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Abstract

Inspired by DETR variants, query-based end-to-end in-
stance segmentation (QEIS) methods have recently outper-
formed CNN-based models on large-scale datasets. Yet
they would lose efficacy when only a small amount of
training data is available since it’s hard for the crucial
queries/kernels to learn localization and shape priors. To
this end, this work offers a novel unsupervised pre-training
solution for low-data regimes. Inspired by the recent
success of the Prompting technique, we introduce a new
pre-training method that boosts QEIS models by giving
Saliency Prompt for queries/kernels. Our method contains
three parts: 1) Saliency Masks Proposal is responsible
for generating pseudo masks from unlabeled images based
on the saliency mechanism. 2) Prompt-Kernel Matching
transfers pseudo masks into prompts and injects the corre-
sponding localization and shape priors to the best-matched
kernels. 3) Kernel Supervision is applied to supply super-
vision at the kernel level for robust learning. From a practi-
cal perspective, our pre-training method helps QEIS models
achieve a similar convergence speed and comparable per-
formance with CNN-based models in low-data regimes. Ex-
perimental results show that our method significantly boosts
several QEIS models on three datasets.1

1. Introduction
Modern CNN models address the instance segmentation

task in an indirect way, by defining the localization prob-
lem on a large set of proposals [16], window centers [6,10],
or location-based masks [30, 33, 35]. A typical example
is Mask-RCNN [16], which generates candidate bound-
ing boxes using a well-designed region proposal network.
Although this paradigm makes localization learning eas-

*Corresponding author.
1Code: https://github.com/lifuguan/saliency prompt
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Figure 1. Performance comparison between K-Net and Mask-
RCNN. K-Net can outperform Mask-RCNN on large-scale
datasets (COCO-full). However, on small datasets (the right
three), it can not perform as well as Mask-RCNN since it’s hard
to learn localization and shape priors. Our proposed unsupervised
pre-training method based on saliency prompt not only boosts the
vanilla K-Net significantly, but also helps to achieve comparable
performance compared with Mask-RCNN.

ily optimized, it still relies on the manually-designed non-
maximum suppression (NMS) as post-processing to remove
duplicated predictions.

Based on a state-of-the-art object detection model,
DETR [27], a few Query-based End-to-end Instance Seg-
mentation (QEIS) models [7, 8, 15, 18, 32, 41] have been
proposed to perform instance segmentation in a new way.
Unlike CNN-based methods which usually require a large
set of proposals, QEIS models use dynamic queries/kernels
to automatically encode object localization knowledge with
different locations and object shapes. This design effec-
tively eliminates hand-crafted anchors and post-processing
like NMS. However, due to the intrinsic dynamic attribute,
the kernels are forced to learn general object spatial dis-
tribution and shape priors in a data-driven manner so that
they can fit any input image. This makes QEIS models re-
quire a much larger amount of training data and a much
longer training time to achieve competitive performance
with CNN-based methods. Once in low-data regimes [1],
QEIS models will encounter much more significant perfor-
mance drops than CNN-based methods, as shown in Fig-
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ure 1. Here we take K-Net [41] as the typical example of
QEIS models and compare it with Mask-RCNN.

That being said, the potential of QEIS models is still
enormous since once good localization and shape priors can
be learned, they can perform on par with or even outperform
CNN-based methods with a much more concise pipeline.
This makes us think about how we can help QEIS models
learn localization and shape priors quickly, especially for
low-data regimes.

A promising solution is to adopt unsupervised pre-
training, which requires no extra data and any modifica-
tion to existing model architectures. However, most exist-
ing unsupervised pre-training methods [1, 3, 5, 11, 36] are
only used for the backbone and can not benefit instance seg-
mentation prediction heads, where localization and shape
priors are exactly encoded. In the object detection field,
some works [1, 11] do pre-train a full detection architec-
ture. However, they use pseudo bounding boxes for train-
ing, many of which do not contain any object inside hence
can not generate pseudo instance masks for instance seg-
mentation. FreeSOLO [34] is the first method specifically
designed for instance segmentation. Yet it mainly focuses
on generating pseudo masks and directly using them to su-
pervise the model training. Such a way still learns the
object localization and shape priors in a data-driven man-
ner, hence requiring tedious steps to generate high-quality
pseudo masks. To address these problems, we present a
novel unsupervised pre-training method for QEIS models.
Inspired by the recent advances in Prompting in NLP and
vision tasks [12, 19, 28, 43, 44], we propose to directly in-
ject localization and shape priors into the kernels using our
proposed Saliency Prompt (SP). The prompts are gener-
ated by saliency masks which indicate potential objects, and
then are used to decorate the kernels for injecting location
and shape knowledge.

