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Figure 1. Our idea illustration. Patient A and B have different OS time (109 months and 16 months, respectively) but similar pre-operative
image-based patterns and indexes; thus, preoperative based model fails to distinguish A and B (their predicted OS time are both larger
than 9 years). However, their intra-operative attributes, which can describe the severity of disease in a more informative way, are very
different from each other (e.g., G-score, S-score, Clinicopathologic hepatocirrhosis). Therefore, it can help the model discriminate A and
B. In the right image, we show that our CAWIM – that leverages intra-operative indexes in the training stage – can largely improve the
prediction power than other methods. Our method managed to correctly classify these two cases, and the overall performance of our
CAWIM surpasses other baseline models by approximately 10 points on 4-category classification task.

Abstract

Previous efforts in vision community are mostly made on
learning good representations from visual patterns. Beyond
this, this paper emphasizes the high-level ability of causal
reasoning. We thus present a case study of solving the chal-
lenging task of Overall Survival (OS) time in primary liver
cancers. Critically, the prediction of OS time at the early
stage remains challenging, due to the unobvious image pat-
terns of reflecting the OS. To this end, we propose a causal
inference system by leveraging the intraoperative attributes
and the correlation among them, as an intermediate super-
vision to bridge the gap between the images and the final
OS. Particularly, we build a causal graph, and train the im-
ages to estimate the intraoperative attributes for final OS
prediction. We present a novel Causally-aware Intraop-
erative Imputation Model (CAWIM) that can sequentially
predict each attribute using its parent nodes in the esti-
mated causal graph. To determine the causal directions,
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we propose a splitting-voting mechanism, which votes for
the direction for each pair of adjacent nodes among multi-
ple predictions obtained via causal discovery from hetero-
geneity. The practicability and effectiveness of our method
are demonstrated by the promising results on liver cancer
dataset of 361 patients with long-term observations.

1. Introduction

The success of recent deep learning model is largely at-
tributed to learning the good representations for visual pat-
terns. Such representations essentially facilitate various vi-
sion task, such as recognition and synthesis [15, 25, 33].
Nevertheless, one important goal for the vision commu-
nity is to model and summarize the relationships of ob-
served variables of a system, in order to enable well pre-
dictions on similar data. Essentially, it is desirable to un-
derstand how the system is changed if one modifies these
relationships under certain conditions, e.g., the effects of
a treatment in healthcare. Thus this demands the high-
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level ability of causal reasoning beyond the previous ef-
forts of only learning good representations for visual pat-
terns [1, 5, 16, 21, 35, 37]. This naturally leads into our task
of causal inference.

This paper presents a case study of solving the challeng-
ing task of Overall Survival (OS) time estimation in Pri-
mary Liver Cancers (PLC). Generally, the liver cancer re-
mains one of the most common malignancies worldwide in
the 21st century, as there are about one million new cases
every year [36]. The five-year survival rate for advanced
PLC is only about 5% [7]. Therefore, early and accurate
prediction of OS time estimation can provide informative
guidance for individualized treatment planning and reduc-
ing burden of medical resources [6, 27, 32, 34]. On the
other hand, one shall easily notice that with the renaissance
of deep learning, great achievements have been made on
medical imaging analysis, such as diagnosis, segmentation,
and classification [16, 21, 35, 37]. Unfortunately, it still re-
mains challenging for experienced clinicians to predict OS
time at early stage, even with advanced modern diagnostic
tools such as Magnetic Resonance Imaging (MRI) or tumor
marker tests [3, 11], and the deep learning tools [1, 5].

Some studies propose to leverage deep neural networks
for OS time prediction. They focus on fusion learning
of multi-modal image features and some basic information
(i.e., age and gender) [5, 8, 14, 22, 24, 30, 39]. Neverthe-
less, the accurate prediction based on only preoperative in-
formation (such as image and tumor marker indexes) is still
challenging, possibly due to missing information from early
diagnosis stage to the final stage. This missing informa-
tion includes the texture and pathological attributes of the
liver, health level of the patient, and post-operative treat-
ment [9, 17, 20]. For example, as in Fig. 1, patient A and
B with different OS time have almost identical preopera-
tive indicators cause, history of disease, etc,, making the
preoperative-based model hard for discrimination.

