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Abstract

Approximating radiance fields with discretized volu-
metric grids is one of promising directions for improv-
ing NeRFs, represented by methods like DVGO, Plenox-
els and TensoRF, which achieve super-fast training con-
vergence and real-time rendering. However, these meth-
ods typically require a tremendous storage overhead, cost-
ing up to hundreds of megabytes of disk space and run-
time memory for a single scene. We address this issue in
this paper by introducing a simple yet effective framework,
called vector quantized radiance fields (VQRF), for com-
pressing these volume-grid-based radiance fields. We first
present a robust and adaptive metric for estimating redun-
dancy in grid models and performing voxel pruning by bet-
ter exploring intermediate outputs of volumetric rendering.
A trainable vector quantization is further proposed to im-
prove the compactness of grid models. In combination with
an efficient joint tuning strategy and post-processing, our
method can achieve a compression ratio of 100× by reduc-
ing the overall model size to 1 MB with negligible loss on
visual quality. Extensive experiments demonstrate that the
proposed framework is capable of achieving unrivaled per-
formance and well generalization across multiple methods
with distinct volumetric structures, facilitating the wide use
of volumetric radiance fields methods in real-world appli-
cations. Code is available at https://github.com/
AlgoHunt/VQRF.

1. Introduction

Novel view synthesis aims to realize photo-realistic ren-
dering for a 3D scene at unobserved viewpoints, given a set
of images recorded from multiple views with known cam-
era poses. The topic has growing importance because of its
potential use in a wide range of Virtual Reality and Aug-
mented Reality applications. Neural radiance fields (NeRF)
[29] have demonstrated compelling ability on this topic by
modelling and rendering 3D scenes effectively through the

∗denote equal contribution

Figure 1. The pipeline can realize 100× compression rate on vol-
umetric models while highly preserving the rendering quality.

use of deep neural networks, which are learned to map each
3D location given a viewing direction to its correspond-
ing view-dependent color and volume density according to
volumetric rendering techniques [27]. The rendering pro-
cess relies on sampling a huge number of points and feed-
ing them through a cumbersome network, incurring con-
siderable computational overhead during training and in-
ference. Recent progress following radiance fields recon-
struction shows that integrating voxel-based structures [23]
into the learning of representations can significantly boost
training and inference efficiency. These volumetric radi-
ance fields methods typically store features on voxels and
retrieve sampling points (including color features and vol-
ume densities) by performing efficient trilinear interpola-
tion without neural network [44] or only equipped with a
lightweight neural network [37] instead of cumbersome net-
works. However, the use of volumetric representations in-
evitably introduces considerable storage cost, e.g., costing
over one hundred megabytes to represent a scene, which is
prohibitive in real-world applications.

In this paper, we aim to counteract the storage issue
of representations induced by using voxel grids meanwhile
retaining rendering quality. In order to better understand
the characteristic of grid models, we estimated the distri-
bution of voxel importance scores (shown in Fig. 4) and
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Figure 2. (a) NeRF learns a mapping from 3D coordinate (x, y, z) and viewing direction (θ, ϕ) to color and density (r, g, b, σ). (b)
Volumetric NeRF optimizes volumetric grids, estimates color features Fx,y,z and density for sampling points via tri-linear interpolation to
get the final color through (or without) tiny MLPs. (c) VQRF compresses voxel features to codebook and stores per-voxel k-bits mapping
index, pointing to the codebook consisting of 2k codes.

observed that only 10% voxels contribute over 99% im-
portance scores of a grid model, indicating that large re-
dundancy exists in the model. Inspired by traditional tech-
niques of deep network compression [14], we present an ef-
fective and efficient framework for compressing volumetric
radiance fields, allowing about 100× storage reduction over
original grid models, with competitive rendering quality.