In detail, our saliency prompt involves two essential
parts: saliency and prompt: First, a Saliency Mask
Proposal generation method is responsible for generating
saliency-level pseudo masks from unlabeled images. In-
stead of directly learning from noisy pseudo masks, we
use them to generate corresponding region features and
then achieve prompts from them. Next, a Prompt-Kernel
Matching module matches the saliency prompts to the ker-
nels and then injects the prior knowledge encoded in the
prompts into the best-matched kernels. Furthermore, we
also propose a Kernel Supervision scheme to supervise the
model learning at the kernel level to gain kernel robustness.
See Figure 2 for overview.

In our experiments, our method surpasses all the existing
unsupervised pre-training algorithms on low-data regimes
on four datasets. It can be used as a plug-and-play pre-
training step for most QEIS methods and enables faster
convergence speed and better performance without any in-

crease in parameters or memory. Most importantly, our
method achieves two desiderata on downstream tasks a) it
leads to the same convergence speed as CNN-based meth-
ods. (b) it gains comparable or even better performance
than CNN-based methods on most downstream datasets.
In ablations, we find that our method shows big tolerance
to the quality of pseudo masks. As such, we can easily
achieve performance improvement without a sophisticated
and time-consuming pseudo mask generation method as in
FreeSOLO [34].

Meanwhile, it is essential that our approach has the
following significant differences from the currently pop-
ular semi-supervised methods [37]: (1) Our model is a
self-supervised method that works in ”pre-training+down-
stream task finetuning” fashion, where the domains of the
down-stream tasks are not constrained, which, in most
cases, differ from the pre-training domain. However, the
semi-supervised setting constrains all training data resid-
ing in a single domain. Otherwise, the semi-supervised
model cannot converge based on our experiments. (2) Semi-
supervised methods usually use auxiliary loss (like pseudo-
label supervision) which we don’t use. Based on the above
two-fold reasons, the semi-supervised works are incompa-
rable to ours.

2. Related Work

2.1. Query-Based End-to-End Instance Segmenta-
tion

With the development of Transformers, a brand new ob-
ject detector based on object-queries is proposed by DETR
[2]. It considers the detection task as a set prediction prob-
lem, which makes DETR become the first end-to-end model
without any human-crafted anchors or NMS. Subsequently,
many works [7, 8, 15, 18, 32, 41] follow this paradigm to
tackle the instance segmentation task, which we call Query-
Based End-to-End Instance Segmentation (QEIS) methods.
In the prediction head, instead of proposing dense object
proposals, QEIS models use queries/tokens/kernels to cap-
ture individual instance features on the global scale, hence
are more flexible and enable end-to-end learning. Mean-
while, various improvements have been made by different
QEIS models. Inspired by the idea of SOLO-v2 [35], K-Net
[41] generates convolution kernels to predict masks directly.
This kernel-mask paradigm enables K-Net to segment both
semantic and instance categories consistently by a group
of learnable kernels. QueryInst [15] builds upon Sparse-
RCNN [29] and adopts parallel supervision on dynamic
mask heads. Mask2Former [7] improves the efficiency and
accuracy of the prediction head by using masked-cross-
attention and multi-scale feature fusion. In this work, we
take K-Net as a typical example of QEIS models and de-
velop our unsupervised pre-training method upon it. How-
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Figure 2. Overview of our proposed pre-training framework. Modules with orange colors denotes our pre-training method with the
corresponding supervision. As can be seen,our method is parameter-free. Blue and gray modules denote a vanilla QEIS model, here we
use K-Net for example.

ever, our method can also be deployed on other QEIS-style
models freely and improve their performance on low-data
regimes, as proved in the experiments part.

2.2. Unsupervised Pre-training

Unsupervised pre-training aims to pre-train deep mod-
els with carefully designed pretext tasks for boosting the
model performance in downstream tasks. Most state-of-the-
art unsupervised pre-training methods, such as DenseCL
[36], SwAV [3], and MoCo-v2 [5], are only used to pre-
train backbones and ignore the prediction head, thus can
not solve the data-hungry problem of QEIS models.