To amend this problem, we present a causal inference
system that can well utilize the intraoperative information,
which is pretty easy to be accessed in training data. Accord-
ing to medical priories, such information records patholog-
ical attributes, which can be more reflective about the pa-
tient’s health level and the postoperative recovery. Inspired
by this, we propose to leverage this auxiliary information
to help build our causal inference system. Again, we take
the example in Fig. 1. Although preoperative information
cannot differentiate patient A from B, their intraoperative
index shows great difference in distribution, which can thus
be employed for the discrimination. Additionally, there are
many indicators from medical experts that the intraoperative
indexes are related to each other. For instance, the clinico-
pathologic hepatocirrhosis is dependent on the hepatocir-
rhosis; the sum of tumor diameter is affected by the num-
ber of tumors; the fibrosis (reflected on S-Score) can prob-

ably deteriorate to cirrhosis [4], etc. By leveraging these
relationships, we can better understand the causal inference
concrete from both observed data modelling and medical
expert-level knowledge of these variables.

To this end, we encapsulate these priors and the inspired
proposals into a new method, dubbed as Causally-Aware In-
traoperative Imputation Model (CAWIM). It incorporates
causal discovery module to sequentially estimate intraop-
erative indexes as an intermediate stage towards final OS
time prediction. Specifically, our model is composed of
two key steps: i) estimating the intraoperative indexes us-
ing preoperative information, i.e., image and indexes; ii)
followed by OS time prediction using estimated intraopera-
tive indexes and preoperative information. To achieve more
accurate prediction of intraoperative indexes that is determi-
nant to the prediction power of the whole method, we pro-
pose a Causally-aware Directed Acyclic Graph (CaDAG)
module. It learns the causal structure represented as a DAG
over intraoperative features. To identify the causal rela-
tions beyond the traditional PC algorithm [26], we propose
a splitting-voting mechanism, which is inspired by the re-
cent work [18] that learn the causal structure with the as-
sistance of an auxiliary domain index variable. Our pro-
posed mechanism can not only identify the causal relations
even when this domain index variable is not available, but
also can be theoretically guaranteed that the learned graph
is not acyclic. During test stage, we sequentially estimate
each intraoperative index with preoperative information and
additionally, its parent set among other intraoperative in-
dexes. The utility of our method can be demonstrated by
a significant improvement of OS time prediction on an in-
house liver cancer dataset, as well as better interpretabil-
ity of learned causal structure, more accurate estimation of
intraoperative indexes and more interpretable visualization
results.

In a nutshell, we for the first time present a case study
of building a causally-aware intraoperative imputation sys-
tem for the challenging task of overall survival time pre-
diction. The proposed method of building the casual in-
ference system, can be naturally extended to other similar
medical tasks. Our key contributions are listed as follows.
(1) New Paradigm for OS time Prediction. We propose
to leverage intraoperative indexes as an intermediate stage
during training. The leverage of this information can sig-
nificantly alleviate the “missing information” issue. To the
best of our knowledge, we are the first to leverage auxiliary
information (in addition to preopearative features) for OS
time prediction. (2) Causal Structure Learning. We pro-
pose a novel splitting-voting mechanism that can identify
the causal structure even when the domain index variable is
missing. (3) Better Prediction Power. Our method can sig-
nificantly improve the prediction power for liver cancer over
the competitors. The methods are evaluated on the medical
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dataset, which, to the best of our knowledge, is the largest
primary live cancer dataset.

