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Abstract

This paper focuses on federated semi-supervised learn-
ing (FSSL), assuming that few clients have fully labeled
data (labeled clients) and the training datasets in other
clients are fully unlabeled (unlabeled clients). Existing
methods attempt to deal with the challenges caused by not
independent and identically distributed data (Non-IID) set-
ting. Though methods such as sub-consensus models have
been proposed, they usually adopt standard pseudo label-
ing or consistency regularization on unlabeled clients which
can be easily influenced by imbalanced class distribution.
Thus, problems in FSSL are still yet to be solved. To seek
for a fundamental solution to this problem, we present Class
Balanced Adaptive Pseudo Labeling (CBAFed), to study
FSSL from the perspective of pseudo labeling. In CBAFed,
the first key element is a fixed pseudo labeling strategy to
handle the catastrophic forgetting problem, where we keep
a fixed set by letting pass information of unlabeled data
at the beginning of the unlabeled client training in each
communication round. The second key element is that we
design class balanced adaptive thresholds via consider-
ing the empirical distribution of all training data in local
clients, to encourage a balanced training process. To make
the model reach a better optimum, we further propose a
residual weight connection in local supervised training and
global model aggregation. Extensive experiments on five
datasets demonstrate the superiority of CBAFed. Code will
be available at https://github.com/minglllli/
CBAFed.

1. Introduction
Federated learning (FL) aims to train machine learning

models on a decentralized manner while preserving data
privacy, i.e., separate local models are trained on separate
local training datasets independently. In recent years, FL
has received much attention for privacy protection reasons
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[32]. However, most of FL works focused on supervised
learning with fully labeled data. But in practice, labeling
process of large-scale training data is laborious and expen-
sive. Due to the lack of funds or experts, large labeled train-
ing dataset is difficult for many companies and institutions
to obtain. These may hinder applicability of FL.

To handle this problem, federated semi-supervised learn-
ing (FSSL) has been explored by many researchers recently
[8, 14, 15]. There are broadly three lines of FSSL methods
by considering different places and status of labeled data.
The first two lines consider that there are only limited la-
beled data in the central server [8] or each client has par-
tially labeled data [15]. The third line assumes that few
clients have fully labeled data and the training datasets in
other clients are fully unlabeled [14, 18, 31]. Our paper
mainly focuses on the third line of FSSL, and we call lo-
cal clients with fully labeled data as labeled clients and the
other clients as unlabeled clients.

The main difficulties to train a third line FSSL model lie
in three folds: 1) There are no labeled data in unlabeled
clients. Thus, the training can be easily biased without
label guidance. 2) Due to the divergent class distribution
of labeled and unlabeled clients, namely the not indepen-
dent and identically distributed data (Non-IID) setting, in-
accurate supervisory signals may be generated in unlabeled
clients via employing the model trained in labeled clients by
either pseudo labeling or consistency regularization frame-
work. 3) Due to the catastrophic forgetting problems in
CNNs, with the training process of unlabeled clients going
on, models may forget the knowledge learned on labeled
clients and so decrease the prediction accuracy drastically.

RSCFed [14], the state-of-the-art method significantly
boosts the FSSL performance by first distilling sub-
consensus models, and then aggregating the sub-consensus
models to the global model. The sub-consensus models can
handle the Non-IID setting to some extent, but the mean-
teacher based consistency regularization framework in un-
labeled clients inevitably causes the accuracy degradation
when the classes are imbalanced distributed. RSCFed at-
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tempts to address the catastrophic forgetting problem by
adjusting aggregation weights for labeled and unlabeled
clients. But, it seems just alleviates the negative impact
on the unlabeled clients and the problem is still yet to be
tackled. Besides, the sub-consensus models may occur un-
stable training problems, and increase the communication
cost. Other methods like FedConsist [31] and FedIRM
[18] achieve promising results by utilizing pseudo labeling
methods to produce artificial labels, but they do not consider
the Non-IID setting among local clients.

Pseudo labeling methods are shown to be effective in
semi-supervised learning (SSL) [13, 24, 33, 37], which gen-
erate pseudo-labels for unlabeled images and propose sev-
eral strategies to ensure the quality of pseudo-labels. Ex-
isting FSSL works only adopt standard pseudo labeling or
consistency regularization on FSSL. Since the mentioned
difficulties hamper the usage of these methods, other rem-
edy is usually proposed to alleviate the difficulties, which
is palliative. Thus, we propose to study FSSL from the
perspective of pseudo labeling, seeking for a fundamental
solution to this problem.

