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Abstract

Recently, whether and how cutting-edge Neuroscience
findings can inspire Artificial Intelligence (AI) confuse both
communities and draw much discussion. As one of the most
critical fields in AI, Computer Vision (CV) also pays much
attention to the discussion. To show our ideas and exper-
imental evidence to the discussion, we focus on one of the
most broadly researched topics both in Neuroscience and
CV fields, i.e., Face Recognition (FR). Neuroscience studies
show that face attributes are essential to the human face-
recognizing system. How the attributes contribute also be
explained by the Neuroscience community. Even though a
few CV works improved the FR performance with attribute
enhancement, none of them are inspired by the human face-
recognizing mechanism nor boosted performance signifi-
cantly. To show our idea experimentally, we model the
biological characteristics of the human face-recognizing
system with classical Convolutional Neural Network Op-
erators (CNN Ops) purposely. We name the proposed
Biologically-inspired Network as BioNet. Our BioNet con-
sists of two cascade sub-networks, i.e., the Visual Cor-
tex Network (VCN) and the Inferotemporal Cortex Net-
work (ICN). The VCN is modeled with a classical CNN
backbone. The proposed ICN comprises three biologically-
inspired modules, i.e., the Cortex Functional Compartmen-
talization, the Compartment Response Transform, and the
Response Intensity Modulation. The experiments prove
that: 1) The cutting-edge findings about the human face-
recognizing system can further boost the CNN-based FR
network. 2) With the biological mechanism, both identity-
related attributes (e.g., gender) and identity-unrelated at-
tributes (e.g., expression) can benefit the deep FR models.
Surprisingly, the identity-unrelated ones contribute even
more than the identity-related ones. 3) The proposed BioNet
significantly boosts state-of-the-art on standard FR bench-
mark datasets. For example, BioNet boosts IJB-B@1e-6
from 52.12% to 68.28% and MegaFace from 98.74% to
99.19%. The source code is released in1.

1https://github.com/pengyuLPY/BioNet.git

Figure 1. (A) Face recognition mechanism of human brains. (B)
Architecture of BioNet.

1. Introduction
It sparked much discussion in both communities that

Zador, Bengio et al. [54] claimed fundamental Neuro-
science research must be invested to accelerate AI progress.
Some researchers agree with Zador’s opinion. For example,
LeCun et al. [52] and Goodfellow et al. [10] proposed the
Convolutional Neural Network (CNN) inspired by past clas-
sical Neuroscience discoveries about the human visual cor-
tex. However, other researchers have some concerns, e.g.,
1) Except for the high-level and abstract senses from Neuro-
science, can their specific studies support the AI fields? 2)
Since CNN [9,10,26,52] was proposed many years ago, few
AI works have been inspired by recent Neuroscience find-
ings. It results in a lack of evidence to support that the latest
Neuroscience studies can continue to drive AI progress.

To show an idea and some experimental evidence to
this discussion, we focus on one of the most broadly re-
searched topics in both fields, i.e., Face Recognition (FR).
The latest Neuroscience studies [1, 2, 7, 38, 51] found that
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besides the visual cortex, the inferotemporal cortex plays a
vital role in the human face-recognizing system. Because
of the following three biological characteristics, the infer-
otemporal cortex characterizes the complicated relationship
between attributes and makes attributes contribute to FR.
1) The inferotemporal cortex is functionally compartmen-
talized by the face stimuli (i.e., identity, attributes) [1, 7].
2) The responses of the functional compartments are trans-
formed into the successor neurons for processing com-
plex tasks [38], e.g., FR. 3) The intensities of the func-
tional compartment are variant in the inferotemporal cor-
tex [2], demonstrating that the attributes are not equally
essential to the human face-recognizing system. In the
AI field, some CNN-based FR works proposed effective
loss functions [4, 18, 21, 33, 40, 45] and others designed
task-oriented face recognition structures [22,23,27–29,42].
Because of these excellent works, FR in AI achieved big
progress. Although a few AI FR works [14, 19, 43] boosted
the performance with attribute enhancement, none of them
are inspired by the human face-recognizing mechanism
nor boosted performance significantly. We experimentally
prove that the deep FR models do not capture the biological
characteristics of the human face-recognizing system intro-
duced above. We suspect this is the factor limiting their
performance improvement.