2. Related Work and Preliminaries
Previous efforts [23,39] directly take the OS time predic-

tion as the vanilla classification task by employing various
deep models, whilst we reformulate it by causal discovery
method for the first time. We will review the most related
literature here.
MRI based deep models. OS time is defined as the du-
ration from patient’s first scan to cancer-related death [6].
Since Magnetic Resonance Image (MRI) plays an impor-
tant role in tumor-related studies, various MRI based deep
learning model have been proposed for feature extraction
and representing [28], multi-modal feature fusion [10, 30,
38,39], and improvement on model structure [5]. However,
since missing information during disease progression can
mediate the correlation from the preoperative stage to the fi-
nal stage, the results of these image based methods are typ-
ically unsatisfied. In contrast, our method can amend this
problem by leveraging intraoperative indexes as a bridge.
Causal discovery. Causal discovery is to learn the causal
graph over endogenous variables. Typical methods include
PC algorithm [19], a constraint-based method that imple-
ment iterative conditional independence test to identify the
skeleton and directions via v-structure. Under Markovian
and faithfulness assumptions [26, 31], this method is prov-
able to identify an equivalent class of the causal graph. To
further identify more directions, recent work [18] leveraged
a domain index variable that splits the dataset into multi-
ple domains. With these heterogeneous data, they can iden-
tify mutable variables that change across the domain index
variable. On the basis of this, they further identified edges
among these mutable variable set by implementing Hilbert
Schmidt Independence Criterion (HSIC) norm [13]. How-
ever, such domain index may not be available in many sce-
narios, making the identification of these directions diffi-
cult. Besides, this method may not ensure that the learned
graph is acylic. To address these issues, we in this paper
propose a splitting-voting mechanism to mine the causal re-
lations among intraoperative indexes so as for leveraging
each other to better estimate these indexes, which is prov-
able to return a directed acyclic graph.
Preliminaries. (1) Causal Discovery. By faithfuness and
Markovian assumptions [26], we can use conditional in-
dependent tests for causal discovery. That is learning the
causal graph over V. (2) Structural causal model (SCM).
Before fully developing our contributions in methodology,
we give as preliminary the definition of SCM, which is de-
fined as ⟨G,F , P ⟨ϵ⟩⟩: i) directed acycle graph G = (V,E)
is as causal structure, with node set V and edge set E; ii)
the autonomous structural functions F = {fk}Vk∈V , where
disturbance on Vk has no effect on others; iii) probability

measure P (ϵ) for exogenous variables {ϵk}k. Given the
assumption that {ϵk}k are independent, each P can be ob-
tained by Causal Markov Condition with G as P({VK =
vk}Vk∈V) =

∏
k P(Vk = vk|Pa(k) = pa(k)). (3) Causal

discovery from heterogeneity. In [18], the authors pro-
posed to leverage a domain index variable C to identify
some causal directions. This method is built upon the PC
and faithfulness assumption at a distributional level. It
first learns the skeleton of the graph and identifies a vari-
able set that is affected by E, followed by identifying the
directions between E and its neighbors. Specifically, if
C → Vi, C → Vj , and Vi⊥Vj |X,C for some deconfound-
ing set X between Vi and Vj , {P (Vi|X,C = c} is indepen-
dent of {P (Vj |Vi, C = c,X)}, while {P (Vj |X,C = c)}
and {P (Vj |Vi, C = c,X)} are dependent. We can test these
Independence using Hilbert Schmidt Independence Crite-
rion (HSIC) [12] norms δvi→vj |X and δvj→vi|X . One can
obtain that Vi → Vj if δvi→Vj

< α with pre-set signifi-
cance level α. However, in many applications such domain
index variable is missing, i.e., all data are pooled together.
In this paper, we propose a splitting-voting mechanism (in
the CaDAG module) to identify causal relations. In the fol-
lowing, we first introduce some basic assumptions that our
method is built upon.

3. Methodology
Problem setting. For the OS time classification task,
suppose we have {Xi,Bi,Ai, yi} ∼i.i.d P (X,B,A, y),
where X denotes the image acquired from structural Mag-
netic Resonance Image (sMRI); B,A denote the preopera-
tive and intraoperative attributes, respectively. We have the
final label y. Our goal is to predict y from the image X and
preoperative attributes B that are recorded before surgery.
Our method is built upon the following three assumptions,
commonly utilized in the causal inference works [18, 26].

Definition 1 (Causal Graph) We assume the causal graph
over A is a directed acyclic graph (DAG) and denote the
corresponding SCM as M := ⟨G := (A,E),F , P (ε)⟩.

Definition 2 (Markovian and Faithfulness) For
triplets of disjoint sets Vi,Vj ,Vk, it holds that
Vi ⊥d Vj |Vk ↔ Vi ⊥ Vj |Vk, where ⊥d and ⊥
respectively mean d-separation and probability indepen-
dence. This is the common property in DAG.

