion process), and the reverse
inference process.

The forward process from data x0 ∼ qdata(x0) to the la-
tent variable xT can be formulated as a fixed Markov chain:

q(x1, ...,xT |x0) =

T∏
t=1

q(xt|xt−1) (1)

where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) is a nor-

mal distribution, βt is a small positive constant. The for-
ward process gradually perturbs x0 to a latent variable with
an isotropic Gaussian distribution platent(xT ) = N (0, I).

The reverse process strives to predict the original data
x0 from the latent variable xT ∼ N (0, I) through another
Markov chain:

pθ(x0, ...,xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt) (2)

The training objective of DDPM is to optimize the Evidence
Lower Bound (ELBO). Finally, the objective can be simpli-
fied as to optimize:

Ex0,ϵ||ϵ− ϵθ(xt, t)||22

where ϵ is the Gaussian noise in xt which is equivalent to
▽xt ln q(xt|x0), ϵθ is the model trained to estimate ϵ.

Most conditional diffusion models [2,4,28–30] maintain
the forward process and directly inject the condition into the
training objective:

Ex0,ϵ||ϵ− ϵθ(xt,y, t)||22

Since p(xt|y) does not obviously appear in the training ob-
jective, it is difficult to guarantee the diffusion can finally
reach the desired conditional distribution.

Except for the conditioning mechanism, Latent Diffu-
sion Model (LDM) [28] takes the diffusion and inference
processes in the latent space of VQGAN [8], which is
proven to be more efficient and generalizable than operat-
ing on the original image pixels.

2.3. Brownian Bridge

A Brownian bridge is a continuous-time stochastic
model in which the probability distribution during the dif-
fusion process is conditioned on the starting and ending
states. Specifically, the state distribution at each time step
of a Brownian bridge process starting from point x0 ∼
qdata(x0) at t = 0 and ending at point xT at t = T can
be formulated as:

p(xt|x0,xT ) = N
(
(1− t

T
)x0 +

t

T
xT ,

t(T − t)

T
I
)

(3)

It can be easily found that the process is tied down at both
two ends with x0 and xT , and the process in between forms
a bridge.

3. Method
Given two datasets XA and XB sampled from domains A

and B, image-to-image translation aims to learn a mapping
from domain A to domain B. In this paper, a novel image-
to-image translation method based on stochastic Brown-
ian Bridge diffusion process is proposed. In order to im-
prove the learning efficiency and model generalization, we
propose to accomplish the diffusion process in the latent
space of popular VQGAN [8]. The pipeline of the proposed
method is shown in Figure 2. Given an image IA sampled
from domain A, we can first extract the latent feature LA,
and then the proposed Brownian Bridge process will map
LA to the corresponding latent representation LA→B in do-
main B. Finally, the translated image IA→B can be gener-
ated by the decoder of the pre-trained VQGAN.

3.1. Brownian Bridge Diffusion Model (BBDM)

The forward diffusion process of DDPM [12] starts from
clean data x0 ∼ qdata(x0) and ends at a standard nor-
mal distribution. The setup of DDPM is suitable for im-
age generation, as the reverse inference process naturally
maps a sampled noise back to an image, but it is not proper
for the task of image translation between two different do-
mains. Most of the existing diffusion-based image trans-
lation methods [2, 4, 28, 30] improved the original DDPM
model by integrating the reference image as a conditional
input in the reverse diffusion process.

Different from the existing DDPM methods, a novel
image-to-image translation method based on Brownian
Bridge diffusion process is proposed in this section. Instead
of ending at the pure Gaussian noise, Brownian Bridge pro-
cess takes the clean conditional input y as its destination.
We take similar notations as DDPM [12], and let (x,y) de-
note the paired training data from domains A and B. To
speed up the training and inference process, we conduct dif-
fusion process in the latent space of popular VQGAN [8].
For simplicity and following notations as in DDPMs, we
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still use x,y to denote the corresponding latent features
(x := LA(x),y := LB(y)). The forward diffusion pro-
cess of Brownian Bridge can be defined as:

qBB(xt|x0,y) = N (xt; (1−mt)x0 +mty, δtI) (4)

x0 = x, mt =
t

T

where T is the total steps of the diffusion process, δt is the
variance. It is noticed that if we take the variance of origi-
nal Brownian Bridge as shown in Eq.(3), δt = t(T−t)