To address the problem and experimentally support the
opinion of Zador, Bengio et al. [54], we purposely model
the biological characteristics of the human face-recognizing
system with classical CNN Ops. We name the proposed
Biologically-inspired Network as BioNet. The proposed
BioNet is constituted by two cascade sub-networks, i.e.,
Visual Cortex Network (VCN) and Inferotemporal Cor-
tex Network (ICN), as Fig.1 shows. The VCN is modeled
with a CNN backbone (e.g., CASIA-Net [53], ResNet [12]),
which follows the common suggestions in [10, 52]. The
proposed ICN is composed of three biologically-inspired
modules, i.e. the Cortex Functional Compartmentalization
(CFC), the Compartment Response Transform (CRT), and
the Response Intensity Modulation (RIM). CFC is based
on the attention mechanism [8, 15, 44] to functionally com-
partmentalize the feature maps with face stimuli (i.e. iden-
tity and attributes). CRT is implemented by Multilayer
Perception (MLP) [36] to transform intra-compartment re-
sponses to successor neurons for processing complex FR
task. RIM follows the ensemble mechanism [55] to fuse
inter-compartment features via adaptive weights to achieve
the final FR representation. The proposed modules follow
the human face-recognizing mechanism and empower ICN
to characterize the complicated relationship between stim-
uli. All of them are indispensable in BioNet.

With such a Biologically-inspired Network, we achieve
better attribute-enhanced deep FR models than ever. Fur-
thermore, we conduct careful analyses of the proposed

modules and the impacts of attributes. We also compare
the BioNet to the attention, multi-task learning, and ensem-
ble mechanisms, verifying the advantage of our proposals.
We think the experiments in this paper can support the con-
clusions:

1. To the best of our knowledge, after CNN was pro-
posed, our BioNet is the first network inspired by the
latest Neuroscience studies. It provides experimental
evidence that the latest Neuroscience studies can fur-
ther boost the CNN-based FR network and continue to
drive AI progress.

2. With the Neuroscience mechanism, both identity-
related attributes (e.g., gender) and identity-unrelated
attributes (e.g., expression) can benefit the deep FR
models. Surprisingly, we find the identity-unrelated
ones contribute even more than the identity-related
ones. Besides, we also propose an online latent at-
tributes mining method and prove that the latent at-
tributes contribute to the FR task, too.

3. Without bells and whistles, Our BioNet consistently
and significantly boosts state-of-the-art of FR models
on standard FR benchmark datasets, e.g., IJB-A [24],
IJB-B [46], IJB-C [46], and MegaFace [20].

2. Related Work
Zador, Bengio, et al. [54] claimed that Neuroscience had

been a key driver and source of inspiration for improve-
ments in AI, particularly those made AI more proficient
in areas that humans and other animals, such as vision,
reward-based learning, interacting with the physical world,
and language. However, few recent AI studies support their
opinion directly. Therefore, some researchers oppose their
claim, especially in the CV community. The main questions
for those who disagree are: 1) Except for some high-level
and abstract senses from Neuroscience, can their specific
studies support the CV fields? 2) Since CNN was proposed
long ago [9,26,52], is there any evidence supporting that the
Neuroscience studies released in recent years can continue
to drive AI progress? In this paper, we focus on the most
broadly studied topic both in CV and Neuroscience com-
munities, i.e., Face Recognition, and attempt to provide evi-
dence to support Zador’s opinion experimentally by propos-
ing a Biologically-inspired Face Recognition Network.

Face-Recognizing System in Neuroscience. The hu-
man face-recognizing system is a topic achieving big
progress in Neuroscience recently [1, 2, 7, 38, 51]. Con-
way et al. [2] summarized that besides the visual cortex,
the inferotemporal cortex plays a vital role in the human
brain. Neuroscience studies also explained how the infer-
otemporal cortex characterizes the complicated relationship
between attributes and makes the attributes contribute to
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FR. For example, Freiwald et al. [7] and Chang et al. [1]
discovered that the inferotemporal cortex is functionally
compartmentalized by face stimuli, e.g., identity and at-
tributes. Moreover, even the compartments stimulated by
the identity-unrelated attributes also positively contribute to
the face-recognizing system. Conway et al. [2] found the
intensities of the functional compartment are variant in the
inferotemporal cortex. It demonstrates that the attributes are
not equally essential to the human face-recognizing system.
Pitcher et al. [38] concluded that the human brain responses
are projected into the deep successor neurons to process
complex visual tasks (e.g., FR). Although CNN imitated the
human primary visual cortex [9,10,52] a long time ago, few
CV works are inspired by the latest Neuroscience.

