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Abstract

Product Retrieval (PR) and Grounding (PG), aiming to
seek image and object-level products respectively according
to a textual query, have attracted great interest recently for
better shopping experience. Owing to the lack of relevant
datasets, we collect two large-scale benchmark datasets
from Taobao Mall and Live domains with about 474k and
101k image-query pairs for PR, and manually annotate the
object bounding boxes in each image for PG. As anno-
tating boxes is expensive and time-consuming, we attempt
to transfer knowledge from annotated domain to unanno-
tated for PG to achieve un-supervised Domain Adaptation
(PG-DA). We propose a Domain Adaptive Product Seeker
(DATE) framework, regarding PR and PG as Product Seek-
ing problem at different levels, to assist the query date the
product. Concretely, we first design a semantics-aggregated
feature extractor for each modality to obtain concentrated
and comprehensive features for following efficient retrieval
and fine-grained grounding tasks. Then, we present two
cooperative seekers to simultaneously search the image
for PR and localize the product for PG. Besides, we de-
vise a domain aligner for PG-DA to alleviate uni-modal
marginal and multi-modal conditional distribution shift be-
tween source and target domains, and design a pseudo box
generator to dynamically select reliable instances and gen-
erate bounding boxes for further knowledge transfer. Exten-
sive experiments show that our DATE achieves satisfactory
performance in fully-supervised PR, PG and un-supervised
PG-DA. Our desensitized datasets will be publicly available
here1.

1. Introduction

Nowadays, with the rapid development of e-commerce
and livestreaming, consumers can enjoy shopping on e-mall
or various livestreaming platforms. Although the fact that

*Corresponding author.
1https://github.com/Taobao-live/Product-Seeking
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Figure 1. Illustration of Product Retrieval (PR) and Grounding
(PG) problems on two datasets collected from Taobao Mall and
Live. (1) Given a text query (i.e. Chinese title or description of
a product), PR is to seek the corresponding image-level product
from gallery while PG is to seek the object-level product from an
image. (2) We further explore PG-DA, which aims to transfer
knowledge from the annotated source domain to the unannotated
target domain under the influence of multi-modal domain gap to
achieve un-supervised PG.

diverse products can be presented and purchased on screen
brings us convenience, we are immersed in this miscel-
laneous product world. Therefore, cross-modal Retrieval
[1, 3, 15, 21, 41, 43, 55] for Product (PR), aiming to seek the
corresponding image based on a text query, is significant
for boosting holistic product search engine and promoting
consumers’ shopping experience.

Besides, provided that the object-level product can be
localized on the target product image or live room im-
age according to a query, it will help consumers focus
on the desired product and also benefit the downstream
vision-to-vision retrieval. And we name this interesting
task as Product Grounding (PG) like Visual Grounding
[29, 36, 40, 45, 56]. Generally, PR and PG are seen as two
separate tasks, but we consider mining the commonalities of
PR and PG and regard them as Product Seeking at image-
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level and object-level respectively. And we design a uni-
fied architecture to simultaneously solve PR and PG, which
is more time-saving and memory-economical than separate
methods.

To research the PR and PG with great practical applica-
tion value, we collect two large-scale benchmark Product
Seeking datasets TMPS and TLPS from Taobao Mall and
Taobao Live domains with about 474k image-title pairs and
101k frame-description pairs respectively, and the locations
of object-level products in images are manually annotated.
As annotating bounding box of product is time-consuming
and expensive, we explore how to transfer knowledge from
an annotated domain to the unannotated one, and achieve
un-supervised PG in domain adaptation setting (PG-DA).
Thus, we propose the Domain Adaptive Product Seeker
(DATE) to solve the following aspects of the challenging
PR, PG and PG-DA problems.

Firstly, due to the complexity of the mall and live scenar-
ios, discriminative representations of the image and query
are prerequisite to accurately localize the object. Consid-
ering conventional CNNs are hard to achieve long-distance
relation reasoning and full-scale understanding, we utilize
and improve the Swin-TF [37] to extract hierarchical and
comprehensive features. As large-scale image seeking is
demanding for PR, it is vital to ensure seeking inference
is of trivial cost. Thus, we inject [REP] token into Swin-
TF to absorb the weighted global semantics, and condense
them into a single vector, which will be discriminative and
concentrated for following efficient image seeking. And we
perform the same semantics-aggregated technique for query
feature extraction.

Secondly, the capacity of both macroscopic image seek-
ing and microcosmic fine-grained object seeking is neces-
sary for PR and PG. Therefore, we present two cooperative
seekers, where image seeker calculates the cosine similar-
ity between visual and textual concentrated features for PR,
and object seeker based on cross-modal interaction trans-
former directly predicts the coordinates of the product by
comprehensive features for PG. We validate the reasonable-
ness of such cooperative strategy through experiments.

Thirdly, due to the domain gap between two datasets as
Figure 1 shown, applying the model straightway to test on
target domain will cause performance degeneration severely
for PG-DA. To the best of our knowledge, this is the first
work to consider un-supervised Visual Grounding in do-
main adaptation setting, and most uni-modal DA [8, 34, 38]
and multi-modal DA [5,7] methods are not directly applica-
ble in our complicated object seeking. Therefore, we devise
a domain aligner based on Maximum Mean Discrepancy to
align the domain by minimizing uni-modal marginal distri-
bution and multi-modal conditional distribution divergence
between source and target domains, and design a dynamic
pseudo bounding box generator to select similar instances

in target domain and generate reliable boxes for knowledge
transfer.