The illustration of the idea and the framework are shown
in Fig. 2 and Fig. 3. The proposed framework is quite gen-
eral rather than restricted to certain architecture. It is com-
prised of three steps, i.e., voxel pruning, vector quantization
and post processing. Voxel pruning is used to omit the least
important voxels which dominate model size while con-
tributing little to the final rendering. We introduce an adap-
tive strategy for pruning threshold selection with the aid of a
cumulative score rate metric, enabling the pruning strategy
general across different scenes or base models. In order to
further reduce model size, we propose to encode important
voxel features into a compact codebook by developing an
importance-aware vector quantization with an efficient op-
timization strategy, and using a joint tuning mechanism to
enable the compressed models approaching to the rendering
quality of original ones. We finally perform a simple post-
processing step to obtain a model with quite small storage
cost. For example, as shown in Fig. 1, the volumetric model
with the storage cost of 104 MB and the rendering quality
of PSNR 32.66 can be compressed into a tiny model costing
1.05 MB with a negligible visual quality loss (PSNR 32.65).
We conduct extensive experiments and empirical studies to
validate the method, showing the effectiveness and gener-
alization of the proposed compression pipeline on a wide
range of volumetric methods and varying scenarios.

2. Related Work

Neural Radiance Fields. Neural radiance fields [29] pro-
vide an effective representation to model 3D scenes, en-

abling high quality novel-view synthesis given some train-
ing observations of multi-viewpoints. Recent volumetric
methods [2, 37, 44, 45] have shown the benefit of introduc-
ing discretized structures in training efficiency and render-
ing acceleration. SNeRG [15] converts NeRF to a carefully
designed grid to achieve inference speedup. Plenoxels [44]
directly optimizes a sparse grid with spherical harmonics
to model view-dependent effects without neural networks.
DVGO [37] exploits dense voxel grids to represent color
features and density, [42] extends it to ultra high resolution
synthesis. Some methods are proposed to integrate with a
variety of data structures, e.g., octree [45], decomposed ten-
sor and tri-planes [2] , and multi-scale hashing table [30].
These methods typically require tremendous storage over-
head compared to modelling with pure MLPs.

Vector Quantization. Vector quantization (VQ) [7, 8, 11]
is a classical lossy compression technique, aiming to as-
sign a large set of vectors into a smaller set of clusters and
represent each vector by one or a mixture of cluster cen-
troids. The technique has been widely used in many real-
world applications, including image compression [4, 31],
video codec [21, 36] and audio codec [26, 32], as well as
generative model [12,34,40] in order to improve generation
quality. Some works [10] introduce vector quantization to
deep neural network compression. The mostly related work
in [38] achieves variable bitrate to level of detail by incor-
porating soft VQ with multi-resolution feature grids, which
is very different from our approach to VQ. Besides using
efficient hard mapping/indexing, we introduce voxel impor-
tance into VQ optimization as well as other strategies, al-
lowing the use of VQ to be highly effective and adaptive for
volumetric radiance fields compression.

Model Compression. Our method can be regarded as a
sub-task of model compression, which aims to reduce over-
all storage size while preserving the accuracy of original
models. Most model compression techniques can be cate-
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Figure 3. Pipeline overview. We design a three stage compression pipeline, given an DVGO model trained on ”ficus” for example, voxel
pruning reduces model size by 8×, vector quantization further improves compression ratio to around 33 ×. We can achieve a total of 100×
compression after post-processing.

gorized into four groups: 1) model pruning [13, 14, 41, 43]
to remove redundant connections or layers from a neural
network; 2) weight quantization [14, 17, 20] to convert full-
precision values to lower-bits; 3) low-rank approximation
[6, 18, 35] to factorize weight matrix into lower-rank ones;
4) knowledge distillation [1, 3, 16, 33] to guide the training
of compact networks via well-trained large ones. [14] in-
troduces a pipeline, including model pruning, weight quan-
tization and huffman coding, for general neural network
compression. These techniques are employed in some vol-
umetric radiance fields, e.g., weight quantization in [5, 45].
Empty voxel pruning in [22,45] and iterative removing (and
re-including) parameters in [5] function as weight pruning.
CCNeRF [39] and TensoRF [2] decompose volumetric rep-
resentations via low-rank approximation.