Face Recognition with CNN. FR is a typical topic in the
CV field. Some CNN-based FR works proposed effective
loss functions [4,18,21,33,40,45], e.g., AdaFace [21], Mag-
Face [33], and CurricularFace [18]. Others designed task-
oriented face recognition structures [22,23,27–29,42], e.g.,
GroupFace [22] and BroadFace [23]. Because of these ex-
cellent works, deep FR in the AI field achieved big progress.
Although a few AI FR works [14,19,25,30,43] boosted their
performance with attribute enhancement, they only em-
ployed an inferior backbone and evaluated their proposals in
small-scale datasets like LFW [16]. The previous attribute-
enhanced FR models are not validated on large-scale chal-
lenging evaluation datasets (e.g., IJB-B [46], IJB-C [32],
and MegaFace [20]). Moreover, NONE of them are inspired
by the human face-recognizing system. For example, Ku-
mar et al. [25] and Jadhav et al. [19] enhanced the tradi-
tional no-deep face recognition paradigm (e.g., SVM [17]
and one-shot learning [48]) with attributes.Hu et al. [14]
used a fusion matrix to fuse the features from the deep FR
network and an individual attribute classification network
that are trained separately. Their work did not link to Neu-
roscience, nor can be trained end-to-end. Taherkhani et al.
[43] directly fused the feature for attribute classification and
the feature after global average pooling to recognize faces.
They did not consider the factor that the human inferotem-
poral cortex is functionally compartmentalized by attributes
with variant intensities. Lin et al. [30] enhanced Person Re-
identification with an attribute re-weighting module. How-
ever, they ignore the functional compartmentalization and
projection to successor neurons for the complex task in the
human face-recognizing system. We experimentally prove
the deep FR models do not capture the functional character-
istics of the human face-recognizing system introduced be-
fore. We suspect this is the factor limiting their performance
improvement. There is no previous work that links deep FR
with Neuroscience and provides evidence to support that the
human face-recognizing system can inspire deep FR com-
munity.

3. Method: BioNet

In this section, we introduce our proposed BioNet. The
BioNet integrates CNN-based models with cutting-edge
Neuroscience studies. It consists of two cascade networks,
i.e., Visual Cortex Network and Inferotemporal Cortex Net-
work, as Fig.1 illustrates.

Visual Cortex Network (VCN) is modeled with the
CNN backbone directly because LeCun et al. [52] and
Goodfellow et al. [10] theoretically demonstrated that CNN
imitates the human visual cortex well.

Inferotemporal Cortex Network (ICN) is difficult to
be modeled with a vanilla CNN structure, which is proved
in Sec.5.3. To this end, we propose three interdepend
biologically-inspired modules, i.e., CFC, CRT, and RIM, to
constitute ICN based on the three essential biological char-
acteristics of the human face-recognizing system. The pro-
posed modules are for:

1) CFC in Sec.3.1 is based on the attention mecha-
nism [8, 15, 44] to compartmentalize the feature maps of
VCN by face stimuli.

2) CRT in Sec.3.2 is implemented by MLP [36] to trans-
form intra-compartment features to successor neurons and
makes them contribute to FR directly.

3) RIM introduced in Sec.3.3 borrows lessons from the
ensemble mechanism [55] to fuse the inter-compartment
features based on the adaptive weights to achieve final iden-
tification representations.

Experiments demonstrate that the proposed modules
capture the biological characteristics of the human face-
recognizing system and characterize the complicated rela-
tionship of attributes. By integrating cutting-edge Neuro-
science studies, our BioNet significantly boosts deep FR
performance. It experimentally supports the idea that the
latest specific Neuroscience findings can drive CNN-based
FR progress.

3.1. Cortex Functional Compartmentalization

Neuroscientists, e.g., Freiwald et al. [7] and Chang et
al. [1], found that the inferotemporal cortex is function-
ally compartmentalized by stimuli (i.e., identity, attributes)
They also discovered that the compartments both stimulated
by identity-related and identity-unrelated stimuli contribute
to the face-recognizing system. To model this biological
characteristic, we propose the Cortex Functional Compart-
mentalization (CFC) module to compartmentalize the fea-
ture maps of VCN by enabling the compartments to clas-
sify the stimuli precisely. Specifically, we borrow lessons
from the attention mechanism [8, 15, 44] and tune it to a
multi-branch supervised-attention mechanism for CFC im-
plementation. Each branch corresponds to a specific stim-
ulus and is supervised by the stimulus classification loss
function. The 1st stimulus is identity, and the others are
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Figure 2. Architecture of the Inferotemporal Cortex Network. It consists of CFC, CRT, and RIM modules.

face attributes. We illustrate CFC in the orange region of
Fig.2 and formulate it in the following:

Πcfci(x) = FCi(x · SAi(x)), i ∈ {1, ...,K} (1)

x is the output of VCN and the input of ICN. SAi(x) is the
ith supervised-attention branch. FCi is a fully-connected
layer. Πcfci(x) ∈ RDi×1 is the output and the ith func-
tional compartment of CFC. Di is the feature length. K is
the number of stimuli.

Tab.3 demonstrates that CFC successfully functionally
compartmentalizes the feature maps in BioNet. Otherwise,
the compartments would not classify the attributes precisely
without any FR performance degradation.

3.2. Compartment Response Transform

Given the functional compartments from CFC, one may
directly use them for FR. However, we find in Tab.4 that
the functional compartments are helpless or even harmful
to FR if used directly. We think it is because the compart-
ments concentrate on attribute classification, which limits
their contribution to FR. For improving the FR performance
with the latest Neuroscience studies, we model more human
biological characteristics to address the problem.