Definition 3 (Distributional Faithfulness) If Xi → Xj

and at least E → Vi or E → Vj holds, {P e(Vi|Vj ,Z)}
is dependent to {P e(Vj |Z)}, where Z denotes the mini-
mal deconfounding set. Particularly, Z is a deconfound-
ing set between Vi and Vj if we have Vi ⊥ Vj |Z and
Z ∩ (De(Vi) ∪De(Vj)) = ∅.

In term of this assumption, we further have the following
result for edge orientation [18].
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Theorem 4 (Theorem 2 in [18]) Denote E as domain in-
dex variable. Under assumptions 1, 2, 3, for each adjacent
pair (Vi, Vj) such that E → Vi or E → Vj holds, we have
Vi → Vj if {P e(Vi|Z)} and {P e(Vj |Vi,Z)} are indepen-
dent while {P e(Vj |Z)} and {P e(Vi|Vj ,Z)} are dependent.

3.1. Causally-aware Directed Acyclic Graph

The Causally-aware DAG. We propose a novel
Causally-Aware Intraoperative Imputation Model
(CAWIM). The pipeline of our method is shown in
Fig. 2. It is composed of Causally-aware Directed Acycled
Graph (CaDAG), and a classification model with MRI
imaging encoder. The CaDAG enables the causally-aware
intraoperative reasoning, by managing to better represent
and encode the correlation of intraoperative information.
Specifically, we first use preoperative information, i.e., MRI
images and indexes to estimate the intraoperative features.
The estimated intraoperative features Ã, together with the
MRI X and preoperative features B are then utilized for
OS classification. To accurately estimate intraoperative
indexes A, we propose CaDAG to learn causal structure
over A, and then leverage the parent nodes of each index
for sequentially imputation during test stage. We give the
details about the CaDAG and the intraoperative imputation
model for classification, while some theoretical proofs, and
the specification of our networks are in the appendix.

We aim at learning the causal structure over A. However,
without the domain index, we actually have the difficulty
of dividing the whole dataset into multiple domains. To
this end, we propose a splitting-voting mechanism for this
problem. Particularly, this mechanism first generates the
domain-index variable E by randomly splitting the whole
dataset into multiple domains for m > 0 times. Then for
each time we identify the mutable variable set and gener-
ate a prediction for each identifiable causal directions, with
the assistance of domain index variable E. Finally, we vote
for a final direction among m predictions for each pair of
variables. As shown in Fig. 3, the whole procedure is a se-
quence of the four steps. Step i), ii) and iii) provide prelim-
inary causal relationship between each pair of nodes. Step
iv) is our proposed splitting-voting, aiming to finally deter-
mine all the causal directions and output a causal DAG.
i) Learning skeleton of the causal graph. We first im-
plement PC algorithm to learn the skeleton [26]. That is an
undirected graph over all attributes. This can be achieved by
iterative conditional independence test. Then we determine
Ai and Aj to be adjacent if they are not independent condi-
tional on any subsets. Finally, we utilize the v-structure to
learn the equivalence class of DAG.
ii) Random splitting and identification of mutable vari-
able sets. To determine more directions, we randomly split
the dataset into multiple domains for m times. For each
time we have a domain index variable Ei and multiple do-

mains {Di
e} [18]; and we identify the mutable variable set

Mi such that each X ∈ Mi has X ̸⊥ Ei|A − X is con-
ditionally dependent to Ei. We thus can implement condi-
tional independent tests to identify Mi. Steps i) and ii) are
summarized in Alg. 1.

Algorithm 1 Identify the skeleton and mutable set.

INPUT: {Di
e := {Ae

i}
ne
i=1|e}, domain index variable Ei.

OUTPUT: Equivalent class of DAG and Mi.

1: Implement the PC algorithm to learn the equivalence
class of DAG via v-structure.