Concretely, we present Class Balanced Adaptive Pseudo
Labeling, namely CBAFed, by rethinking standard pseudo
labeling methods in SSL. To handle the catastrophic forget-
ting problem, we propose a fixed pseudo labeling strategy,
which builds a fixed set by letting pass informative unla-
beled data and their pseudo labels at the beginning of the
unlabeled client training. Due to the Non-IID and heteroge-
neous data partition problems in FL, training distribution of
unlabeled data can be highly imbalanced, so existing thresh-
olds are not suitable in FSSL. We design class balanced
adaptive thresholds via considering the empirical distribu-
tion of all training data in local clients at the previous com-
munication round. Analysis proves that our method sets
a reasonably high threshold for extremely scarce classes
and encourages a balanced training process. To enhance
the learning ability and discover unlabeled data from tail
classes, we propose to leverage information from so-called
“not informative” unlabeled data. Besides, we also explore
a novel training strategy for labeled clients and the central
server, termed as residual weight connection, skip connect-
ing weights from previous epochs (for labeled clients) or
previous global models (for the central server). It can help
the model reach better optimum, when the training distribu-
tion is imbalanced and training amount is small. We con-
duct extensive experiments on five datasets to show the ef-
fectiveness of CBAFed. Overall, our main contributions can
be summarized as follows:

• We present a CBAFed method to deal with the catas-
trophic forgetting problems in federated learning . Un-
like existing FSSL frameworks that directly adopts
pseudo labeling or consistency regularization methods,
CBAFed explores a fundamental solution to FSSL via

designing a novel pseudo labeling method.

• We introduce a residual weight connection method, to
improve the robustness of the models in labeled clients
and the central server, which skip connects weights
from previous epoch or communication round to fi-
nally reach better optimum.

• Experiments are conducted on five datasets: four nat-
ural datasets CIFAR-10/100, SVHN, fashion MNIST
and one medical dataset ISIC 2018 Skin. CBAFed
outperforms state-of-the-art FSSL methods by a large
margin, with 11.3% improvements on SVHN dataset.

2. Related work
2.1. Federated Learning

Recently, federated learning is becoming more and more
popular for privacy protection reasons. Statistical data het-
erogeneity is one of the most important research problems.
FedAvg [19], one of the pioneer works to deal with this
problem, performs weighted-averaging on local weights ac-
cording to the local training size, has been used as the
most widely recognized FL baseline. To deal with data
heterogeneity, two research directions have been mostly
explored: model aggregation [12, 27, 28] and local train-
ing [9, 11, 12, 17]. Recently, [23] demonstrates that self-
attention-based architectures, e.g., vision transformers(ViT)
are more robust to distribution shifts and can converge to
better optimum over heterogeneous data.

2.2. Semi-supervised Leaning

The goal of standard semi-supervised learning (SSL)
is to train a good model with limited labeled data and
much more unlabeled data. Popular research directions in-
volves consistency regularization [4, 26] and pseudo label-
ing [3, 10, 16]. Many recent works use the combinations of
consistency regularization and pseudo labeling and achieves
state-of-the-art performance [1, 2, 25, 30]. In this paper,
we focus on using pseudo labeling method to deal with
SSL. While these methods achieve much progress, they
only consider pre-defined fixed threshold for pseudo label-
ing. FlexMatch [34] demonstrates that leveraging unlabeled
data according to the model’s learning status to flexibly ad-
just thresholds for different classes can boost performance.
While these methods perform well in centralized SSL, they
all update pseudo labels after every batch’s update of the
model, which is not suitable in FSSL as shown in later sec-
tion.

2.3. Federated Semi-supervised Learning

Recently, with the development of federated learning,
FSSL becomes popular. There are broadly three categories
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Figure 1. An overview of our CBAFed. In the central server (left side), the global model is aggregated with the returned local models (step
4⃝) and the adaptive thresholds are calculated by the returned training data statistics (step 5⃝). Then central server passes the global model,

adaptive thresholds and class distribution to all local clients (step 1⃝). After downloading these data, local clients perform local training
on the right side (step 2⃝). Labeled clients use labeled data to train the model with residual weight connection. Unlabeled clients obtain
the new training dataset by adaptive pseudo labeling and tail class data discovery and use it to train the model. After local training, local
clients return trained models and number of data in each class back to central server (step 3⃝).

of FSSL. The first two categories assumes that every local
client contains partially labeled data or there exists some la-
beled data in central server [8, 15]. The third category con-
siders that few clients are fully labeled while other clients
contain only unlabeled data. This paper focuses on the third
category. To deal with this problem, Fed-Consist [31] and
FedIRM [18] have been proposed. But, these two meth-
ods do not consider data heterogeneity in federated learn-
ing. Recently, RSCFed [14] proposes to perform random
sub-sampling to reach consensus over clients. However, it
uses standard consistency regularization for unlabeled data,
which still suffers from the Non-IID setting. We emphasize
that all the aforementioned approaches just use traditional
pseudo labeling strategy, and none of them discuss how to
apply pseudo labeling to FSSL.