3. Problem Statement
Neural radiance fields [29] learn a continuous function

that maps a 3D point x ∈ R3 and viewing direction d =
(θ, ϕ) to the view-dependent color c ∈ R3 and the volume
density σ ∈ R through the use of a multilayer perceptron
(MLP) i.e. FΘ : (x,d) 7→ (c, σ). According to the volume
rendering technique [27], the pixel color Ĉ(r) of a given
ray r = o+ td can be estimated by accumulating the color
c and density d of sampling points along the ray:

Ĉ(r) =

N∑
i=1

Ti · αi · ci, (1)

αi = 1− exp(−σiδi), Ti =

i−1∏
j=1

(1− αj), (2)

where δi is the distance between adjacent points. Ti is the
accumulated transmittance when reaching the point i, and
αi is ray termination probability.

Recently, volumetric radiance fields methods [37,44] in-
troduce voxel-based structure to facilitate the learning of
representations, i.e., optimizing volumetric grids and esti-
mating the color features and density for sampling points
via tri-linear interpolation. The methodology has shown
significant benefit on training and inference efficiency com-
pared to the methods relying on large neural networks.
However, the use of volumetric representations inevitably
introduce considerable storage cost, which might limit its
usability in real world applications. To address the issue,
we introduce a simple yet efficient framework to compress
volumetric radiance fields with the following operations,
voxel pruning, vector quantization, and post-processing
with weight quantization and entropy encoding, which will
be described in detail in the following sections.

4. Voxel Pruning
In order to better understand the statistics of volumetric

representations, we first compute the importance scores for
each voxel in the grid. Formally, according to the volume
rendering technique defined in Eqn.1 and 2, we can com-
pute the importance score of xi as

Ii = Ti · αi. (3)

The importance score of the point assigned to its neighbor-
ing voxel vl is proportional to their distance (on normalized
grid interval). The importance score of the voxel vl can
then be obtained by accumulating the importance scores of
sampling points contributing to it,

Il =
∑

xi∈Nl

(1− |vl − xi|) · Ii, (4)

where Nl denotes the set of the sampling points falling
within the neighborhood of vl and |vl − xi| ≤ 1. In prac-
tice, we shoot a batch of rays on the images of the training
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views and calculate the importance score of each sampling
point. The importance score for each voxel can be obtained
according to Eqn. 4. Then we sort the voxels with ascend-
ing importance scores and define the cumulative score rate
with respect to the parameter θ as:

F (θ) =

∑
Il · 1{Il < θ}∑

Il
, (5)

where 1{·} denotes the binary indicator. The cumulative
score rate is proportional to the expectation on the cumu-
lative distribution of voxel importance scores. Take the
Lego scene in the synthetic-NeRF dataset for example, we
found that there exist an obviously long-tail phenomenon,
i.e., 90% of least important voxels only contribute 0.1% of
total importance score. We depict the curve of the cumula-
tive score rate on the DVGO’s model [37] in the Figure 4.
As shown in the figure, most of voxels have minimal effect
on rendering results, indicating that large redundancy exits
in the grid model and a large amount of less important vox-
els can be pruned off without scarifying rendering quality.

We expect the pruning strategy to be fairly general across
different scenarios or methods. In this regard, we use the
quantile function to adaptively select the threshold θp,

θp = F−1(βp), (6)

where βp is a hyperparameter for representing the cumu-
lative score rate (in Eqn. 5) for pruning. For example, if
setting it 0.2 for the DVGO model (in Figure 4), about 97%
voxels would be pruned off.

5. Vector Quantization
We introduce vector quantization to compress the impor-

tant voxels for further reducing model size. Particularly,
color features typically cost much more storage compared
to density modality. In this regard, we adopt the VQ strat-
egy to only encode color features into a compact codebook,
so that multiple voxel features can be replaced by a single
code vector. We only need to store the codebook and the
corresponding mapping index from voxels to the codebook
instead of storing individual voxel features.

Let us analyze the change of storage cost after perform-
ing vector quantization. Assume there are N voxels with the
feature channel dimension C, the color features of orginal
model would cost N × C × 16 bits as each feature is typi-
cally saved in float16 format. We learn a codebook with the
size K × C where K is supposed to be extremely smaller
than N , K ≪ N . The storage cost for saving codebook
is 16KC bits and each voxel needs log2(K) bits to present
the mapping index. In this regard, we can estimate the com-
pression ratio r as,

r =
16NC

Nlog2(K) + 16KC
(7)

on the size of original model. For example, when K is 4096,
applying the strategy would reach the maximum compres-
sion ratio of 16 for DVGO [37], 64 for TensoRF [2] and 36
for Plenoxels [44] at their default setting on the synthetic-
NeRF dataset. We present the training strategy for obtaining
an effective and compact codebook in the following subsec-
tions.