2: For each A ∈ A, add the edge Ei → A in the graph iff
Ei ̸⊥ A given any subsets.

iii) Identifying directions via changed causal models. For
each adjacent pair Ai and Aj such that at least one of them
is adjacent to E, we identify the causal directions among
Mi via HSIC Norm [12] by testing the independence be-
tween {P e(Ai|Aj ,Z)} and {P e(Aj |Z)} if Ai ← Aj , and
that between {P e(Aj |Ai, C)} and {P e(Ai|Z)} for deter-
mining the direction between Ai and Aj . Here, Z denotes
the deconfounding set. In this regard, the direction between
Ai and Aj is then determined according to the following
rule: if ∆̂Ai→Aj |Z,E < ∆̂Aj→Ai|C,E , output Ai → Aj;
if ∆̂Ai→Aj |Z,E > ∆̂Aj→Ai|Z,E , output Ai ← Aj; if
∆̂Ai→Aj |Z,E > α and ∆̂Aj→Ai|Z,E > α, where α is a
threshold, making the direction undetermined.

Algorithm 2 Identify causal directions among M.

INPUT: E; skeleton and M via Alg.1.
OUTPUT: Directed graph among M.

1: For each adjacent (Ai, Aj) such that one of Vi ∈M,
2: Detect deconfounding set Z.
3: Calculate ∆̂Ai→Aj |Z,E > α and ∆̂Aj→Ai|Z,E > α.
4: Determine Ai → Aj or Aj → Ai.

iv) Voting for the direction of each edge. For each
time i we implement Alg. 2 to predict an direction of
the edge (Ai, Aj). Then we vote for Ai → Aj if the
frequency fi→j of Ai → Aj surpasses a pre-set threshold α
(0 < α < 1). Finally, if there exists a cycle of N variables:
Ai1 → Ai2 → ... → Ai1 , we orient (Aik , Aik+1

) with the
minimum frequency among {fik,ik+1

, fiN ,i1}.

We show that this procedure can generate a DAG over
A, with the proof in appendix.

Theorem 5 Under definitions and assumptions 1, 2, 3, the
learned graph via our CaDAG is a directed acyclic graph.
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threshold α = 2/3, as shown in the lower right part. Finally, we obtain an inferred DAG with each direction determined.

3.2. Intraoperative Imputation for Classification

Given MRI image X ∈ RH×W of a patient that con-
tains multiple slides, we first resample these slides into a
fixed K slides for each patient. As each slice is a gray im-
ages, we repeat the images for 3 times along the channel
dimension; and then we employ a neural network to extract
features from each slice. The extracted features are denoted
as F1, ..., FK . In order to aggregate the information of all
slices, we divide F1, ..., FK into g groups according to the
acquired position. Each group contains consecutive ⌊K/g⌋
slices. Then, we implement a Multi-head Cross-Attention
(MCA) mechanism inside each group to aggregate features:

headj = softmax(Qj(FWj
K)T )(FWj

V ) (1)

MCA = [head1; · · · ; headh]WO (2)

where F is the slice’s feature within a group, the query vec-
tor Qj and linear projection layers Wj

K ,Wj
V ,WO, 1 ≤ j ≤

h are all learnable parameter. Finally, we concatenate {Fk}
from g groups as our final image feature I ∈ Rg×d with d
denoting the dimension of each Fk with k = 1, ...,K.

Afterwards, we sequentially estimate each Aj by preop-
erative information, as our learned causal graph over A. So

for each Aj , we predict

Âj = f j
intro(B, I,Pa(Aj)) (3)

where Pa(Aj) denotes the parent node set of Aj . We use
cross entropy loss to optimize f j

intro if Aj is categorical;
and optimize f j

intro if Aj is continuous. After obtaining
all predicted {Âi}di=1, we use (I,B, Â) to predict Y via
fθ(I,B, Â) and obtain θ by optimizing the cross-entropy
L(y, fθ(I,B, Â)). During test stage, given a new sample
(x,b), we first extract I and then sequentially estimate ai
and finally predict y using fθ(x,b, â).

4. Experiments
Dataset overview. Ethics Committee of Zhongshan Hospi-
tal, Fudan University approved the protocol of this study
and waived the requirement for patient-informed consent
(B2021-325R). Because open source data sets generally
lack sufficient intraoperative information, it takes us around
ten years to collect and build our own medical dataset. Par-
ticularly, we conduct a search through the medical records
in the hospital information system, and build a dataset with
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439 patients infected by primary liver cancer. Long-term
medical data of every patient has been recorded from the
first scan to the cancer-related death. Till the submission
of this manuscript, around 90% patients have unfortunately
passed away. This gives us the ground-truth OS labels. In-
formation like MRI scanning before the surgery, blood test
and operation reports, follow-up records are also collected.
After removing samples with missing information, 361 pa-
tients were enrolled, with 306 (84.8%) men, and the av-
erage age was 53.7 (±11.7) years. Specifically, each pa-
tient has MRI scanning with four modalities, including T1