UP-DETR [11] and DETReg [1] creatively build end-
to-end unsupervised learning frameworks based on DETR’s
query-object mechanism. Specifically, UP-DETR [11] ran-
domly crops image patches from images as pseudo labels.
DETReg [1] uses region proposals generated by ResNet and
SwAV as pseudo labels. However, none of these methods
work for segmentation tasks as their pseudo labels would
only contain backgrounds that cannot provide object and
shape information. Such pseudo labels can largely mislead
the training of the segmentation models.

Recent work FreeSOLO [34] concentrates on generating
good-quality pseudo masks inspired by SOLOv2 [35], mak-
ing the first time, pseudo labels can be used for training in-
stance segmentation models. However, FreeSOLO requires
multiple steps, such as pre-training and self-training, to gen-
erate pseudo masks. It only considers using the pseudo
masks as labels to supervise the model training, without ex-
ploring how to use them in a more efficient way. Our exper-

iments indicate that explicitly injecting object localization
and shape priors contained in the pseudo labels can bring
further improvements compared with solely using pseudo
labels as the supervision.

2.3. Prompting

The prompting technique originates from NLP [12] and
is soon transferred to the multi-modal domain [28, 43, 44].
It formulates downstream tasks as a ”fill-in-the-bank” prob-
lem, such as ”A photo of a {object}” in CLIP [28]. Here
”A photo of a” stands for prompt templates, which guide
the language model to elicit useful information from the
pretrained models and predict the ”{object}”. CoOp [44]
replaces man-defined language prompts with a set of learn-
able vectors. Based on CoOp, CoCoOp [43] is further
purposed to generate input-conditional prompts for each
image and combine them with existing language dynamic
prompts. To conclude, prompting has shown its perfor-
mance in the language and vision-language domain. Most
recently, VPT [19] first integrates prompting into pure vi-
sion tasks. It prepends several learnable prompt tokens to
the patch tokens of the frozen ViT [13] model to fit it for a
variety of downstream tasks and datasets without the need
of finetuning the whole ViT model. We find that most previ-
ous works use prompts to improve the performance of pre-
trained models on downstream tasks. That is to say, they
do not use prompts in the pre-training stage and only utilize
them in the finetuning stage. Contrary to them, we inge-
niously tailor the prompting mechanism for our pre-training
task. Our saliency prompts are only used in the pre-training
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stage to help the QEIS model learn a better prediction head
and then are removed in the finetuning stage.

3. Methodology
In this section, we take K-Net [41] as a typical exam-

ple of QEIS models and present our proposed unsupervised
pre-training method upon it. We first briefly review the K-
Net model, and then show how to use our proposed saliency
prompt for pre-training K-Net.

3.1. K-Net Review

In most instance segmentation scenarios, the number of
instances to segment is usually assumed to be unknown
(average 7.7 in COCO). K-Net dynamically encodes the
instance-level information into N kernels2, each of which
is responsible for finding the pixels belonging to its cor-
responding instance. In particular, given the feature maps
F ∈ RC×H×W of the input image and the generated ker-
nels K ∈ RN×C , the instance segmentation masks M ∈
RN×H×W can be obtained by performing convolution on
F with K, denoted as

M = σ(K ∗ F), (1)
where σ means the sigmoid activation function and ∗ de-
notes the convolution operation along the channel dimen-
sion.

For kernel generation, K-Net designs a dynamic kernel
update mechanism that uses the segmented masks and the
features F to enhance the kernels K in an iterative way. At
each iteration step i, the kernel updation is formulated as

Ki,Mi = F i(Mi−1,Ki−1,F). (2)

The initial kernels K0 are randomly initialized and then
learned during training, encoding general image-agnostic
localization and shape priors. The kernels are then updated
by F i to receive image-specific information. Therefore, the
learning of K0 can only be driven by the final instance seg-
mentation loss and the localization loss, hence needs lots of
training data and time to learn general priors.