In Neuroscience studies, Pitcher et al. [38] found that the
compartment responses are transformed into successor neu-
rons for processing complex tasks, e.g., FR. We propose
the Compartment Response Transform (CRT) to model
this biological characteristic. CRT transforms the intra-
compartment features to the successor hyper-distribution
space and makes them contribute FR directly. In this pa-
per, we implement CRT with a two-layer Multilayer Percep-
tion [36], as the gray region in Fig.2 shows. Its formulation
is in the following:

Πcrti(x) = FC1
i (FC2

i (Πcfci(x)), i ∈ {2, ...,K}) (2)

Πcrti(x) ∈ RD1×1 is the output of the ith CRT. D1 is the
length of identification representation. Πcfc1(x) is opti-
mized for FR by design. Therefore, we do not apply the
CRT on it, i.e. Πcrt1(x) = Πcfc1(x).

The experiments in Tab.4 prove that our implementation
is simple yet surprisingly effective. The table also proves
CRT is essential to BioNet.

3.3. Response Intensity Modulation

Neuroscientists, e.g., Conway et al. [2], found that the in-
tensities of the functional compartment are variant, demon-
strating that the attributes do not equally contribute to FR
in the human face-recognizing system. We propose the Re-
sponse Intensity Modulation (RIM) to model the biological
characteristic. RIM modulates the intensities of Πcrt(x)
and fuses inter-compartment responses with the adaptive
weights. To estimate the weights across compartments, we
are inspired by the ensemble mechanism [55] and concate-
nate Πcrti(x), i ∈ {2, 3, ...,K} as the input of RIM. With
the global concatenating input, RIM is employed via a two-
layer Multilayer Perception as Zhang et al. [55] did. We
illustrate RIM in the purple region of Fig.2 and formulate it
as follows:

Πrim(x) = FC1(FC2(Concat(Πcrt2(x), , ...,ΠcrtK (x))))
(3)

Πrim(x)i ∈ R is the ith output. Πrim(x)1 corresponds to
the identity stimulus, which is constantly set to K.

Fig.3 shows that the impact scores of attributes are vari-
ant for FR task in our BioNet, which proves that different
attributes contribute differently but positively to FR.

3.4. Summary of Inferotemporal Cortex Network

For building the essential human face-recognizing mech-
anisms with CNN OPs, we input the feature maps of VCN
to the CFC module to compartmentalize feature maps via
stimuli. The 1st stimulus is identity, and the others are at-
tributes. Πcfci(x) is used to classify the ith attribute that
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makes CFC work as our multi-branch supervised-attention
mechanism. Simultaneously, Πcfci(x) is also the input of
CRT to get a transformed feature which directly contributes
to FR. The final FR representation ,i.e., feat id, is achieved
by ensembling Πcrti(x) with the adaptive outputs of RIM
(i.e. Πrim(x)i), as illustrated in the following Equation:

feat id = Πicn(x) =
1

K

K∑
i=1

Πrim(x)i ×Πcrti(x) (4)

Although we borrow lessons from attention, multi-task
learning, and ensemble mechanism, Tab.3 proves that the
straightforward improvements with the borrowed mecha-
nisms can not capture all three biological characteristics of
the human brain as BioNet does. Nor can they boost FR
performance as significantly as BioNet. Tab.4 shows that
the proposed three biologically-inspired modules are indis-
pensable in ICN.

4. Observed and Latent Attributes Annotation
The face attributes annotations are required in our train-

ing pipeline. We present two solutions to automatically an-
notate the observed or the latent attributes:

Annotating observed attributes offline. We define ob-
jective attributes such as gender, expression, and make-up
as the observed attributes. In the paper, we train an attribute
classification network to annotate them automatically.

Annotating latent attributes online. Kim et al. [22]
proposed a method to mine the latent groups online. In-
spired by their work, we use their group ID to annotate the
attributes in our pipeline online. We name the group IDs
as latent attributes. For the details on mining latent groups,
please refer to their paper [22].

Tab.5 and Tab.6 show that each annotation solution has
its advantages. The observed attributes can perform better
than the latent ones if the attribute number is equal. It is
almost cost-free to increase the number of latent attributes,
which makes it easy to improve its performance by increas-
ing the number.

5. Experiments
In this section, we prove the effectiveness of BioNet with

experiments. Firstly, we compare the FR performance and
computational efficiency of our BioNet with the state-of-
the-art. Secondly, we show that the vanilla CNN-based FR
model and its straightforward improvements do not capture
the biological characteristics of the human face-recognizing
system. It is quite a possible reason that leads the CNN-
based FR difficulty in boosting its performance with at-
tribute knowledge. Thirdly, we study the influence of every
proposed module in detail. Fourthly, we carefully analyze
the impacts of the latent/observed attributes. Finally, we

prove our BioNet is adapted to different CNN backbones,
e.g. ResNet-101 and CASIA-Net.