weighted images (T1-WI), T2 weighted images (T2-WI), T1

in-phase (T1-IP) and contrast–enhanced T1 at the arterial
phase (T1ce-AP). Following the guidance of medical ex-
perts, we select 11 preoperative and 20 intraoperative indi-
cators that are related to OS time for our study. Please refer
to the appendix for details.
Data preprocessing. In our dataset, the survival time
ranges from 0 to 130 months, which are cauterized into
four classes: short-term survival (≤ 36 months), middle-
short-term survival (between 36 and 72 months), middle-
long-term survival (between 72 and 108 months), and long-
term survival (≥ 108 months). In our paper, we consider
the classification task: given a new sample, our goal is to
classify which class of OS time this sample belongs to. To
extract I from MRI image, we resample K = 20 slices and
employ Resnet-34 for feature extraction. We set g = 4 and
the dimension Fk as 512. For f j

intro and fθ, we employ a
multi-layer perceptron (MLP) for parameterization.

We encode categorical covariates into dummy variables
and implement zero-mean normalization for continuous
variables. For MRI images, we resize them into 256 × 256
as input. We split the whole dataset into 5 folds. To remove
the effect of imbalance across classes and randomness, we
adopt average precision, recall, and F1-Score measurements
over five folds for classification evaluation.
Implementation details. We use the ImageNet pretrained
Resnet-34 to initialize our CNN encoder. We train 150
epochs for all methods with T1ce-AP modality, using SGD
as the optimizer with learning rate 3e−3 and 3e−2 for CNN
encoder and later MLP, respectively. We set weight decay
to 5e − 4 and nesterov momentum factor to 0.9. Besides,
we decrease the learning rate every 60 epochs by a factor of
1/10. We set the Batch size to 8. In our voting mechanism
of CaDAG, we in total implement Alg. 2 for seven times
and set the voting threshold as 4/7. Our model is trained
with Pytorch on NVIDIA GeForce RTX 3090 GPUs.
Compared Methods. We compare our method with four
baseline methods: i) Random: random guess among four
classes as a trivial baseline, of which the expected F1 score
is 25%; ii) MRI: train the end-to-end method with T1ce-
AP only as input for classification; iii) MRI+pre: addition-
ally take preoperative features as input, on the basis of the

Table 1. Comparisons of Our CAWIM with Other Baselines.

Model Precision Recall F1-Score
(a) Random 26.04±2.10 24.54±0.80 23.15±0.64
(b) MRI 40.79±7.97 33.45±2.66 31.88±3.92
(c) MRI+Pre 36.99±5.30 35.62±3.50 33.83±3.64
(d) gt Intra 41.26±2.74 41.62±1.95 39.77±2.47
(e) CAWIM 45.58±5.86 43.70±5.89 42.21±4.92

method MRI; iv) ground-truth (GT) Intra: only take the
ground-truth intraoperative features as input. It is worth to
mention that although the intraoperative features are not al-
lowed to use during test stage, the comparision with method
iv (i.e., GT Intra) can provide information that to which ex-
tent, the intraoperative features can help OS time prediction.

4.1. Results and Analysis

Table 1 records comparisons of our proposed CAWIM
(Tab. 1(d)) with other baseline models. (Tab. 1(a), Tab. 1(b),
and Tab. 1(c)). Obviously, our CAWIM constantly outper-
form others in all metrics. Specifically, CAWIM improved
MRI+Pre by nearly 10% in terms of F1-Score, which can
be contributed to the prediction of intraoperative features
equipped with causally aware prediction mechanism. With-
out this mechanism, using MRI and preoperative features
only can outperform random guess by only 8.33%, which
demonstrates the limited information of the image for OS
time. In contrast, it is also interesting to note from Tab. 1(d)
that using intraoperative features can be more informative
than MRI features, in terms of OS prediction, which is natu-
ral as the attributes that described the functions and textures
of the liver could affect the postoperative recovery and thus
the OS time. Finally, our CAWIM (Tab. 1(e)) that combines
the information of intraoperative features and the informa-
tion from images, can achieve further improvement.