3.2. Saliency Mask Proposal Generation

Most previous deep unsupervised segmentation methods
generate pseudo masks with unsupervised algorithms for
supervising the model training. Here we also follow the
same pipeline and additionally use the pseudo masks for
generating prompts. There exist various unsupervised al-
gorithms for generating pseudo masks, such as selective
search [31], random proposal [11], and FreeSOLO [34].
Here we adopt the saliency mechanism [14,23,24,45] since
its simplicity. Our main idea is to generate dense saliency

2N is defined to be larger than the maximum instance number in im-
ages.

maps through foreground-background separation modeling.
We first use a self-supervised pre-trained model, such as
ResNet-50 [17] trained with the DenseCL [36] algorithm, as
the backbone to extract image features. Then, dense feature
similarity is calculated upon the output of the backbone net-
work to generate dense saliency maps. Specifically, given
the feature maps X ∈ RH×W×D, we first uniformly sam-
ple H ′ × W ′ foreground seeds and generate the seed fea-
tures S ∈ RH′×W ′×D using average pooling on X. Next,
dense saliency is computed by using the feature of each seed
Si,j ∈ RD as the convolution weights to convolve the fea-
ture X. The operation for generating a saliency map Yi,j

for the seed (i, j) is formulated as

Yi,j = Conv (Si,j ,X) ∈ RH×W . (3)
The convolution operation calculates the similarity between
the weights and the feature at each location. The locations
obtain large convolution activation means they are similar
to the foreground seed (i, j) hence belonging to the salient
foreground. While those that have small convolution activa-
tion belong to the background of the seed. Then, we linearly
normalize the saliency map Yi,j to the range [0,1] and sep-
arate the foreground and background by using a threshold
to binarize it, thus obtaining the saliency mask for the seed
(i, j). Finally, each foreground seed in S has a saliency
mask, which usually highlights the coarse region of the
foreground object this seed belongs to.3 However, differ-
ent saliency masks may indicate the same object since their
seeds may all belong to this object. Hence, we further use
the mask NMS to filter out overlapping masks. The whole
process can be formulated as

Z = NMS (Thres (Norm (Y))) , (4)
where Z denotes the final saliency mask proposals and
Norm means linear normalization. The process of gener-
ating saliency mask proposals is also shown in Figure 2.

3.3. Prompt-Kernel Matching

Figure 2 shows the details of our proposed Prompt-
Kernel Matching, which has two key steps: Prompt Gen-
eration and Cosine Similarity Based Matching.

Prompt generation. Given the saliency mask proposals
Z, we use their tightest bounding boxes to crop the im-
age feature maps output by an FPN [20]. We denote the
cropped features as f = {f1, f2, · · · , fL}, where L is the
number of the masks in Z (L can vary from different im-
ages). Then, we use average pooling to convert the features
f into prompts:

P = Avg(f) ∈ RL×C , (5)
where C is also the channel number of the FPN feature and
Avg means average pooling along the spatial dimension.

3If one seed does not belong to any object, we usually get a null saliency
mask.
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Table 1. Instance segmentation fine-tune results on COCO with
5% and 10% annotated images based on K-Net.

Pre-train mAP AP50 AP75 APS APM APL

Img. Sup. 14.8 29.1 13.7 4.3 15.5 24.4
DenseCL 16.7 31.2 15.9 5.1 17.5 27.7

SwAV 15.7 30.3 14.7 4.6 25.9 16.6
MoCo-v2 17 32 16.2 5.3 18.3 27.1

5%
im

ag
es

SP(ours) 19.9 35.7 19.9 6.0 21.0 32.6
Img. Sup. 19.1 35.7 18.2 6.7 20 31.6
DenseCL 20.3 36.4 20.3 6.6 21.8 33.6

SwAV 18.9 34.8 18.3 6.8 20.8 30.6
MoCo-v2 20.7 37.7 20.4 6.4 22.1 34.2

10
%

im
ag

es

SP(ours) 23.5 41.4 23.7 7.9 24.8 38.6

Cosine similarity based matching. Each prompt en-
codes the localization and shape priors for an individual
object and can be injected into one of the initial kernels
K0 of K-Net. This raises an interesting question: which
prompt should be injected into which kernel? A straight-
forward way is to randomly or sequentially assign the L
prompts to N tokens. However, as found in DETR [2] and
K-Net [41], under the dynamic learning training scheme,
different kernels/queries encode the localization and shape
priors of different image regions and objects with differ-
ent shapes, while each kernel mainly learns a specific pat-
tern of similar object shapes and locations. As a result, us-
ing random or sequential assignments of the prompts may
easily inject totally different object localization and shape
information into the same token in different training sam-
ples, hence making the learning of the initial tokens very
unstable. To this end, we propose a novel prompt-kernel
matching scheme based on cosine similarity to assign the
best-matched prompt to each token. Specifically, given the
L prompts P = {Pl ∈ RC}Ll=1 and the N initial kernels
K0 = {K0

n ∈ RC}Nn=1, we compute the cosine similarity
between them to build the similarity matrix E ∈ RN×L:

En,l =
K0

n

∥K0
n∥2

· Pl

∥Pl∥2
. (6)

Then, for each kernel n, we select the best-matched prompt
index δ(n) with the largest similarity score:

δ(n) = argmax
l∈[1,...,L]

En,l. (7)

Next, the best-matched prompt Pδ(n) is injected into the
kernel n via summation:

K0′

n = K0
n +Pδ(n). (8)

Finally, the decorated initial kernels K0′ are fed into the
prediction head of K-Net. As such, each kernel can get the
best-matched localization and shape awareness to ease its
learning.

3.4. Loss Function and Kernel Supervision

We use the saliency mask proposals Z as pseudo labels
to perform bipartite matching with the N predictions of the
tokens and then use the set prediction loss to supervise the
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Figure 3. AP learning curves of K-Net with different pre-training
methods on COCO with 10% annotated images.

pre-training, which is the same as the original K-Net [41].
The overall loss function LK of K-Net is assembled by
three components: the focal loss [21] Lcls for classifica-
tion, the Dice loss Ldice and cross-entropy loss Lce for seg-
mentation, which only consider supervising the predictions.
Since the predictions are mainly generated by the kernels,
we argue that we can directly supervise the kernels as a sup-
plementary loss.

Specifically, for each mask proposal Zl where l ∈
[1, ..., L], we can find its corresponding saliency seed and
feature Sl ∈ RD, which encodes the representative object
information of this mask. Then, we transform its channel
number to C for supervising the embedding of the token
whose prediction is matched with the proposal Zl after bi-
partite matching. We denote the index of the token matched
with Zl as nl. Then, the kernel supervision loss can be for-
mulated as

Lker =

L∑
l=0

∑
i

(1− Cos(Linear(Sl),K
i
nl
)), (9)

where the supervision is adopted for every K-Net kernel up-
date iteration step i and summed over all mask proposals.
Linear means a linear transformation to reduce the channel
number to C and Cos denotes the cosine similarity.

Our final loss can be defined as

LK = λclsLcls + λdiceLdice + λceLce + λkerLker. (10)
where λ(·) are corresponding loss weights. Since our
pseudo labels are class-agnostic, we use binary classifica-
tion (foreground v.s. background) for Lcls.

4. Experiments
4.1. Implementation Details

Pre-training setting. ResNet-50 [17] is applied for all
models as the backbone and pre-trained with the DenseCL
algorithm. We adopt the AdamW optimizer with 0.05
weight decay and 1,000 steps of linear step warmup. As for
data augmentation, we simply apply random flipping. The
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Table 2. Instance segmentation fine-tune results on Cityscapes and CTW1500.
Cityscapes CTW1500Model Pre-train Epoch AP AP50 AP75 APS APM APL Epoch AP AP50 AP75 APS APM APL

Mask RCNN [16] Img. Sup. 24 30 57.4 - 8.3 27.9 49 96 34.5 69.8 32.1 25.9 40.4 36.8
SOLO-v2 [35] Img. Sup. 24 24.9 44.4 - 1.8 20.1 50.4 96 27.9 59.6 23.3 8.7 30.2 41

Img. Sup. 24 24.8 47.4 - 4.8 19.9 43.1 96 9.7 26.5 6.1 3.0 9.2 19.2
DenseCL 24 28 52.2 - 6.6 25.2 55.2 96 18.9 42.6 15.1 7.0 18.8 32.5

SwAV 24 27.4 52.1 - 5.3 22.7 49.2 96 9.1 25.8 4.8 2.7 9 19.8
MoCo-v2 24 28.2 51.2 - 5.9 26.4 52.7 96 13.3 32.2 10 4.3 13.3 24.2