3. Methodology
We first introduce the problem setting of feder-

ated semi-supervised learning. We consider decen-
tralized training with labeled clients and unlabeled
clients. Let m (usually m = 1) labeled clients be
{C1, C2, · · · , Cm} and n (usually n > 1) unlabeled clients
be {Cm+1, Cm+2, · · · , Cm+n}. For labeled client Cℓ,
the labeled local training dataset is denoted as Dℓ =
{(Xℓ

i , y
ℓ
i )}

Nℓ
i=1, ℓ = 1, 2, · · · ,m, where Nℓ denotes the

data number in Dℓ. Similarly, for unlabeled client Cµ,
the unlabeled local training dataset is denoted as Dµ =

{Xµ
i }

Nµ

i=1, µ = m+ 1,m+ 2, · · · , n+m.
The overall pipeline of the proposed CBAFed is shown

in Fig. 1, which performs the following steps: (1) Warm up
stage: train fully supervised models on only labeled clients
using residual weight connection in a normal federated

learning manner (Sec. 3.1) (2) The central server computes
the empirical class distribution and obtains the class bal-
anced adaptive thresholds, then passes them to local clients
(Sec. 3.3); (3) All local clients update local models, adap-
tive threshold and class distribution. Labeled clients train
local models on all the data using proposed residual weight
connection; Unlabeled clients acquire the fixed training set
(Sec. 3.2.2) by the threshold and the tail class datasets (Sec.
3.4), and train local models on the newly obtained training
dataset. After local training, all local clients pass the trained
model, the number of data in each class and the amount of
training data to the central server; (4) The central server
aggregates a new model with residual weight connection,
computes the class distribution, and obtains the class bal-
anced adaptive threshold. Then, the central server passes
them to local clients; (5) Repeat step (3)-(4) until the speci-
fied number of communication round is reached. The over-
all training procedure of our CBAFed is provided in Algo-
rithm 1 in the supplementary material.

3.1. Residual Weight Connection

We propose a novel training method in local super-
vised training and global model aggregation called residual
weight connection. Our idea of res-weight is simple and
similar to ResNet. In ResNet, there is a skip connection
between every layer. For our res-weight connection, there
is a skip connection of model’s parameters between train-
ing epochs (or communication rounds). Let θE be the pa-
rameters of model after the training epoch (communication
round) E(E > 0), then the final parameters of model after
this training epoch by using residual weight connection will
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be

θE =

{
θE E%s ̸= 0

α1θ
E−s + (1− α1)θ

E E%s = 0
(1)

where α1 is the parameter to scale the size of θE−s and θE

and s is the number of skip epoch. In [22], authors show
that averaging model weights over training steps tends to
produce a more accurate model than using the final weights
directly. In our experiments, we will show that this train-
ing method can effectively make the model more robust and
finally reach better optimum, enhancing the predicted ac-
curacy of pseudo labeling. Note that although the formula
of our residual weight connection is similar to mean teach-
ers [26], the update strategy and usage scenario is very dif-
ferent from it. Please refer to supplementary material for
more detailed comparison and discussions.

3.2. Pseudo Labeling Methods

3.2.1 Review of Classic Batch-based Pseudo Labeling

In semi-supervised learning, for unlabeled data, traditional
approaches [2, 25, 34], such as Fixmatch [25] and Flex-
match [34], use original data or their weak augmented ver-
sion in one batch to generate pseudo labels. These labels
are adopted to supervise model’s training. For detailed re-
view, please refer to supplementary materials.