T , the
maximum variance at the middle step, δT

2
= T

4 , will be ex-
tremely large with the increase of T , and this phenomenon
will make the BBDM framework untrainable. Meanwhile,
it has been mentioned in DDPM [12] and VPSDE [33]
that the variance of middle steps should be preserved to
be identity, if the distribution of x0 is supposed to be
a standard normal distribution. Therefore, assuming that
x0,y ∼ N (0, I) are relatively independent, with the aim
of preserving variances, a novel schedule of variance for
Brownian Bridge diffusion process can be designed as

δt = 1−
(
(1−mt)

2 +m2
t

)
= 2(mt −m2

t )

It is easy to find that at the start of the diffusion process,
i.e., t = 0, we can have m0 = 0, and the mean value is
equal to x0 with probability 1 and variance δ0 = 0. When
the diffusion process reaches the destination, t = T , we
get mT = 1, and the mean is equal to y while the vari-
ance δT = 0. During the diffusion process, the variance
δt will first grow to the biggest value at the middle time
δmax = δT

2
= 1

2 , and then it will drop until δT = 0 at
the destination of the diffusion. According to the charac-
teristic of Brownian Bridge diffusion process, the sampling
diversity can be tuned by the maximum variance at the mid-
dle step t = T

2 , therefore, we can scale δt by a factor s to
control the sampling diversity in practice:

δt = 2s(mt −m2
t ) (5)

We set s = 1 by default, and we will further discuss the
influence of different s values for sampling diversity in Sec-
tion 4.5.

3.1.1 Forward Process

According to the transition probability shown in Eq.(4), the
forward diffusion of Brownian Bridge process only pro-
vides the marginal distribution at each step t. For training
and inference purpose, we need to deduce the forward tran-
sition probability qBB(xt|xt−1,y).

Given initial state x0 and destination state y, the inter-
mediate state xt can be computed in discrete form as fol-

lows:

xt = (1−mt)x0 +mty +
√
δtϵt (6)

xt−1 = (1−mt−1)x0 +mt−1y +
√
δt−1ϵt−1 (7)

where ϵt, ϵt−1 ∼ N (0, I). The transition probability
qBB(xt|xt−1,y) can be derived by substituting the expres-
sion of X0 in Eq.(6) by the corresponding formula in Eq.(7)

qBB(xt|xt−1,y) = N (xt;
1−mt

1−mt−1
xt−1

+(mt −
1−mt

1−mt−1
mt−1)y, δt|t−1I) (8)

where δt|t−1 is calculated by δt as:

δt|t−1 = δt − δt−1
(1−mt)

2

(1−mt−1)2

According to Eq.(8), when the diffusion process reaches the
destination, i.e., t = T , we can get that mT = 1 and xT =
y. The forward diffusion process defines a fixed mapping
from domain A to domain B.

3.1.2 Reverse Process

In the reverse process of traditional diffusion models, the
diffusion process starts from a pure noise sampled from a
Gaussian distribution, and eliminates the noise step by step
to get the clean data distribution. In order to model the con-
ditional distribution, the existing methods [2, 4, 28, 30] take
the condition as an additional input of the neural network in
the reverse diffusion process.

Different from the existing diffusion-based image-to-
image translation methods, the proposed Brownian Bridge
process directly starts from the conditional input by setting
xT = y. Based on the main idea of denoising diffusion
methods, the reverse process of the proposed method aims
to predict xt−1 based on xt:

pθ(xt−1|xt,y) = N (xt−1;µθ(xt, t), δ̃tI) (9)

where µθ(xt, t) is the predicted mean value of the noise,
and δ̃t is the variance of noise at each step. Similar to
DDPM [12], the mean value µθ(xt, t) is required to be
learned by a neural network with parameters θ based on
maximum likelihood criterion. Although the variance δ̃t
does not need to be learned, it plays an important role in
high-quality image translation. The analytical form of δ̃t
will be introduced in Section 3.1.3.

It is important to notice that the reference image y sam-
pled from domain B is only set as the start point xT = y of
the reverse diffusion, and it will not be utilized as a condi-
tional input in the prediction network µθ(xt, t) at each step
as done in related works [2, 4, 28, 30] (Figure 1).