K-Net

SP(ours) 24 30.6 55.4 - 5.8 27 54 96 34.6 71.1 31 18.0 36.1 45.7
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Figure 4. AP learning curves of Mask-RCNN, vanilla K-Net and
our method on Cityscapes and CTW1500.

model is trained with a batch size of 96 for 12 epochs on 8
A100 GPUs. The initial learning rate is set to 1× 10−4 and
decreased by 0.1 after 8 and 11 epochs. As for the hyperpa-
rameters of our model, we set the number of kernels/queries
N as 100, Lcls = 2, Ldice = 4 , Lce = 1 and Lker = 1.
Fine-tuning setting. All models are trained with a batch
size of 96 on 8 A100 GPUs. Random flipping and rota-
tion are used as data augmentation. Referring to the open-
source of MMDetection [4], we use the same hyperparame-
ters for QEIS and CNN-based models. For QEIS, we apply
the same training strategy as the pre-training stage except
the training epoch, which will illustrate in the experiment
tables. For CNN-based models, we apply SGD as the opti-
mizer with weight decay and momentum. The learning rate
is 0.02, momentum is set to 0.9 and weight decay is 0.0001.
Datasets. We pretrain our QEIS models on MS COCO [22]

unlabeled 2017 split and fine-tune on multiple datasets, in-
cluding MS COCO, Cityscapes [9] and CTW1500 [26].
MS COCO is a popular instance segmentation dataset that
contains 164k labeled images, where objects from 80 ob-
ject categories are annotated with dense pixel segmentation.
Cityscapes is a popular instance segmentation dataset which
focus on semantic understanding and urban street scenes. It
contains 5000 fine annotated large-scale images. CTW1500
is a wild-scene dataset that focuses on text detection and
segmentation. It contains 1,500 images with dense annota-
tion, which is also a typical low-data regime.

4.2. Fine-tune Results on MS COCO

To evaluate our performance in low-data regimes, we
split the MS COCO train2017 dataset into two different
types of training subset: 1) COCO with 10% fully anno-
tated images, which contains 12k+ images, 80k+ annotated
masks; 2) COCO with 5% fully annotated images, which
contains 5k+ images, 43k+ annotated masks.

Table 1 shows the comparison results on MS COCO with
different pre-training methods. Img. Sup. denotes the Im-
ageNet supervised pre-training. As can be seen, vanilla K-
Net performs poorly in low-data regimes. However, our pre-
training method significantly boosts its performance com-
pared with the ImageNet supervised pre-training: up to +5.1
AP on 5% COCO and +4.4 AP on 10% COCO .

Moreover, from the AP learning curves on 10% COCO
images shown in Figure 3, we can observe that our method
converges much faster than other methods and gain much
higher AP at the beginning of the fine-tuning stage. These
evidences reflect that our method has probably learned
shape and localization prior in the pre-training stage.

4.3. Fine-tune Results on Other Datasets

In this part, we test our method in wild scenes with un-
seen targets (CTW1500 [26]) and small objects (Cityscapes
[9]). The comparison results are shown in Table 2.
As can be seen, our method outperforms the ImageNet-
supervised method by +5.8AP and achieves better perfor-
mance(+0.6AP) compared with Mask-RCNN, a representa-
tive CNN-based model, on CItyscapes. On CTW1500, our
method surpasses the supervised and unsupervised methods
by +24.9AP and +15.7AP. It also achieves comparable per-
formance(+0.1AP) with Mask-RCNN.

These experiments further demonstrate that our method
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Table 3. Instance segmentation fine-tune results on QueryInst and Mask2Former.
CTW1500 CityscapesModel Pre-train Epoch AP AP50 AP75 APS APM APL Epoch AP AP50 AP75 APS APM APL

Img. Sup. 80 38.8 67.6 41.6 15.6 41.2 57.4 24 29.1 52.4 - 5.6 23.9 55
DenseCL 80 43.2 71.6 48.5 18.4 47.6 59.9 24 27.5 48.9 - 5.2 23.8 53.7

SwAV 80 41.2 69.1 46.1 17.6 45.2 58.1 24 30.3 53.3 - 5.4 23.3 59
MoCo-v2 80 43.3 71.2 49.2 18.9 47.6 59.4 24 30.7 54.3 - 5.4 25.5 56.4

Mask2Former [7]