4.2. Ablation Study

To test the effectiveness of preoperative features, the par-
ticularly intraoperative features, and our causally-aware
module for OS time prediction, we implement ablation
studies and summarize the results in Tab. 2. Specifically,
Tab. 2(a), i.e., w/o CaDAG replaces our causally-aware
module with an end-to-end estimation network from (MRI,
preoperative features) to intraoperative features; Tab. 2(b),
i.e., w/o Intra is the same to Tab. 1(c), i.e., MRI+pre in
Tab. 1 that directly predict OS time using MRI and preop-
erative features without estimated intraoperative features;
Tab. 2(c), i.e., w/o Pre is the same to our CAWIM except
that it does not utilize preoperative features for intraopera-
tive estimation and OS prediction.

The results in Tab. 2 show that the deletion of each
module can lead to a descent of all metrics. Specifically,
Tab. 2(a) shows a significant performance drop by 5.6% in
F1-Score, which indicates the effectiveness of our causally-
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aware module in estimating intraoperative features in OS
time prediction. This phenomena can be explained by
more accurate intraoperative estimation equipped with our
causally-aware module, as shown in Fig. 4 of F1-score, ac-
curacy and R-squared score. We will leave detailed dis-
cussions in Section of “Further Discussion”. Tab. 2(b), as
the same to MRI+pre in Tab. 1, shows a 8.3% performance
drop, which indicates the additional information provided
by the MRI image and preoperative features. Finally, the
3.78% degradation of Tab. 2(c) compared to ours validates
the effectiveness of preoperative features in OS prediction,
which can also be explained by the estimation results of in-
traoperative features in Fig. 4. In a word, we can observe
a significant drop of F1-score if we remove causally-aware
module and intraoperative features, which can demonstrate
the effectiveness of our methods.

Besides, it is also interesting to compare Tab. 2(b) and
Tab. 2(c) with we observe that the performance drop for w/o
Intra is more significant than that for w/o Pre, with respec-
tively an average of 8.4% and 3.8% drop in F1-Score. This
again, indicates more information of intraoperative indexes
provided than preoperative indexes in predicting OS time.
Indeed, we obtained Precision 27.68%, Recall 26.65% and
F1-Score 23.85% if we only predicted OS time using preop-
erative features, which is comparable to the result from ran-
dom guess. On the other hand, we can observe from Fig. 4
that preoperative indexes are beneficial to the estimation of
intraoperative features, which indicating the necessity of us-
ing intraoperative features as a bridge between preoperative
information and final OS time prediction.

4.3. Medical Interpretation of Causal Graph

To further explain the effectiveness of our causally-
aware module, we in this subsection present our learned
causal graph over intraoperative features in Fig. 5 and the
corresponding medical interpretation of learned causal re-
lations. In general, most of the parent-child relationships
in our CaDAG are in line with common sense or can be
explained by prior medical knowledge, e.g., sum of tumor
diameter is determined by number of tumors, the edge from
G-score to S-score also correspond to the strong correlation
between fibrosis and hepatitis (please refer to appendix for
detailed descriptions of intraoperative indexes).

Further, those indicators with non-visual features that ac-
cess severity of pathology are often determined by other at-
tributes of the liver; therefore, these features often come
up in deeper layers in Fig. 5. For instance, G-score and S-
score reflect the level of inflammation and fibrosis that are
artificially defined according to Metavir scoring system [2].
Those indicators tend to rely on other intraoperative fea-
tures besides merely MRI and preoperative information, e.g.
clinicopathologic hepatocirrhosis is reasoned from hepato-
cirrhosis and other covariants. For this reason, the addi-

Table 2. Results of Ablation Studies. (a) estimates each intraop-
erative features naively from (MRI, preoperative indexes), without
the causally-aware module. (b) is the same to MRI+Pre in Tab. 1.
(c) is the CAWIM without preoperative features for intraoperative
indexes estimation and OS time prediction.