5.1. Codebook Initialization and Update

We use a weighted clustering strategy for initializing the
codebook by the consideration that the voxels with higher
importance score typically have higher impact for render-
ing. Formally, the voxel features U = {u1,u2, ...,uN} are
partitioned into the codebook B = {b1,b2, ...,bK} where
N ≫ K, by minimizing the weighted within-cluster sum of
squares:

arg min
B

K∑
k=1

∑
vj∈R(bk)

∥uj − bk∥22 · Ij , (8)

where uj and Ij denote the color features and the impor-
tance score of vj , R(bk) denotes the set of voxels assigned
to the k-th code vector bk.

In practice, adopting global weighted clustering would
be unsatisfactorily slow when N and K are large. We there-
fore apply an iterative optimization strategy to approximate
the procedure. Particularly, we randomly select a min-batch
of voxels from the grid at each iteration and calculate Eu-
clidean distance between every selected voxel vj and each
code vector b, and associate the voxel to the code with min-
imum distance. The total importance assigned to the code
vector bk can be estimated as sk =

∑
Ij1{vj ∈ R(bk)}

during each iteration, then bk is optimized by weighted ac-
cumulating the voxel features belonging to the code accord-
ing to normalized importance score,

bk := λdbk +
(1− λd)

sk

∑
vj∈R(bk)

Ijuj . (9)

Here λd is the decay factor for the moving average updating
of code vectors.
Code expiration. We expect all the code vectors to be ef-
fective while directly using the iterative optimization might
encounter inactive code issue. Some code vectors may as-
sociate with a minimal amount (or even none) of voxels
while some code vectors may be shared by a large number
of informative voxels, resulting in imbalanced assignment
distribution. It would degrade the representation ability of
the codebook. To address the issue, we track the capacity
of each code vector bk according to the accumulated im-
portance sk assigned to it, rank all the codes in descend-
ing order and reset J codes with the lowest capacity by re-
initializing via the voxel features with the top J importance
in the batch.
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Figure 4. (a) PDF and CDF of importance score. (b) We draw the quantile-quantile curve, which means x% of least important voxels
contributes to y% percent of total importance. Take DVGO (bottom left curve) for example, 97 % of least important voxels only contribute
20% of total importance, while using the top 0.4% (1− 99.6%) of voxels can achieve the same amount (20%) of contribution.

Which voxel needs quantization? In order to achieve a
good balance between rendering quality loss and compres-
sion rate, we save a fraction of mostly important voxels
without passing them through vector quantization, where
the fraction rate is determined by the quantile of the cumu-
lative score in Eqn. 5,

θk = F−1(βk), (10)

where βk denotes the hyperparameter and θk represents the
keeping threshold. The voxels with the important score
larger than θk are directly stored, named as non-vector-
quantized voxels (non-VQ voxels). As shown in Fig. 4, the
statistics reveal that the top 1% of voxels can contribute over
60% of the importance, saving a fraction of voxels facilitate
rendering quality preservation, only with minimal increase
on storage. Using such a strategy can achieve a better trade-
off compared to compressing all through VQ.

5.2. Joint Finetune

Performing voxel pruning and vector quantization can
generally compress a grid model to 5% of the original size,
while we found it bring in unacceptable performance loss
(31.88 dB drops to 31.32 db in Table 5). In order to further
improve the representation ability of the compressed mod-
els, we propose to fine-tune the remaining voxel features
(as well as MLPs if the original method used) jointly with
the VQ optimization. The insight is similar to tuning mod-
els after weight pruning and quantization in deep network
compression [14], as we expect the compressed grid model
to approach the rendering quality of the original model.