SP(ours) 20 52.9 83.4 62.1 29.4 56.4 67.6 24 31.8 55.8 - 5.1 26.5 59.0
Img. Sup. 80 28.3 53.7 28.6 9.8 29 41.8 24 29.1 53.2 - 6.7 27.4 50.7
DenseCL 80 31.6 56.7 33.4 10.4 32.5 46.6 24 30.8 54.7 - 8.6 28.9 54.5

SwAV 80 24.6 50 23.1 8.1 25 36.3 24 30.7 54.4 - 7.9 28.5 53.9
MoCo-v2 80 31.6 56.8 32.8 12.6 32 45.8 24 31.4 54.4 - 8.1 28.4 56.1

QueryInst [15]

SP(ours) 20 39.2 66.8 43.1 16.7 42.2 51.9 24 32.8 57.3 - 8.8 29.2 57.0

Table 4. Ablation of kernel supervised learning.
Model Lker? mAP AP50 AP75 APS APM APL

K-Net ! 23.5 41.4 23.7 7.9 24.8 38.6
K-Net % 23.1 41.4 23.0 7.5 24.6 37.8

could enable K-Net to learn localization and shape prior
rather than simply remembering objects during the pre-train
stage. When compared with Mask-RCNN in small object
scenarios in terms of APS , our method did not show su-
perior results. We conjecture there are two reasons: 1)
the intrinsic deficiency of the QEIS paradigm—both vanilla
SOLOv2 and K-Net perform extremely badly compared
with Mask R-CNN; 2) Saliency Mask Proposals mainly
provide large-scale pseudo labels, which makes our kernels
pay more attention to big objects rather than small objects.

Figure 4 shows the AP learning curves on Cityscapes
and CTW1500. Although QEIS models like K-Net perform
much worse than traditional CNN models like Mask-RCNN
in both convergency speed and final accuracy, equipped
with our method, K-Net converges much faster than the Im-
ageNet supervised pre-training models and can gain consid-
erable learning curves compared with Mask-RCNN.

4.4. Deployed on QueryInst and Mask2Former

Besides K-Net, here we further apply our pre-train
method on another two QEIS methods:QueryInst [15] and
Mask2Former [7]. As shown in table 3, with our pre-
train method, QueryInst outperforms the state-of-the-art un-
supervised pre-training method by +7.6 AP on CTW1500
dataset and achieves gains of 1.4 AP on Cityscapes dataset.
For Mask2Former, our method achieves significant gains of
+ 9.6 AP over the state-of-the-art unsupervised pre-training
method on CTW1500. These results indicate that our pre-
training method can help the kernels/queries of QEIS mod-
els to learn localization and shape prior effectively and help
gain competitive performance improvement.

4.5. Ablation Study

We perform ablation analysis to understand the impact
of each component of our pre-train method. In general, we
pre-train K-Net with our method on COCO unlabeled2017
for 12 epochs and then fine-tune on COCO train2017 with
10% images for 48 epochs.
Loss function. Firstly, we investigate the contribution of
the proposed kernel supervision loss. As shown in table 4,

Table 5. Ablation of different prompt approaches. ’%’ means the
model only pre-trained by pseudo labels without prompt.

Prompt Approch mAP AP50 AP75 APS APM APL

% 21.7 38.7 21.7 7.2 23.5 36.2
Random Assign 21.3 38.3 21.2 7.6 22.5 35.5

Seq. Assgin 23 40.6 23 8 24.3 37.6
Cosine Similarity 23.5 41.4 23.7 7.9 24.8 38.6

this loss function yields clear improvement, indicating that
the kernel supervision plays a complementary role to pre-
diction supervision—using the noisy prediction supervision
alone may lead to over-fitting.
Cosine Similarity Based Matching. Table 5 shows the
evaluation results of several prompt approaches, including
Random Assignment, Sequential Assignment and Cosine
Similarity based matching. Random Assignment is called
’shuffle’ in UP-DETR [11], which leads to a performance
drop of 0.4AP compared to the method even without using
prompt. Sequential Assignment simply expands the number
of saliency prompt and attaches them to the initial kernels
of K-Net, which achieves 1.7 AP improvement compared to
Random Assignment. Then, Cosine Similarity further sur-
passes Sequential Assignment by 0.5 AP.
Class-agnostic Object Detection. We convert our pro-
posed masks into bounding boxes like FreeSOLO [34],
and compare with UP-DETR [11] and DETReg [1]. Ta-
ble 6 shows the results of class-agnostic object detection on
COCO val2017 benchmark. As can be seen, our method
achieves better performance than other pre-training meth-
ods without self-training. Although FreeSOLO has better
performance than other methods, its self-training process
requires much longer training time (extra 14 hours) and
larger memory cost.
Pseudo Mask Analysis. Here we evaluate our Prompt-

(a) Saliency Masks Proposal. (b) Fine-tune on COCO 10% images.