Model Precision Recall F1-Score
(a) w/o CaDAG 36.98±2.38 37.78±1.91 36.62±1.87
(b) w/o Intra 36.99±5.30 35.62±3.50 33.83±3.64
(c) w/o Pre 38.92±7.71 41.57±4.53 38.43±5.84
(d) CAWIM 45.58±5.86 43.70±5.89 42.21±4.92

tional leverage of hepatocirrhosis lead to more accurate es-
timation of clinicopathologic hepatocirrhosis, as shown in
Fig. 4 (a). On the other hand, we also observe some associa-
tions that cannot be explained well, e.g. the causal relation-
ship between sum of tumor diameter and cell type, which
may due to the existence of unobserved confounders.

4.4. Visualization

In this section, we visualize the high-response area of our
CAWIM Fig. 6(c) and the version without CaDAG Fig. 6(b)
using Grad-CAM [29]. As shown in Fig. 6, the detected
regions of our method can be more concentrated on the
liver. This result can be explained with Fig.4 and Fig. 5
in a more complementary way. Specifically, as the learned
causal graph is medical explainable and with better estima-
tion of intraoperative features, the model is driven to locate
on liver-related regions. More visualization results are left
in appendix due to space limit.

4.5. Further Discussion

Intraoperative prediction. In our method, the estimation
of intraoperative indicators are important for final predic-
tion. Fig. 4 shows the metrics of some typical intraoperative
prediction by i) w/o CaDAG and ii) w/o Pre with F1-Score
and accuracy for discrete variants (Fig. 4 (a, b)) and R-
square for continuous ones (Fig. 4 (c)). Fig. 4 (a, b) shows
that our CaDAG can generally enhance the estimation of
categorical variables hepatocirrhosis, cell type, differentia-
tion, etc. Nevertheless, we also find that such improvements
will decrease if corresponding indicators are in deep layers
of the graph in Fig. 5. For example, the accuracy of G-Score
and S-score is only comparable and even worse than that
of w/o CaDAG. A possible reason is the accumulated error
along the directed path for estimation. On the other hand,
as shown by the results of R-square (closer to 1, the better
the prediction) does not bring about notable improvement
in regression tasks, (e.g., ascites and tumor diameter).

We also observe an evident performance degradation
of w/o Pre for most of those discrete or continuous vari-
ants. This implies that although operative alone has lim-
ited contribution to OS time prediction, it still matters in
our CAWIM, because of the less missing information due
to shorter time interval from the preoperative stage to the
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Figure 6. Heat Maps via Grad-CAM [29] on 5 Patients. (a) shows
original images and the bounding box of liver. (b) and (c) shows
the area of interest w/o and with CaDAG, respectively.

surgery stage than to the final stage. This observation vali-
dates the effect of using intraoperative features.
General Framework for OS time prediction. In general,
predicting OS time from preoperative images and indexes
is medically important but challenging, as there exists a lot
of missing information due to a long time interval between
the preoperative stage to the final OS stage. To amend this
problem, it is informative to leverage some intermediate in-
formation. In this paper, we show that with this leverage and
the modeling of this information via causal discovery, our
CAWIM model enjoys convincing medical interpretability,
more concentrated location of liver region, more accurate

estimation of intraoperative features, and finally better clas-
sification results on OS time. We thus believe that our
framework can be beneficial to OS time prediction in other
scenarios, e.g., other diseases or intermediate information
in addition to intraoperative indexes.

Limitations. We find in Fig. 5 that although most of learned
causal relations are consistent with medical priors, there ex-
ist relations that cannot be explained well: it is hard to de-
termine the causal order for some pairs of variables: e.g.,
the causal relationship between the sum of tumor diameter
and cell type. This may due to unobserved confounders be-
tween these pairs of variables, which may be alleviated by
learning hidden representations that can explain the associ-
ations among these pairs of variables. We will leave this
exploration in our future work.

5. Conclusion

We propose a novel OS time prediction paradigm, which
is the first to leverage intraoperative attributes by causal
structure learning. Our method significantly outperforms
baselines by a large margin. We demonstrate that this
improvement is contributed to highly interpretable learned
causal structure, accurate estimation of intraoperative in-
dexes, and identification of disease-related regions. We be-
lieve our method, especially the leverage of intraoperative
information equipped with causal discovery can potentially
benefit other scenarios. For limitation, we shall relax the
SCM assumption by allowing the existence of unobserved
confounders. We leave it as the future work.
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