1955



3.1.3 Training Objective

The training process is performed by optimizing the Evi-
dence Lower Bound (ELBO) for the Brownian Bridge dif-
fusion process which can be formulated as:

ELBO = −Eq

(
DKL(qBB(xT |x0,y)||p(xT |y))

+

T∑
t=2

DKL(qBB(xt−1|xt,x0,y)||pθ(xt−1|xt,y))

− log pθ(x0|x1,y)
)

(10)

Since xT is equal to y in Brownian Bridge, the first term in
Eq.(10) can be seen as a constant and ignored. By combin-
ing Eq.(4) and Eq.(8), the formula qBB(xt−1|xt,x0,y) in
the second term can be derived through Bayes’ theorem and
the Markov chain property:

qBB(xt−1|xt,x0,y) =
qBB(xt|xt−1,y)qBB(xt−1|x0,y)

qBB(xt|x0,y)

= N (xt−1; µ̃t(xt,x0,y), δ̃tI)
(11)

where the mean value term is:

µ̃t(xt,x0,y) =
δt−1

δt

1−mt

1−mt−1
xt

+ (1−mt−1)
δt|t−1

δt
x0

+ (mt−1 −mt
1−mt

1−mt−1

δt−1

δt
)y (12)

and the variance term is:

δ̃t =
δt|t−1 · δt−1

δt
(13)

As x0 is unknown in the inference stage, we propose to
utilize a reparametrization method used in DDPM [12] by
combining Eq.(4) and Eq.(12). Then µ̃t can be reformu-
lated as:

µ̃t(xt,y) = cxtxt + cyty + cϵt
(
mt(y − x0) +

√
δtϵ

)
where

cxt =
δt−1

δt

1−mt

1−mt−1
+

δt|t−1

δt
(1−mt−1)

cyt = mt−1 −mt
1−mt

1−mt−1

δt−1

δt

cϵt = (1−mt−1)
δt|t−1

δt

Instead of predicting the whole µ̃t, we just train a neural
network ϵθ to predict the noise. For clarification, we can

Algorithm 1 Training
1: repeat
2: paired data x0 ∼ q(x0), y ∼ q(y)
3: timestep t ∼ Uniform(1, ..., T )
4: Gaussian noise ϵ ∼ N (0, I)
5: Forward diffusion xt = (1−mt)x0+mty+

√
δtϵ

6: Take gradient descent step on
▽θ||mt(y − x0) +

√
δtϵ− ϵθ

(
xt, t

)
||2

7: until converged

Algorithm 2 Sampling

1: sample conditional input xT = y ∼ q(y)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = cxtxt + cyty − cϵtϵθ(xt, t) +
√

δ̃tz
return x0

reformulate µθ in Eq.(9) as a linear combination of xt, y
and the estimated noise ϵθ:

µθ(xt,y, t) = cxtxt + cyty + cϵtϵθ(xt, t) (14)

Therefore, the training objective ELBO in Eq.(10) can be
simplified as:

Ex0,y,ϵ[cϵt||mt(y − x0) +
√

δtϵ− ϵθ(xt, t)||2]

3.2. Accelerated Sampling Processes

Similar to the basic idea of DDIM [32], the inference
processes of BBDM can be accelerated by utilizing a non-
Markovian process while keeping the same marginal distri-
butions as Markovian inference processes.

Now, given a sub-sequence of [1:T ] of length S
{τ1, τ2, ..., τS}, the inference process can be defined
by a subset of the latent variables x1:T , which is
{xτ1 ,xτ2 , ...,xτS},

qBB(xτs−1 |xτs,x0,y) = N
(
(1−mτs−1)x0 +mτs−1y+√

δτs−1 − σ2
τs

1√
δτs

(
xτs − (1−mτs)x0 −mτsy

)
, σ2

τsI
)

A numerical experiment is conducted in Section 4 to eval-
uate the performance with different numbers of sampling
steps. To balance the sampling quality and efficiency, we
choose S = 200 by default. The whole training process
and sampling process are summarized in Algorithm 1 and
Algorithm 2.

4. Experiments
4.1. Experiment Setup

Models and hyperparameters: The BBDM frame-
work is composed of two components: pretrained VQGAN
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Figure 3. Qualitative comparison on CelebAMask-HQ dataset.

model and the proposed Brownian Bridge diffusion model.
For fair comparison, we adopt the same pretrained VQGAN
model as used in Latent Diffusion Model [28]. The number
of time steps of Brownian Bridge is set to be 1000 during
the training stage, and we use 200 sampling steps during
the inference stage with the considerations of both sample
quality and efficiency.

We train the network by using the Adam optimizer on a
PC with an Intel Core i9-9900K CPU @ 3.2 GHz, 24GB
RAM, and a GeForce GTX 3090 GPU.

Evaluation: For the visual quality and fidelity, we
adopt the widely-used Fréchet Inception Distance (FID) and
Learned Perceptual Image Patch Similarity (LPIPS) met-
rics [42]. To evaluate the generation diversity, we adopt the
diversity metric proposed in [2]. Specifically, we generate
five samples (x̂5

t=1) for a given conditional input y, and cal-
culate the average standard deviation for each pixel among
the samples. Then, we report the average diversity over the
whole test dataset.