3.2.2 Fixed Pseudo Labeling in FSSL

Warm up stage. To conduct pseudo labeling for unlabeled
data, in the warm up stage, we train our model only with
labeled data. In the first P communication round, training
only conducted in labeled clients. In local training on la-
beled client Cℓ, the training loss is defined as:

Lℓ =
1

|Dℓ|
∑

(Xℓ,yℓ)∈Dℓ

H(yℓ, pm(y|θℓt(Xℓ))), (2)

where θℓt means local model in labeled client Cℓ at commu-
nication round t. The local training epoch is set to J(J > 1)
with residual weight conenction. Then we use FedAVG [19]
with residual weight connection for model aggregation:

θGt+1 =

{∑m
ℓ=1

|Dℓ|∑m
i=1 |Di|

θℓt t%s ̸= 0

α1θ
G
t+1−s + (1− α1)

∑m
ℓ=1

|Dℓ|∑m
i=1 |Di|

θℓt t%s = 0

(3)
where θGt+1 is the global model of communication round t+
1. Note that, usually, the number of labeled clients is only 1,
so we can finish warm up stage in only one communication
round(training can be completed on one labeled client).

Different from traditional semi-supervised learning, in
federated semi-supervised learning, Non-IID data parti-
tions in clients can easily lead to catastrophic forgetting
[7, 21, 23]. Thus, local models trained on unlabeled clients

usually forget the former learned knowledge by batch-based
pseudo labeling method, which will lead to abrupt degrada-
tion and sabotage the training of unlabeled clients. To han-
dle heterogeneous data partitions and catastrophic forget-
ting, we propose a new pseudo labeling method called fixed
pseudo labeling. For the unlabeled training dataset Dµ in
an unlabeled client Cµ, after initializing the local model θµt
with the global model θGt , we first compute the pseudo label
for each data Xµ

i in Dµ via:

ŷµi = argmax pm(y|θµt (X
µ
i ), i = 1, 2, · · · , Nµ. (4)

We obtain a subset of unlabeled data with their pseudo la-
bels as supervisory signals during local client training:

D̃µ = {(Xµ
i , ŷ

µ
i ) | X

µ
i ∈ Dµ ∧max(pm(y|θµt (X

µ
i ))) > τ}Nµ

i=1 .
(5)

Then we use this fixed set D̃µ as the training dataset and
define the loss to train our unlabeled client as: Lµ =

1

|D̃µ|

∑
(Xµ,ŷµ)∈D̃µ

H(ŷµ, pm(y|θµt (Xµ))).

3.3. Class Balanced Adaptive Threshold for Pseudo
Labeling

In semi-supervised learning, the value of threshold τ is
non-trivial for selecting confident pseudo labels, namely in-
formative unlabeled data. Traditionally, a fixed threshold is
pre-defined [25], but setting a fixed threshold usually makes
the model fail to consider different learning status and learn-
ing difficulties of different classes. In one of the most re-
cent works, Curriculum Pseudo Labeling [34] is proposed
to achieve state-of-the-art results on most semi-supervised
learning benchmarks, where a flexible threshold for class c
at time step t is calculated by: Tt(c) = βt(c)·τ , where βt(c)
is the ratio of the number of selected pseudo labels in class
c and the maximum number of selected pseudo labels of all
classes. βt(c) is used to scale the fixed threshold τ . Cur-
riculum Pseudo Labeling significantly boosts the accuracy
and convergence performance of various semi-supervised
learning algorithms. But in FSSL, there exist heterogeneous
data partition problems. Due to the Non-IID partition, the
labeled data are not balanced, so purely using the number
of selected unlabeled data to design threshold is improper.
Moreover, the data of some classes can be extremely rare in
certain clients, which will lead to a very low βt(c), and thus,
a very low threshold (Tt(c) ≈ 0). In other words, directly
applying Curriculum Pseudo Labeling will introduce many
noisy labels into training.

To this end, we propose a novel Class Balanced Adaptive
threshold for Pseudo Labeling (CBAPL). For an unlabeled
client Cµ in the tth communication round, let the number of
selected pseudo labels in class c be:

σµ
t (c) =

Nµ∑
i=1

1(max(pm(y|θµt (X
µ
i ))) > Tt(c))1(ŷµi = c),

(6)
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where 1(·) is the indicator function. The data number
of class c in labeled client Cℓ is calculated by: σℓ

t (c) =∑Nℓ

i=1 1(y
ℓ
i = c). After local training, σµ

t (c), σℓ
t (c) and

weights of local models are returned to central server. Then
the central server calculates the total number of training data
of class c at communication round t:

σt(c) =

m∑
ℓ=1

σℓ
t (c) +

n+m∑
µ=m+1

σµ
t (c). (7)

We then normalize the training numbers and acquire the em-
pirical distribution of training data:

p̃t(c) =
σt(c)∑C
i=1 σt(i)

. (8)