5.1. Datasets and Implementation Details

Training Dataset. We train FR models on the MS-
Celeb-1M dataset [11]. We follow the setting in [28] and
clean the dataset automatically. The cleaned dataset con-
tains 84,284 identities and 4.8 million images.

Evaluation Dataset. We evaluate our BioNet on four
of the most challenging datasets in the main paper, i.e., IJB-
A [24], IJB-B [46], IJB-C [32], and MegaFace [20] datasets.
Additional results on LFW [16], CFP [41], CALFW [57],
CPLFW [56], SLLFW [5], and YTF [47] are reported in
the supplementary materials because of paper length limita-
tion. IJB-A contains 5,397 images and 20,412 video frames
from 500 individuals. IJB-B extends the IJB-A and con-
tains 1,845 subjects with 21.8K still images and 55K frames
from 7,011 videos. IJB-C contains 140,740 face images of
3,531 subjects. We report their True Match Rates (TMR)
in the paper. Their Rank-K accuracy rates are reported in
the supplementary material. MegaFace includes the probe
and gallery set. The probe set [35] contains 100,000 images
of 530 identities, and the gallery set consists of 1,027,060
images from 690,572 subjects. We report the performance
on its cleaned dataset [3].

Attribute Annotations. With the two presented solu-
tions in Sec.4, we annotated both the observed attributes and
latent ones on the MS-Celeb-1M automatically. To annotate
the observed attributes offline, we train a CASIA-Net [53]
on Celeb-A [31] as the attributes classifier. Because the
classifier is only for generating pseudo attribute annota-
tions, we train it with a straightforward strategy as [31] did.
The manual annotations noise [49] and unbalanced distri-
butions among attributes [39] in the Celeb-A dataset are
not the scopes of this paper. The accuracy of our attributes
classifier is reported on the Baseline:FA row in Tab.3. Al-
though we conduct an experiment with all forty Celeb-A
attributes in Tab.6, we only randomly select four attributes
from the forty in other experiments for convenient analysis.
Namely, there are five stimuli in most of our experiments,
including identity, male (gender), mouth-slightly-open (ex-
pression), smiling (expression), and mustache (make-up).
The four selected attributes cover the identity-related at-
tribute (i.e., male) and identity-unrelated attributes (i.e., ex-
pression, make-up). The latent attributes are mined with the
proposal in [22].

Implementation details. We follow [28] to implement
our experiments. The proposed BioNet is trained end-
to-end from scratch. The CASIA-Net [53] and ResNet-
101 [12] respectively implement the Visual Cortex Net-
work. CASIA-Net randomly samples 96×96 regions from
the aligned 100×100 face images for data augmentation.
ResNet-101 resizes the face images to 224×224. Both

10348



IJB-A IJB-B IJB-C MegaFace
@1e-4 @1e-4 @1e-5 @1e-6 @1e-4 @1e-5 @1e-6 rank1@1e6 verify@1e-6

APRN [27] 94.35 - - - - - - 98.59 -
AdaFace [21] - 95.84 - - 97.09 - - - -

PASS [6] - - - - 94.60 91.90 - - -
ArcFace [4] - 94.25 89.33 38.28 96.03 93.94 89.06 98.35 98.48

MagFace [33] - 94.51 90.24 42.32 95.97 94.08 90.24 - -
BroadFace [23] - 94.61 90.81 46.53 96.03 94.11 85.96 98.70 98.95

CurricularFace [18] - 95.83 89.02 42.26 96.20 93.85 87.46 98.71 98.64
3D-BERL [13] - 94.98 90.60 45.77 96.20 94.30 88.45 98.63 98.64

GroupFace(#group=32) [22] - 94.93 91.24 52.12 96.26 94.53 89.28 98.74 98.79
Our BioNet: Latent (#attr=4) 97.27 96.13 90.66 66.09 97.19 93.89 86.38 99.03 99.80

Our BioNet: Observed (#attr=4) 97.51 96.13 92.18 68.28 97.32 94.57 88.02 99.19 99.63

Table 1. Comparison with State-of-the-arts. The bold font is the best performance.

backbones linearly scale the image intensities to the range
[−1, 1]. All the feature lengths are 512, i.e., Di = 512, i ∈
{1, 2, ...,K}. We adopt the SGD optimizer with the mo-
mentum of 0.9 and weight decay of 0.0005. The learning
rate is 0.01 and decays ten times at the 12th, 14th, and 15th

epochs. The total training epoch is set as 16. The FR loss
function is the ArcFace loss function [4], and its loss weight
is 1. The attributes classification loss function is the Soft-
max loss function [31], and the sum of attributes classifica-
tion loss weights is 1, i.e., each of them is 1

K−1 . The net-
works are trained with the Pytorch [37] on eight NVIDIA
V100 GPUs.