Datasets and baselines: To demonstrate the capa-
bility of handling image-to-image translation on vari-
ous datasets, We evaluate the BBDM framework on
three distinct and challenging image-to-image translation
tasks, including semantic synthesis task on CelebAMask-
HQ dataset [18], sketch-to-photo task on edges2shoes
and edges2handbags [14], and style transfer task on
faces2comics dataset. The baseline methods include
Pix2Pix [14], CycleGAN [43], DRIT++ [19], CDE [30] and
LDM [28]. Among the baselines, Pix2Pix, CycleGAN and
DRIT++ are image-to-image translation methods based on
conditional GANs, while CDE and LDM conduct image
translation by conditional diffusion models. We addition-
ally compare BBDM with OASIS [34] and SPADE [24] on
CelebAMask-HQ dataset.

4.2. Qualitative Comparison

In this section, we evaluate the performance of the pro-
posed BBDM against the state-of-the-art baselines on sev-
eral popular image-to-image translation tasks. Semantic
synthesis aims to generate photorealistic images based on
semantic layout, while edges-to-images aims at synthesiz-

Figure 4. Qualitative comparison on different image-to-image
translation tasks.

ing realistic image with the constraint of image edges. As
both semantic layout and edge images are abstract, another
task referred to as faces-to-comics conducted on two do-
mains with more similar distributions is involved.

The experimental results of the proposed BBDM and
other baselines are shown in Figures 3 and 4. Pix2Pix [14]
can get reasonable results benefiting from the paired train-
ing data, while the performance of CycleGAN [43] drops on
small scale datasets. DRIT++ achieves better performance
among GAN-based method, however, the translated images
are oversmoothed and far from the ground truth distribu-
tion of the target domain. Compared with methods with
GANs, diffusion based methods gain competitive perfor-
mance. However, as is discussed in the introduction sec-
tion, both CDE [30] and LDM [28] are conditional diffusion
models, and suffer from conditional information leverage
during the diffusion process. For example, when there are
irregular occlusions as shown in the first row of Figure 3,
CDE and LDM cannot generate satisfactory results due to
the mechanism of integrating conditional input into the dif-
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Figure 5. Diverse samples of BBDM on different image-to-image
translation tasks.

model CelebAMask-HQ
FID ↓ LPIPS ↓ Diversity ↑

Pix2Pix 56.997 0.431 0
CycleGAN 78.234 0.490 0

DRIT++ 77.794 0.431 35.759
SPADE 44.171 0.376 0
OASIS 27.751 0.384 39.662
CDE 24.404 0.414 50.278
LDM 22.816 0.371 20.304

BBDM(ours) 21.350 0.370 29.859

Table 1. Quantitative comparison on CelebAMask-HQ dataset.

fusion model. In contrast, the proposed BBDM conducts
image-to-image translation by directly learning a diffusion
process between these two domains, and avoids the condi-
tional information leverage.

Benefiting from the stochastic property of Brownian
Bridge, the proposed method can generate samples with
high fidelity and diversity. Some examples are shown in
Figure 5.

4.3. Quantitative Comparison

In this section, we compare the proposed BBDM against
baselines with several popular quantitative metrics, includ-
ing FID, LPIPS and diversity measurement [2]. The numer-
ical results are shown in Tables 1 and 2. It is obvious that
the proposed BBDM method achieves the best FID perfor-
mance on all of the four tasks, and gains competitive LPIPS
scores.

4.4. Other Translation Tasks

In order to further verify the generalization of BBDM,
we conducted inpainting, colorization experiments on Vi-
sualGENOME [17] and face-to-label on CelebAMask-
HQ [18]. The experimental results in Figure 6 show that
BBDM can achieve comparable performance on various im-
age translation tasks. More examples are shown in supple-
mentary materials.

Figure 6. Face-to-label, colorization and inpainting results.

4.5. Ablation Study

We perform ablative experiments to verify the effective-
ness of several important designs in our framework.

Influence of the pre-trained latent space: To speed up
the training and inference process, the diffusion process of
the proposed BBDM is conducted in a pre-trained latent
space the same as the one used in LDM [28]. In order to
demonstrate the influence of different latent spaces to the
performance of the proposed method, we conduct an abla-
tion study by choosing different downsampling factors for
VQGAN model as done in LDM.