The standard deviation of the empirical distribution is cal-
culated by:

std(p̃t) =

√√√√ 1

C − 1

C∑
c=1

(p̃t(c)− pt)
2, (9)

where pt =
1
C

∑C
c=1 p̃t(c). Lastly, the threshold of class c

is calculated by

τt,c = p̃t(c) + τ − std(p̃t), (10)

where τ is the pre-defined threshold base. We then set an
upper bound of threshold as:

Tt+1(c) =

{
τt,c, τt,c < τh

τh, τt,c ≥ τh
, (11)

where τh is the pre-defined upper bound of threshold (usu-
ally τh = 0.95 for ensuring a certain amount of training
data in unlabeled clients). If our model is trained with more
data in one class, the threshold of that class will be higher
since p̃t(c) is higher. std(p̃t) is important for balancing the
empirical distribution of training data. Please refer to the
supplementary material for more discussions.

We argue that for scarce classes, unlike Curriculum
Pseudo Labeling [34] whose threshold is extremely low, our
CBAPL calculates a threshold with a relatively high lower
bound. We have theorem below:

Theorem 3.1.

τ + p̃t(c)−
√

1

C
≤ Tt(c) ≤ τ + p̃t(c), (12)

Proof is provided in the supplementary material.

Since τ >>
√

1
C , Tt(c) will have a high lower bound

(>> 0). To balance the trade-off between p̃t(t) and

τ −
√
1/C, a normalization factor is applied to consider the

class number. Thus, we propose a modified p̃t(c) as below:

p̃t(c) =
σt(c)∑C
i=1 σt(i)

× C

10
. (13)

At the first P communication rounds, the models are trained
on only labeled clients. Thus, when t ∈ {1, ..., P}, σµ

t (c) =
0 for all classes. After calculating the thresholds for all
classes via Eq. 11, the central server will pass the thresh-
olds to local clients. Unlabeled clients further obtain the
fixed pseudo label training dataset by:

D̃t+1,µ = {(Xµ
i , ŷ

µ
i )|X

µ
i ∈ Dµ

∧max(pm(y|θµt (X
µ
i ))) > Tt+1(ŷ

µ
i )}

Nµ

i=1.
(14)

3.4. Discovery of Unlabeled Data from Tail Classes

In FSSL, heterogeneous data partitions will lead to class
imbalanced distribution in local clients and there are rare
or even no data from some classes in certain clients. For
warm up stage in labeled clients, it is similar to long-tailed
classification, so the problems in long-tailed classification
will also exist in our pseudo labeling process, i.e., mod-
els tend to classify tail (rare) classes as head (common)
classes [29, 35, 36]. Although adaptive pseudo labeling can
lower the threshold of tail classes, much less data will be
selected by PL since very few data from tailed classes will
be classified as correct classes. To enhance the learning
ability and discover unlabeled data from these classes, in-
stead of directly dropping the data whose maximum confi-
dences are low, namely, “not informative” unlabeled data,
we propose to leverage information from them. For sim-
plicity, we drop subscript t and default all representations
occur in tth communication round in Sec. 3.4. Firstly, we
define a mask function M(·): RC → RC for a probability
simplex p ∈ RC :

Mi(p) =

{
pi i ̸= argmax p

0 i = argmax p
, (15)

where pi is the ith element in p. The effect of mask func-
tion M(·) is to set the maximum of a probability simplex to
0. Then, we turn to analyze the second largest confidence
score via:

Dtail
µ = {(Xµ

i , ŷ
µ′
i )|Xµ

i ∈ Dµ

∧max(pm(y|θµt (X
µ
i ))) ≤ Tt(ŷµi ) ∧ p̃t(ŷ

µ′
i ) <

β

C
},
(16)

where ŷu′i = argmaxM(pm(y|θµt (X
µ
i ))) and β is a hyper-

parameter. In Eq. 15, the parameter β is to find the tail
classes (“not informative” unlabeled data). For unlabeled
data Xµ

i , if its largest confidence is smaller than threshold
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(not informative or confident, i.e., max(pm(y|θµt (X
µ
i ))) ≤

Tt(ŷµi )) and and the class of second largest confidence is tail
class (i.e., p̃t(ŷ

µ′
i ) < β

C ), we regard it as misclassfied data
and include it in training with the class of second largest
confidence as its label. Finally, the new training dataset for
unlabeled client Cµ is defined as

Dtrain
µ = Dtail

µ ∪ D̃µ, (17)

and the final training loss in Cµ is rewritten as

Lµ =
1

|Dtrain
µ |

∑
(Xµ,ŷµ)∈Dtrain

µ

H(ŷµ, pm(y|θµt (Xµ))).