5.2. Comparison with State-of-the-arts.

We implement the ResNet-101 to the Visual Cortex
Network and compare our BioNet with the latest state-
of-the-arts, e.g., AdaFace [21], MagFace [33], Curricular-
Face [18], and GroupFace [22], in Tab.1.The performances
of previous attribute-enhanced methods [14, 19, 43] were
much inferior to state-of-the-art and were only evaluated in
small-scale datasets like LFW [16]. Therefore, we do not
compare them in the main paper.

Recognition Performance Analysis. Tab.1 shows that
our BioNet yields the performance of state-of-the-arts sig-
nificantly. For example, The performance on IJB-B@1e-6
is improved to 68.28% from 52.12% (GroupFace [22]).Fur-
thermore, it shows BioNet boosted the performance of
GroupFace even much more significantly than GroupFace
boosted ArcFace [4]. For example, BioNet improved
16.16%/0.45% to GroupFace on IJB-B@1e-6/MegaFace-
rank1, while GroupFace only improved 13.84%/0.39% to
ArcFace. The comparison to 3D-BERL [13], Curricular-
Face [18], etc. can get the same conclusion.

Computational Costs Analysis. The GroupFace [22]
is the most related work to ours. Tab.1 shows that BioNet
with four attributes has already outperformed the Group-
Face [22] with thirty-two groups, which demonstrates that
BioNet is more computationally efficient than GroupFace.
To prove the claim, we show their Floating Point Opera-

tions (FLOPs) [34], the number of parameters (Param), and
latency per image in NVIDIA V100 in Tab.2. The table
shows that BioNet contains almost the same FLOPs, only
66% latency, and even half parameters to GroupFace.

FLOPs Ratio Latency Ratio Param Ratio
GroupFace 7.70 G 100% 46.75 ms 100% 211.7 M 100%
Our BioNet 8.20 G 105% 31.04 ms 66% 116.2 M 55%

Table 2. Analysis of computational costs.

5.3. Studies about the Vanilla FR Model and Its
Straightforward Improvement

For encouraging researchers to nourish the CV field with
the latest Neuroscience studies, we purposely model the
functional characteristics of the human face-recognizing
system with classical CNN Ops. Therefore, we borrow
lessons from the attention mechanism, multi-task mecha-
nism, and ensemble mechanism. In Tab.3, we experimen-
tally prove that the straightforward improvements with the
borrowed mechanisms can not capture the biological char-
acteristics of the human brain and can not boost FR perfor-
mance as significantly as BioNet.

Baseline Implementation. A CASIA-Net was trained
on the MS-Celeb-1M for FR. And then, we freeze all the
learnable parameters and train linear classifiers with the fea-
tures extracted from feat id/layer4 to classify the selected
attributes on Celeb-A. Its performance is shown in the Base-
line:FR. Besides, another CASIA-Net is trained end-to-end
from scratch on Celeb-A as a Face Attribute (FA) classifi-
cation network and resulted in Baseline:FA.

Straightforward Improvement Implementation. 1)
Multi-task learning mechanism: Both Multitask I and Mul-
titask II are trained with the multi-task learning mechanism,
which import the supervised FA classification tasks. The
shared parameters in Multitask I are from the start to the last
representation layer (i.e., feat id). The ones shared in Multi-
task II are to the last convolutional layer (i.e., layer4). 2) At-
tention mechanism: Self-Attention employs a self-attention

10349



IJB-A IJB-B IJB-C MegaFace Feat Attr4
@1e-4 @1e-4 @1e-4 rank1@1e6 From acc

Baseline: FA - - - - - 95.29

CASIA-Net FR 87.39 84.16 87.40 87.01
feat id 70.83
layer4 87.60

Multitask 80.96 63.02 65,47 79.67 feat id 93.04I
Multitask 87.34 84.05 87.20 86.42 feat attrs 94.92II

Straight- Self- 88.00 84.12 87.15 88.43 feat id 69.01
forward Attention layer4 92.33

Supervised- 88.10 84.50 87.20 87.94 feat attrs 95.50Improve- Attention
ment Avg- 86.93 84.29 87.17 86.92 feat attrs 95.46Ensemble

Adaptive- 88.79 84.58 87.91 87.65 feat attrs 95.30Ensemble
Ours: BioNet 89.31 85.31 88.66 90.37 feat attrs 95.54

Table 3. Studies about the vanilla FR model and its straightforward
improvement. The feat id is the feature for the identification, the
feat attrs are the ones for the attribute classifiers, and the layer4 is
the feature obtained by the last convolutional layer.

module without attribute supervision to layer4. Supervised-
Attention employs a multi-branch supervised-attention with
attributes supervision. It is similar to our CFC module, but
Supervised-Attention does not fuse the features to recog-
nize faces. 3) Ensemble mechanism: A single CFC module
works as a straightforward Avg-Ensemble mechanism be-
cause it averages features from multiple tasks to face recog-
nition. Our ICN without CRT works as a straightforward
Adaptive-Ensemble mechanism because RIM adaptive en-
semble features from CFC. The details about all settings are
illustrated in supplementary material.