The joint fine-tuning phase is highly efficient. Take the
compression on an DVGO model for example. We fix the
voxel-to-codebook mapping during fine-tuning as we ap-
ply a hard mapping index, and update four parts includ-
ing 1) code vectors in the codebook, 2) volume density, 3)
non-VQ voxels and 4) small network originally used in the
DVGO. As the size of voxel gradients are extremely large
but sparse, we update each code vector by synchronizing
weights across the voxels assigned to it for every i itera-
tions, which can boost training efficiency.

6. Post-Processing

We can further reduce model size via the post-processing
step, comprised of weight quantization [9] and entropy en-
coding [25]. We use a simple uniform weight quantization
on volume density and the color features of non-VQ voxels
without operating on codebook as it is fairly compact. An 8-
bit weight quantization casts full-precision floating number
to unsigned integers.

We store two boolean masks to identify which voxel have
been pruned, vector quantized or directly saved without VQ.
The storage cost for a compressed DVGO model comes
from the saving of following six components, 1) the 2-bits
mask, 2) code vectors (i.e., codebook), 3) mapping indexes
between voxels and codebook, 4) 8-bit quantized density,
5) 8-bit quantized non-VQ voxels and 6) small MLPs the
method originally used. We encode them with entropy en-
coding (LZ77 [24, 46]) and pack them together to get the
final storage cost.
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Synthetic-NeRF Synthetic-NSVF LLFF Tanks&Temples
Methods PSNR SSIM SIZE PSNR SSIM SIZE PSNR SSIM SIZE PSNR SSIM SIZE

(dB)↑ ↑ (MB)↓ (dB)↑ ↑ (MB)↓ (dB)↑ ↑ (MB)↓ (dB)↑ ↑ (MB)↓

NeRF [29] 31.01 0.947 2.5 - - - 26.50 0.811 5.0 25.78 0.864 5.0
mip-NeRF [29] 33.06 0.961 2.5 - - - 26.66 0.819 2.5 - - -
CCNeRF-CP [39] 30.55 0.935 4.4 - - - - - - 27.01 0.878 4.4
TensoRF-CP [2] 31.56 0.949 3.9 34.48 0.971 3.9 - - - 27.59 0.897 3.9

DVGO [37] 31.90 0.956 105.9 34.90 0.975 119.8 - - - 28.29 0.910 113.4
VQ-DVGO 31.77 0.954 1.4 34.72 0.974 1.3 - - - 28.26 0.909 1.4

Plenoxels [44] 31.71 0.958 259.8 34.12 0.977 283.3 26.43 0.842 2006.2 26.84 0.911 367.7
VQ-Plenoxels 31.53 0.956 13.7 33.91 0.976 11.9 26.28 0.839 40.0 26.73 0.908 14.3

TensoRF [2] 33.09 0.963 67.6 36.72 0.982 71.6 26.70 0.836 179.8 28.54 0.921 72.6
VQ-TensoRF 32.86 0.960 3.6 36.16 0.980 4.1 26.46 0.824 8.8 28.20 0.913 3.3

Table 1. Quantitative comparison. We compare VQRF with origin NeRF, uncompressed volumetric radiance fields and other methods
focusing on model size. Compared to all the baselines, our method achieve the best trade-off between rendering quality and model size.

7. Experiments

7.1. Datasets

Synthetic-NeRF is first introduced by [29] and has been
widely adopt by following works. It contains 8 scenes ren-
dered at 800×800 resolution. Each scene contains 100 ren-
dered views for training and 200 views for testing.
Synthetic-NSVF [23] includes additional 8 objects with
more complex geometry and lighting condition compared to
Synthetic-NeRF. Images are rendered with 800×800 pixels.
LLFF [28, 29] includes 8 forward-facing scenes captured
by mobile phone cameras in the real world. We follow the
setting in [29] by using the images of 1008×756 pixels.
Tanks & Temples [19] is reconstructed from video dataset
captured in the real world. All the images are captured at
1920 × 1080 resolution. Here we use five scenes (Barn,
Caterpillar, Family, Ignatius, Truck) without background.