(18)
The calculation of σu

t (c) is revised as:

σµ
t (c) =

∑
(Xµ,ŷµ)∈Dtrain

µ

1(ŷµ = c). (19)

3.5. Aggregation of local models

Since not all data in local clients are included into train-
ing, we propose to use only data included in training for
model aggregation. The scale factor wi

t is computed by

wi
t =


|Di|

|Dtrain
t | if i ∈ {1, · · · ,m}

|Dtrain
t,i |

|Dtrain
t | if i ∈ {m+ 1, · · · ,m+ n},

(20)

where |Dtrain
t | =

∑m
ℓ=1 |Dℓ| +

∑m+n
µ=m+1 |Dtrain

t,µ |. Then
at (t+1)th synchronization round, the global model θGt+1 is
computed by

θGt+1 =

{∑m+n
i=1 wi

tθ
i
t t%s ̸= 0

α2θ
G
t+1−s + (1− α2)

∑m+n
i=1 wi

tθ
i
t t%s = 0,

(21)

where α2 is a hyperparameter.

4. Experiments
4.1. Experimental Setup

Benchmark Datasets To evaluate the effectiveness of our
proposed method, we conduct extensive experiments on
four image classification datasets, i.e., SVHN, CIFAR-10,
CIFAR-100, Fashion MNIST and one medical image classi-
fication dataset: ISIC 2018 (Skin Lesion Analysis Towards
Melanoma Detection). Dataset splitting and pre-processing
are provided in the supplementary material.
FSSL Setting Simulation Following [14], training datasets
contain 10 clients: one labeled and nine unlabeled. We
use a Dirichlet distribution Dir(γ), where γ = 0.8 for five
datasets [14] to generate Non-IID data partition in clients.
Implementation Details We utilize the SGD optimizer
with a momentum of 0.9, and implement our method with

Te
st

 A
cc

ur
ac

y

Communication Round Communication Round

ResNet18 ViT(a) (b)

Figure 2. Test accuracy curves in local training of SVHN dataset
w/ and w/o residual weight connection. ResNet18 (a) and ViT (b)
are adopted as the backbones. W/ res-weight∗ indicates we only
show test accuracy on epochs (communication rounds, since local
training epoch for labeled client is 1) with skip weight connection.
Best viewed electronically.

PyTorch. We adopt ResNet18 [6] from PyTorch for all
datasets. For fair comparison, we use the same network
architecture and training protocol, including the optimizer,
data preprocessing, etc. across all FSSL methods. The local
training epoch is set to 11 for labeled clients and 1 for unla-
beled clients. More implementation details are provided in
supplementary material.
Comparisons We compare our method against state-of-the-
art FSSL methods, including RSCFed [14], FedIRM [18],
and Fed-Consist [31]. Since FedIRM [18] and Fed-Consist
[31] are not desgined for dealing with Non-IID FSSL, fol-
lowing [14], we enlarge the weight of labeled client to
about 50% and other nine unlabeled clients share the re-
maining 50% weight in each FSSL synchronization round,
when implementing these methods. We also compare our
network against FedAvg [19] trained with all clients as an
upper bound and trained with only one labeled clients as
the lower bound. Besides, to show the effectiveness of
our residual weight connection, we report the result of Fe-
dAvg [19] trained with only one labeled clients using resid-
ual weight connection. Since Fed-Consist [31] utilizes tra-
ditional batch-based pseudo labeling method, we report the
result of Fed-Consist [31] using our proposed fixed pseudo
labeling without enlarging the weight of labeled client.

4.2. Comparisons with State-of-the-arts

Comparison Results. Table 1 reports the quantitative re-
sults of our CBAFed and other state-of-the-art methods
on five benchmarks. We can observe that our proposed
CBAFed achieves superior performances over all competi-
tors on the five benchmark datasets. For some easy tasks
(e.g., SVHN and Fashion-MNIST), the performance of our
CBAFed is approaching upper bound obtained by FedAVG
[19] and surpasses all state-of-the-arts by a large margin,
showing a strong power of fixed pseudo labeling and class
balanced threshold. Note that if replacing the traditional
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Table 1. Results on SVHN, CIFAR-10/100, Fashion MNIST and ISIC 2018 datasets under heterogeneous data partition with ResNet18.
FedAVG+ means FedAvg [19] trained with all one labeled clients using our residual weight connection. Fed-consist+ means Fed-Consist
[31] using our proposed fixed pseudo labeling without enlarging the weight of labeled client.