Based on Tab.3, we observe:
1) The vanilla FR model and its straightforward improve-

ments with the borrowed mechanisms can not boost FR per-
formance as significantly as BioNet.

2) The vanilla deep FR model and its straightforward im-
provements do not capture the biological characteristics of
the human inferotemporal cortex. The human inferotem-
poral cortex is functionally compartmentalized by stimuli,
and all compartments contribute to FR performance. How-
ever, Baseline:FR works poorly in the face attributes clas-
sification task (drops almost 10% accuracy rate), and Mul-
titask I,II decrease the FR performance. Self-Attention and
Supervised-Attention seem to work well on FR and FA tasks
simultaneously, but their improvement of FR is marginal.
The performance of self-attention mechanism is compara-
ble to the supervised-attention mechanism. Therefore, we
infer that their attribute knowledge does not contribute to
FR. Avg-Ensemble and Adaptive-Ensemble can get the same
conclusions as Self-Attention and Supervised-Attention.

3) Our BioNet boosts the performance of FR with ad-
ditional attribute knowledge and achieves the best perfor-
mance on FR and FA tasks. The table also shows that
BioNet functionally compartmentalizes the feature maps
(otherwise, it could not classify attributes precisely) and

Module CFC CRT RIM IJB-A IJB-B IJB-C MegaFace
@1e-4 @1e-4 @1e-5 @1e-4 @1e-5 rank1@1e6

Baseline: CASIA-Net 87.39 84.16 55.30 87.40 71.75 87.01

Module
✓ 86.93 84.29 51.77 87.17 71.24 86.92

Analysis
✓ ✓ 87.97 84.93 53.04 87.66 70.68 88.42
✓ ✓ 88.79 84.58 58.15 87.91 74.39 87.65

✓ ✓ 89.08 85.05 58.15 88.12 75.02 90.00
BioNet ✓ ✓ ✓ 89.31 85.31 58.33 88.66 75.03 90.37

Baseline: ResNet-101 96.83 95.93 85.45 97.18 91.98 98.65

Module
✓ 97.10 95.77 86.64 97.04 91.83 98.83

Analysis
✓ ✓ 97.42 96.11 86.36 97.21 91.96 99.06
✓ ✓ 97.35 96.05 89.78 97.29 93.14 98.89

✓ ✓ 97.46 96.12 90.14 97.32 93.52 98.89
BioNet ✓ ✓ ✓ 97.51 96.13 92.18 97.32 94.57 99.19

Table 4. Ablation studies about the proposed modules.

makes the attribute compartments contribute to FR (other-
wise, it can not be superior to Baseline and Straightforward
Improvement significantly).

The same conclusions also hold on the powerful back-
bone, i.e., ResNet-101, in the supplementary material.

5.4. Ablation Studies about the Proposed Modules

We do ablation studies with four observed attributes to
analyze the proposed modules. As Tab.4 presents:

1) BioNet boosts the Baseline on all evaluation datasets
significantly. For example, the performance of ResNet-101
on MegaFace is improved to 99.19% from 98.65%.

2) The first row in Module Analysis shows that the in-
dividual CFC seems helpless or even harmful to FR. How-
ever, CFC conducts functional compartmentalization and is
the precondition of the other two modules. Removing it
will limit the performance improvement of BioNet, as the
last row in Module Analysis shows.

3) An improvement degradation is observed when we re-
move RIM on the second row of Module Analysis. Balanc-
ing the impacts of attribute compartments for FR is neces-
sary.

4) Removing CRT leads to improvement degradation on
FR, as the third row of Module Analysis shows. It is impor-
tant to transform the attribute features before applying them
to face recognition.

Overall, all three proposed modules are indispensable.

5.5. Ablation Studies about the Attributes

In this sub-section, we first analyze the influence of ob-
served attributes and latent attributes. Then, the impacts of
observed attribute categories are explored. Finally, we ana-
lyze the influence of attribute number.

Influence of observed attributes and latent attributes
is shown in Tab.5. Both the observed attribute number and
the latent attribute number are equal to four. To analyze
the necessity of attribute annotations, we also implement a
BioNet− without the attribute stimuli, i.e., CFC in BioNet−

is not supervised by attributes annotations.
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Attr Type IJB-A IJB-B IJB-C MegaFace
@1e-4 @1e-4 @1e-5 @1e-4 @1e-5 rank1@1e6

Baseline: CASIA-Net 87.39 84.16 55.30 87.40 71.75 87.01
BioNet− None 88.77 85.08 45.15 88.12 63.63 89.69

BioNet Latent 88.30 86.00 55.32 88.60 73.47 90.32
Observed 89.31 85.31 58.33 88.66 75.03 90.37

Baseline: ResNet-101 96.83 95.93 85.45 97.18 91.98 98.65
BioNet− None 96.82 95.96 88.05 97.12 92.56 99.02

BioNet Latent 97.27 96.13 90.66 97.19 93.89 99.03
Observed 97.51 96.13 92.18 97.32 94.57 99.19

Table 5. Analysis of the observed and latent attributes.