In this experiment, we compare our BBDM framework
and LDM with downsampling factors f ∈ {4, 8, 16} on
CelebAMask-HQ. For fair comparison, We implemented
BBDM based on the same network structure as LDM
and used the same VQGAN-f4, VQGAN-f8, VQGAN-f16
checkpoints of LDM. The quantitative metrics are shown in
Table 3. We can find that the proposed BBDM performs
robustly w.r.t. different levels of latent features. The la-
tent space learned with downsampling factor 16 leads to
more abstract feature, and as a result, the performance of
the LDM model drops dramatically especially with the FID
metric. To further verify the image-to-image translation
process during the diffusion of Brownian Bridge, we decode
the latent code at each time step in the inference processes
by the decoder of V QGANB . As shown in Figure 7, the in-
put image is smoothly and gradually translated to the target
domain within the Brownian Bridge.

Sampling Steps: To evaluate the influence of sampling
steps in the reverse diffusion process to the performance of
BBDM, we evaluate the performance with different num-
bers of sampling steps. In Table 4, we report the quantita-
tive scores of semantic-to-image task with models trained
on CelebAMask-HQ. We can find that when the number of
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model edges2shoes edges2handbags faces2comics
FID ↓ LPIPS ↓ Diversity ↑ FID ↓ LPIPS ↓ Diversity ↑ FID ↓ LPIPS ↓ Diversity ↑

Pixel2Pixel 36.339 0.183 0 32.994 0.273 0 49.964 0.282 0
CycleGAN 66.115 0.276 0 40.175 0.367 0 35.133 0.263 0

DRIT++ 53.373 0.498 23.552 43.675 0.411 30.169 28.875 0.285 18.047
CDE 21.189 0.196 14.980 28.575 0.313 24.158 33.983 0.259 19.532
LDM 13.020 0.173 10.999 24.251 0.307 22.705 24.280 0.205 9.032

BBDM(ours) 10.924 0.183 12.226 17.257 0.286 15.656 23.203 0.192 10.046

Table 2. Quantitative comparison on different image-to-image translation tasks.

Figure 7. Latent space visualization.

model FID ↓ LPIPS ↓ Diversity ↑
LDM-f4 22.816 0.371 20.304
LDM-f8 24.530 0.418 41.625

LDM-f16 56.404 0.416 22.112
BBDM-f4 21.350 0.370 29.859
BBDM-f8 21.966 0.392 38.978
BBDM-f16 22.061 0.391 40.120

Table 3. Quantitative scores of LDM and BBDM with different
downsampling factors.

sampling steps is relatively small (fewer than 200 steps),
the sample quality and diversity improve rapidly with the
increase of sampling steps. When the number of sampling
steps is relatively large (greater than 200 steps), the FID and
diversity metrics get better slightly and the LPIPS metric al-
most remains the same as the sampling steps are raised.

Sampling Steps FID ↓ LPIPS ↓ Diversity ↑
20 steps 33.409 0.362 17.587
50 steps 25.188 0.372 23.191
100 steps 23.503 0.378 26.157
200 steps 21.350 0.370 29.859

1000 steps 21.348 0.375 29.924

Table 4. Quantitative scores of different numbers of sampling
steps on CelebAMask-HQ.

The Influence of maximum variance of Brownian
Bridge. As shown in Eq.(5), we can control the diversity

of Brownian Bridge through scaling the maximum variance
of Brownian Bridge which can be achieved at t = T

2 by
a factor s. In this section, we conduct several experiments
taken on s ∈ {1, 2, 4} to investigate the influence of s to
the performance of our Brownian Bridge model. The quan-
titative metrics are shown in Table 5. With the increase of
s, the diversity grows but the quality and fidelity decrease.
This phenomenon is consistent with the observation in Sec-
tion 3.1 that if we use the original variance design of Brown-
ian Bridge, BBDM cannot generate reasonable samples due
to the extremely large maximum variance.

s FID ↓ LPIPS ↓ Diversity ↑
s = 0.5 22.627 0.387 27.791
s = 1 21.350 0.370 29.859
s = 2 23.278 0.380 37.063
s = 4 24.490 0.384 39.573

Table 5. Quantitative scores of different factor s on CelebAMask-
HQ.

5. Conclusion and Future Work
We proposed a new method for image-to-image trans-

lation based on Brownian Bridge. Compared with other
diffusion-based methods, the proposed BBDM framework
learns the translation between two domains directly through
the Brownian Bridge diffusion process rather than a con-
ditional generation process. We showed that our BBDM
framework can generate promising results on several dif-
ferent tasks. Nevertheless, there is still much room for im-
provement of BBDM, e.g., it would be interesting to ap-
ply our framework to various multi-modal tasks like text-
to-image.
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