Labeling Strategy Method Client Num. Dataset
labeled unlabeled SVHN CIFAR10 CIFAR100 Fashion-MNIST ISIC 2018

Fully supervised
FedAvg [19](upper-bound) 10 0 91.83 80.89 51.38 90.14 81.32
FedAvg [19](lower-bound) 1 0 67.71 54.66 20.49 74.87 65.13

FedAvg+ [19] 1 0 76.98 58.21 24.84 78.26 66.69

Semi supervised

FedIRM [18] 1 9 69.22 52.84 20.20 76.83 64.85
Fed-Consist [31] 1 9 70.56 54.23 21.81 76.57 65.20

Fed-Consist+ [31] 1 9 86.57 56.35 23.25 78.35 65.50
RSCFed [14] 1 9 76.74 57.07 28.46 78.40 67.21

CBAFed(ours) 1 9 88.07 67.08 30.18 85.49 68.29

batch-based pseudo labeling by our fixed pseudo labeling
in Fed-Consist [31], the performance is largely increased. It
shows that fixed pseudo labeling method is well suited for
Non-IID FSSL.

Trained on one labeled client, FedAVG [19] w/ residual
weight connection achieves much better performance com-
pared with that w/o residual weight connection. Fig. 2 (a)
shows the test accuracy curves during training. Due to the
imbalanced training data distribution in labeled client, the
test accuracy is unstable during training for FedAVG (w/o
res-weight in the figure). But, if training w/ our residual
weight connection, the test accuracy curve is much more
stable and the performance is also enhanced (w/ res-weight
and w/ res-weight∗). To sum up, residual weight connection
can improve the robustness of the models when the train-
ing amount is small and the training distribution is imbal-
anced. Since long tailed vision recognition task is similar
to local training in labeled client, it is a potential direction
to use our residual weight connection in long tailed vision.
Bisides, we also conduct experiments on partially labeled
clients, results are shown in the supplementary material.
ViT Backbone. Vision Transformer(ViT) has shown to be
more robust to heterogeneous data and distribution shifts,
and has been demonstrated to converge faster with better
optimum in Federated learning [23]. To further study the
effect of our method, we conduct experiments on SVHN
dataset using ViT-Tiny as backbone for all competitors.
The implementation details are provided in the supplemen-
tary material. Table 2 shows the comparison results. Our
method can outperform all other methods. Similarly, trained
on one labeled client, FedAVG [19] w/ residual weight con-
nection surpasses the one w/o residual weight connection,
meaning that our residual weight connection is also effec-
tive on ViT, not only CNNs, as shown in Fig. 2 (b).
Two Labeled Clients. To better understand the effective-
ness of our CBAFed and study how to use residual weight
connection when the number of labeled clients is more than
one, following [14,18], we conduct experiments on CIFAR-
10 by dividing the whole training data into 10 clients, with
two labeled clients and eight unlabeled clients. Results are

Table 2. Comparison of our method against RSCFed [14], Fed-
Consist [31] and FedAVG [19] in SVHN dataset on ViT [5] as the
backbone, with one labeled and nine unlabeled clients.

Method Client Num. Accuracylabeled unlabeled
FedAVG [19](upper bound) 10 0 96.81
FedAVG [19](lower bound) 1 0 81.68

FedAVG+ [19] 1 0 88.93
FedIRM [18] 1 9 79.44

Fed-Consist [31] 1 9 85.91
Fed-Consist+ [31] 1 9 93.21

RSCFed [14] 1 9 89.43
CBAFed(ours) 1 9 95.09

Table 3. Comparison of our method against RSCFed [14], Fed-
Consist [31], FedIRM [18] and FedAVG [19] with the number of
labeled and unlabeled client set to 2 and 8.

Method Client Num. Accuracylabeled unlabeled
FedAVG [19](upper bound) 10 0 80.89
FedAVG [19](lower bound) 2 0 61.85

FedAVG+ [19] 2 0 66.55
FedIRM [18] 2 8 62.62

Fed-Consist [31] 2 8 61.67
Fed-Consist+ [31] 2 8 68.04

RSCFed [14] 2 8 64.25
CBAFed(ours) 2 8 72.01

reported in Table 3. Our method has a better performance
compared with all state-of-the-art FSSL methods. Adding
our residual weight connection and fixed pseudo labeling
lead to much performance gain. In the supplementary ma-
terial, we also discuss different training strategies used for
labeled clients w.r.t. number of local epochs and the usage
of residual weight connection.
Communication Cost. Since the statistics of local train-
ing data can be nearly neglected (very low compared with
model’s parameter), our method does not add any burden in
communication cost, which is only 66% of the state-of-the-
art method RSCFed [14].