7.2. Implementation Details

We apply the pipeline on three representative volumetric
methods, i.e., DVGO [37], Plenoxels [44] and TensoRF [2].
When adapting VQRF to certain method, we first obtain a
non-compressed grid model following the default training
configuration of each method. The pruning quantile βp is
set to 0.001 for all the three methods. The keeping quantile
βk is set to 0.6 for DVGO and Plenoxels, and 0.7 for Ten-
soRF. We use 4096 as the default codebook size for all the
experiments. Codebook initialization takes 1000 iterations
with a batchsize of 10000 voxel points per iteration. Mov-
ing average factor λd is 0.8, and code expiration number J
is set to 10. We use VQ-DVGO as the default method for
all the experiments and ablation studies in Section 7. Please
refer to the supplemental material for more details.

7.3. Results

Quantitative results. We compare our work with orig-
inal NeRF and other uncompressed volumetric radiance
fields in Table 1. Here the ’VQ-’ prefix the correspond-
ing volumetric radiance fields compressed by using our
pipeline. All the reported model sizes of original DVGO,
Plenoxels, and TensoRF are calculated after using a stan-
dard zip compression for a fair comparison.

As shown in Table 1, our method realizes significant ben-
efit on model size with competitive rendering quality com-
pared to all the baseline methods across various datasets.
Specifically, VQ-DVGO achieves the highest compression
ratio, with 75× on the synthetic-NeRF dataset and an aver-
age of 83× on the three datasets, while effectively preserv-
ing rendering quality with negligible drop (less than 0.2 dB
on PSNR). The performance advantage is consistent with
the phenomenon illustrated in Fig. 4, i.e., compared to the
models of Plenoxels and TensoRF there exists a greater re-
dundancy in DVGO models due to the use of dense grids.
On the other hand, our pipeline can also achieve obvious
storage cost reduction on Plenoxels and TensoRF. Plenox-
els has already employed sparse voxel grids by pruning off
empty voxels to reduce model size, and using decomposed
tensor structures in TensoRF naturally introduces compact-
ness on model size. Our method can still realize over 20×
compression ratios on both methods with comparable ren-
dering quality. We can also achieve better performance on
both rendering quality and storage cost over the compressed
setting ”TensoRF-CP” proposed in TensoRF, showing the
generalizability and effectiveness of our pipeline for pursu-
ing high-performing compact models.

Visual results. We compare the rendering results of the
compressed models and corresponding original ones on the
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GT DVGO VQ-DVGO Plenoxels VQ-Plenoxels TensoRF VQ-TensoRF

Chair

Lego

Figure 5. Qualitative Comparison on Sythetic-NeRF. We can hardly observe visual artifacts on the rendering results of the compressed
models compared to the original models, even in zoom-in images.

Ground Truth Plenoxels(left) vs. VQ-Plenoxels(right) TensoRF(left) vs.VQ-TensoRF(right)

Figure 6. Visual quality comparison of origin model versus our compressed model on real forward-facing dataset.

four datasets in Fig. 5, Fig. 6 and Fig. 7. We provide more
visual comparison in the supplemental material. Visual dif-
ferences are hard to be observed in a variety of 3D scenes,
including synthetic bounded, forward-facing and real-world
bounded scenes across different volumetric baselines.

7.4. Ablation Study

Pruning and keeping percentage. We estimate the effect
of using different βp and βk in Table 2. Using a moder-
ate pruning parameter βp can benefit rendering quality and
model size both. A very compact model can be obtained
with a relatively large βp, while some informative voxels
may be eliminated as well which would hurt rendering qual-
ity. Using a larger keeping parameter βk could benefit vi-
sual performance yet reduce compression ratio. We choose

a moderate setting (0.001 and 0.6) as default, and a trade-off
between rendering quality and storage cost can be achieved
flexibly by adjusting the two hyper-parameters.

Training and testing overhead. We provide the training
and inference time in Table 3. Our compression pipeline
is very efficient and introduces marginal overhead on the
original training pipeline. VQRF generally requires three
to four minutes to compress one model. The inference
speed of these compressed models are comparable (or even
higher) to the original ones.

Codebook size. Codebook capacity is another important
factor to influence compression performance. We conduct
the experiments by using from extremely small to large
sizes, and estimate the effect on rendering quality and stor-
age cost in Table 4. The benefit of using a extremely small
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Ground Truth VQ-DVGODVGO

Figure 7. Rendering results on synthetic-NSVF dataset and
Tanks&Temples dataset show that our method can well general-
ize to the datasets with different distribution.