Figure 5. Examples of our Saliency Mask Proposals and fine-tuned
results.
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(a) Train from scratch. (b) Pre-trained by MoCo-v2. (c) Pre-trained by our method. (d) Trained on COCO train2017-full.

Figure 6. Average activation of the 100 kernels over 5000 images on COCO val2017. All masks are resized to 200× 200 for analysis.

Table 6. Unsupervised class-agnostic object detection results.
Method Self-train? AP AP50 AP75

FreeSOLO [34] ! 5.5 12.2 4.2
UP-DETR [11] % 0 0 0

DETReg [1] % 1.0 3.1 0.6
K-Net w SP % 3.2 8.5 2.0

Table 7. Ablation of Pseudo Labels on COCO with 10% images.
P means our Prompting method.

Approch Pseudo Label (quality) mAP
K-Net w/o P Rand. Prop. (bad) 0.8
K-Net w P Rand. Prop. (bad) 10.0
K-Net w/o P Saliency (normal) 21.7
K-Net w P Saliency (normal) 23.5
K-Net w/o P FreeOLO (good) 23.3
K-Net w P FreeSOLO (good) 24.0

ing method on three kinds of pseudo labels with dif-
ferent qualities. As illustrated in table 7, pseudo la-
bels generated by ’Random Proposal’ have a negative im-
pact on the results of the fine-tuned model, yet our pre-
training method achieves significant improvement by uti-
lizing Saliency Prompt. Moreover, our Prompting method
achieves competitive performance with both normal and
good-quality pseudo masks, improving AP by 1.8 and 0.7,
respectively. Besides, our method can also approach the
performance of FreeSOLO which requires a much longer
training time and many process steps. Notably, with the
proposed Prompting approach, pre-train on normal pseudo
masks gains comparable or even better performance than
pre-train on good yet time-consuming pseudo masks like
FreeSOLO. We visualize our pseudo masks in Figure 5.

4.6. Kernel Spatial Distribution Analysis

To further justify whether the proposed saliency prompt
can assist the kernels of the prediction head to learn local-
ization and shape priors, we visualize the average of mask
activations of the 100 instance kernels over 5000 images on
the 2017val split after 2 training epochs.

The best result (Figure 6d) is from the fully trained K-
Net on COCO train2017. Those kernels have learned dif-
ferent shape and location priors. However, the priors from
the supervised (Figure 6a) and the compared unsupervised

(Figure 6b) method mainly focus on the central area. Sur-
prisingly, the kernels learned by our pre-train method (Fig-
ure 6c) show positive trends in the diversity of shape and
location priors, which is close to the fully trained kernels.
These results demonstrate that the kernels pre-trained with
Saliency Prompt have learned effective spatial distribution
and shape discrimination ability.

5. Conclusion

This paper first points out that the QEIS models lack spa-
tial distribution and shape awareness and perform poorly in
low-data regimes. Hence we present Saliency Prompt, a
novel unsupervised pre-train method using visual prompt,
which can significantly boost the performance of QEIS
models on low-data instance segmentation and achieve
comparable or even better performance compared with
CNN-based models. From perspective of technical, it is
the first paper that explores the application of prompting
in the instance segmentation field. We hope its novel de-
sign elements provide insights for future works on visual-
based prompting mechanisms. In the future, we will follow
more recent studies on visual saliency [24, 25, 39] for fur-
ther promoting the prompt learning mechanism and apply
the prompt learning mechanism to advance the weakly su-
pervised learning community [38, 40, 42].
Limitations. Most of our saliency masks are large-scale
and simple textures, which makes our pre-trained ker-
nels/queries mostly focus on large objects rather than small
objects. Compared with the accuracy improvements on
large objects, our pre-train method achieves limited im-
provement on small ones. We believe there is plenty of
room to further optimize our proposed method.
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