4.3. Study of Pseudo Labeling Strategies in FSSL

In this section, we discuss how to perform pseudo la-
beling in FSSL and why traditional batch-based pseudo la-
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Figure 3. Left: Test accuracy of all 5 strategies after every com-
munication round. Note that the test accuracy of communication
round 0 is the test accuracy of model trained on labeled client.
Right: Accuracy of pseudo labels in local training epoch of one
randomly selected unlabeled client. Best viewed electronically.

beling fails. We conduct a simple experiment on SVHN
dataset [20] using ResNet18 [6]. The experimental setting
is the same as illustrated in Sec. 4.1 except that we only use
pseudo labeling without other proposed modules. We con-
sider five training strategies: (1) Batched pseudo labeling (1
local training epoch). (2) Batched pseudo labeling (5 local
training epochs). (3) Fixed pseudo labeling (1 local training
epoch). (4) Fixed pseudo labeling (5 local training epochs),
and we do not update the fixed training dataset in all lo-
cal training epochs after pseudo labeling. (5) Fixed pseudo
labeling (5 local training epochs), and we update the fixed
training dataset at the beginning of every training epoch.
For labeled client, the local training epoch is set to 1 for all
5 strategies. The total communication round is set to 200 for
all strategies. The test accuracy after communication round
is shown in the left figure of Fig. 3. We can observe the
following: i), Batch-based pseudo labeling performs poorly
in FSSL. It is known that CNNs often do not work well on
out-of-distribution data [23]. Thus, a few update can re-
sult in catastrophic forgetting on Non-IID data partitions.
The right figure of Fig. 3 shows the predicted accuracy of
communication round one in five local training epochs of
strategy (2) and (5). ii), Our fixed pseudo labeling method
is capable of dealing with catastrophic forgetting. Strategy
(3) performs the best and strategy (5) performs much worse
than strategy (3) and (4), indicating that one local training
epoch is optimum. iii) Comparing strategy (3) with (4), the
former has better performance but the latter has faster con-
vergence speed. It means more local training epochs will
speed up convergence but may degrade performance, simi-
lar phenomenon is also found in [23].

4.4. Ablation Study

We conduct ablation study to demonstrate the effec-
tiveness of the main components of our method: residual
weight connection, class balanced pseudo labeling, and tail
class data discovery. Table 4 shows the results on three
datasets: CIFAR-10/100 and Fashion-MNIST. It can be

Table 4. Ablation Study of CBAFed in CIFAR-10/100 and Fashion
MNIST Datasets. Fixed PL: fixed pseudo labeling, CBA: class
balanced adaptive pseudo labeling, DD: tail class data discovery.

Dataset Fixed PL CBA DD Res-Weight Accuracy

CIFAR-10
✓ 59.16
✓ ✓ 64.29
✓ ✓ ✓ 65.15
✓ ✓ ✓ ✓ 67.08

CIFAR-100
✓ 27.64
✓ ✓ 29.41
✓ ✓ ✓ 29.86
✓ ✓ ✓ ✓ 30.18

Fashion-MNIST
✓ 79.99
✓ ✓ 80.87
✓ ✓ ✓ 84.37
✓ ✓ ✓ ✓ 85.49
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Figure 4. Performance changes on Fashion-MNIST by varying
(a) threshold base τ and (b) upper bound threshold τh, and (c)
parameter for selecting tail class data β.

seen that all three modules are important for boosting per-
formance. Then, we aim at discussing hyper-parameters of
threshold base τ , upper bound threshold τh, and parameters
for selecting tail class data β. Experiments are conducted
on Fashion-MNIST. As shown in Fig. 4, performances are
not sensitive within certain ranges.

5. Conclusion
We present Class Balanced Adaptive pseudo label-

ing (CBAFed) for Federated Semi-Supervised Learning
(FSSL). In CBAFed, a fixed pseudo labeling strategy is pro-
posed to handle the catastrophic forgetting problem. To deal
with the Non-IID setting of FSSL, we propose a class bal-
anced adaptive thresholds selection method to choose better
pseudo labels. Furthermore, a residual weight connection
method is designed to make the model reach better opti-
mum. We evaluate CBAFed on five datasets, whose perfor-
mances show the superiority of our method.
Limitations. Like other FSSL methods, a good model in
warm-up cannot be guaranteed if the number of data in la-
beled clients are extremely few, so the final global model
may not perform well.
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