βp βk PSNR↑ SSIM↑ LPIPS ↓ SIZE↓

0

0 30.38 0.941 0.077 2.54
0.3 31.13 0.948 0.067 2.73
0.6 31.60 0.953 0.060 3.06
0.9 31.94 0.956 0.054 3.86

0.001†

0 31.04 0.947 0.068 0.93
0.3 31.49 0.951 0.062 1.11
0.6† 31.77 0.954 0.057 1.43
0.9 31.96 0.956 0.054 2.21

0.01

0 30.90 0.946 0.070 0.74
0.3 31.31 0.950 0.040 0.92
0.6 31.59 0.953 0.059 1.24
0.9 31.80 0.956 0.055 2.02

0.1

0 27.02 0.920 0.084 0.49
0.3 27.35 0.935 0.077 0.67
0.6 27.64 0.939 0.054 0.99
0.9 28.27 0.945 0.065 1.67

† denote our default choice of βp and βk

Table 2. Evaluating pruning quantile βp and keeping quantile βk.

size is marginal on the total storage cost while the drop on
PSNR is obvious. Using a larger size can usually improve
the ability of preserving rendering quality, which tends to
reach saturation when using a value larger than 4096. In
other word, using a extremely large codebook brings min-
imal improvement on rendering quality while increasing
storage cost obviously.
Step-by-step analysis. We conduct a step-by-step experi-
ment to validate each module in the proposed framework.
The results are presented in Table 5. We calculate the size
after a zip compression for fair comparison. Compared to
the uncompressed baseline, using voxel pruning achieves
5× compression with a negligible PSNR drop, and directly
using vector quantization brings additional 4× reduction
while leading to PSNR decrease of 0.5dB. By virtue of joint
finetuning, rendering quality can be effectively recovered

Method
PSNR↑ Size↓ Train↓ Test↓

(dB) (MB) (min) (ms)

DVGO 31.90 105.9 5 160
VQ-DVGO 31.77 1.4 5+3 180

Plenoxels 31.71 259.8 10 41
VQ-Plenoxels 31.53 13.7 10+3 33

TensoRF 33.09 67.6 12 750
VQ-TensoRF 32.86 3.6 12+4 725

Table 3. Comparison of training and testing overhead.

PSNR↑ SSIM↑ LPIPS↓ SIZE↓
16 30.63 0.944 0.071 1.040
64 31.19 0.949 0.065 1.134

256 31.44 0.951 0.062 1.164
1024 31.62 0.953 0.059 1.308
4096 31.77 0.954 0.057 1.431

16384 31.81 0.955 0.056 1.630

Table 4. Ablation study of codebook size.

PSNR↑ SSIM↑ LPIPS↓ SIZE↓

baseline 31.90 0.956 0.054 105.9

+voxel pruning 31.88 0.956 0.054 19.0
+vector quantization 31.32 0.952 0.061 4.8
+joint finetune 31.79 0.954 0.036 4.8
+weight quantization 31.77 0.954 0.057 1.4

Table 5. Step-by-step analysis on performance gain.

without affecting model size. Our model size can finally
reach the level of 1 MB after applying weight quantization.
Limitation and Discussion. The proposed compression
is not lossless. It can achieve significant compression on
modern voxel grid-based methods with minimal quality loss
(less than 0.2dB) while the method may reach bottleneck on
model size, i.e., the quality may drop obviously (in Table 2)
if pursuing a further compression to reach a KB-level (e.g.,
aggressive voxel pruning, more compact quantization).

8. Conclusion
In this paper we proposed VQRF, a novel and versatile

compression framework designed for volumetric radiance
fields. Our framework employs an adaptive voxel prun-
ing mechanism, a learnable vector quantization, and post-
processing techniques to considerably reduce storage cost,
even down to 1 MB, without degrading rendering quality.
We deploy the framework on several modern volumetric
methods, such as DVGO, Plenoxels and TensoRF. Exten-
sive experiments confirm the effectiveness and generaliza-
tion of VQRF, demonstrating its impressive compression
performance on multiple methods across different datasets.
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