Figure 3. Impacts of the observed attribute categories.

Tab.5 shows that both observed and latent attributes im-
prove performance. Besides, the improvement of observed
attributes is more significant than the latent ones, which
demonstrates that the observed attributes are superior to the
latent ones if their numbers are equal. Furthermore, the
improvement of BioNet− is NOT as significant as BioNet,
which proves the attributes stimuli are essential.

Impacts of the observed attribute categories are illus-
trated in Fig.3 via impact score [50]. In our experiments,
the impact score of ith attribute is the performance changes
when Πcrti(x) is removed in the inference phase, i.e.,
impact scorei = Accuracy without attri − Accuracy.
A negative score means removing the attribute would lead
negative impact. The absolute value is the intensity of im-
pact. For the details of impact score, please refer to [50].

In Fig.3, we find that removing any attributes will de-
crease FR performance. It proves that all the attribute
compartments contribute to FR. Furthermore, we surpris-
ingly find that the most important attribute for FR is not
the identity-related attribute (i.e., male) but the identity-
unrelated one (i.e., smiling). For example, employing the
ResNet101 to VCN, the performance on the IJB-C@1e-5
dataset decreases by 4.17% when the smiling is removed,
but the impact score of male is −2.15%. We think it is be-
cause parts of knowledge from the compartments that cor-
respond to the identity-related attributes have already been
contained in the identity compartments. The negative im-
pact is limited when removing duplicate knowledge.

Influence of the attribute number (K) is explored in
Tab.6. We study the influence of attributes number via la-
tent attributes because they can vanish the interference of
the attribute category. Besides, we also employ the selected
four and all forty observed attributes as comparisons.

#attr IJB-A IJB-B IJB-C MegaFace
@1e-4 @1e-4 @1e-5 @1e-4 @1e-5 rank1@1e6

Baseline: CASIA-Net 0 87.39 84.16 55.30 87.40 71.75 87.01

BioNet: Observed 4 89.31 85.31 58.33 88.66 75.03 90.37
40 90.52 87.75 69.46 89.95 80.29 94.92

BioNet: Latent

4 88.30 86.00 55.32 88.60 73.47 90.32
10 88.72 86.11 63.63 88.84 77.53 91.39
16 88.36 86.58 65.27 89.02 77.53 91.91
22 89.06 86.45 65.68 89.90 78.37 92.23
28 89.01 87.20 66.72 89.31 77.91 92.32
34 90.16 87.00 65.28 89.51 78.40 92.54
40 90.34 87.74 65.79 89.25 78.39 92.80

Table 6. Influence of attribute number (K).

Tab.6 shows that the performance is improved in every
increased step of attribute number.The experiments whose
VCN is ResNet-101 in the supplementary material also sup-
port the conclusion.

5.6. Ablation Studies about CNN Backbones

Tab.5 shows our BioNet is adapted to different back-
bones, e.g., CASIA-Net and ResNet-101. Besides, we ob-
serve that ResNet-101 is improved more significantly by our
BioNet than CASIA-Net. For example, the performance of
ResNet-101 on IJB-C@1e-5 is improved to 94.57% from
91.98%, while the CAISA-Net is from 71.75% to 75.03%.
We infer the bottleneck that limits performance improve-
ment is the inferiority of CASIA-Net.

6. Conclusion and Future Work
In this paper, we experimentally support the opinion that

the latest Neuroscience can inspire CV progress. Therefore,
we purposely model the functional characteristics of the hu-
man face-recognizing system with classical CNN Ops. The
proposed BioNet consistently and significantly boosts state-
of-the-art face recognition methods. Some observations are
also discovered. For example, the observed attributes con-
tribute more to FR than the latent attributes, and identity-
unrelated attributes (e.g., smiling) contribute more than the
identity-related ones (e.g., male). We believe more inter-
esting discoveries can be made by integrating Neuroscience
with CV development.

While these initial results on FR are encouraging, many
challenges remain. One is applying Neuroscience studies
to other CV tasks, e.g., image classification, object detec-
tion, etc. Another challenge is integrating Neuroscience
into other deep paradigms, e.g., Transformer [44]. In fact,
BioNet and Transformer share some similar ideas. For ex-
ample, they all borrow lessons from the attention mecha-
nism and project responses into successor neurons via CRT
or FFN [44]. It could be a potential and exciting topic to
improve Transformer with Neuroscience studies.
Potential negative impact. The abuse on military applica-
tions and the potential privacy issues are two major nega-
tive impacts of our BioNet. Therefore, careful evaluations
should be conducted before applying it in real applications.
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