To summarize, the contributions of this paper are as fol-
lows:

• We collect and manually annotate two large-scale
benchmark datasets for PR and PG with great practi-
cal application value.

• We propose a unified framework with semantics-
aggregated feature extractor and cooperative seekers to
simultaneously solve fully-supervised PR and PG.

• We explore un-supervised PG in domain adaptation
setting and design the multi-modal domain aligner and
dynamic box generator to transfer knowledge.

• We conduct extensive experiments which shows that
our methods achieve satisfactory performance in fully-
supervised PR, PG and un-supervised PG-DA.

2. Related Work
2.1. Visual Retrieval

Given a text query, Visual Retrieval (VR) [1, 3, 21, 41,
43, 55] aims to find the corresponding image/video in a li-
brary. The common latent space based methods [1,55] have
been proven their effectiveness, which first extract the vi-
sual and textual features and map them into a common la-
tent space to directly measure vision-language similarity.
Representatively, [16] applies CNN and RNN to encode im-
ages and sentences respectively, and learn image-caption
matching based on ranking loss. [55] proposes a semantic
graph to generate multi-level visual embeddings and aggre-
gate results from the hierarchical levels for the overall cross-
modal similarity. Recently, transformer [46] exhibits bet-
ter performance in Natural Language Processing [12, 20],
Computer Vision [4, 13, 25, 26, 28] and multi-modal area
[23, 24, 27, 33, 48, 50–52] than previous architecture, espe-
cially for global information understanding. Unsuprisingly,
there is an increasing effort on repurposing such power-
ful models [1, 17, 31, 57] for VR. They apply transformer
to learn joint multi-mmodal representations and model de-
tailed cross-modal relation, which achieves satisfactory per-
formance.

2.2. Visual Grounding

The paradigm of Visual Grounding (VG) [29,36,40,45],
which aims to localize the objects on an image, is similar
as Visual Retrieval (VR), they are both to search the best
matching part in visual signals according to the text query.
Compared to VR, modeling fine-grained internal relations
of the image is more significant for VG. In early work, two-
stage methods [6,22,53] were widely used, which first gen-
erate candidate object proposals, then leverage the language
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Figure 2. Overview of our DATE. (a) is the feature extractor, applying the semantics-aggregated transformers to obtain image and query
features. (b) is the cooperative seekers, calculating the similarity to seek the image for PR and predicting coordinates to seek the object for
PG. (c) includes a domain aligner to minimize distribution divergence between source and target domains and a pseudo box generator to
select reliable instances and generate bounding boxes for knowledge transfer in PG-DA.

descriptions to select the most relevant object, by leverag-
ing off-the-shelf detectors or proposal generators to ensure
recall. However, the computation-intensive proposal gen-
eration is time-consuming and also limits the performance
of these methods, one-stage methods [32, 49] concentrate
on localizing the referred object directly. Concretely, [49]
fuses the linguistic feature into visual feature maps and pre-
dict bounding box directly in a sliding-window manner. Re-
cently, [10] re-formulates VG as a coordinates regression
problem and applies transformer to solve it.

Generally, VR and VG are regarded as two separate
problems. In this paper, we mine the commonalities of
the two problems and design a unified architecture based
on cooperative seeking to efficiently solve VR and VG ef-
fectively.

2.3. Un-supervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims to transfer
knowledge from the annotated source domain to the unla-
belled target domain, and the challenge is how to overcome
the influence of domain gap. In uni-modal tasks applica-
tions, several UDA techniques have been explored, includ-
ing aligning the cross-domain feature distribution [18, 34],
applying adversarial learning strategy [2, 38] or reconstruc-
tion method [8] to obtain domain-invariant features. And
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Figure 3. The multi-modal domain aligner.

[9] uses optimal transport to estimate the discrepancy be-
tween the two distributions and exploits labels from the
source domain. Different from the works described above,
our task is cross-modal in nature, which is more challenging
due to the heterogeneous gap between different modalities.
In multi-modal area, few works have considered UDA, [5]
studies the cross-dataset adaptation for visual question an-
swering, [7] studies the video-text retrieval with pseudo-
labelling algorithm. To the best of our knowledge, this is
the first work to consider un-supervised Visual Grounding
in domain adaptation setting.
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3. Proposed DATE
3.1. Problem Formulation

In this paper, we explore fully-supervised PR and PG,
and un-supervised PG-DA in domain adaptation setting. In
the next, we will formulate them.
PR and PG. We collect a fully-annotated dataset
{V,Q,O}, given a textual query Qi in query set Q, PR and
PG aim to seek the image-level product VQi

from whole
image gallery V , and object-level product OQi

from an
matched image VQi . The O is the bounding box annota-
tion.
PG-DA. We have access to a fully-annotated source domain
S =

{
V S , QS , OS

}
, and an unannotated target domain

T =
{
V T , QT

}
without box annotation OT . The goal of

PG-DA is to transfer the knowledge from S to T , and seek
the object-level product on T .

3.2. Semantics-Aggregated Feature Extractor

As Figure 2(a) shown, for both settings, we share the fea-
ture extractor, which can aggregate the global semantics of
each modality for image seeking as well as capture compre-
hensive and context-aware features for object seeking.
Image Stream. Given a RGB image v, we first split it into
non-overlapping patches, then we refer to Swin-TF [37] for
hierarchical feature extraction. Swin is mainly through the
stack of patch merging module and Swin Transformer block
to achieve 4-stage encoding, and the resolution is halved
at each stage to acquire hierarchical features. The original
Swin-TF utilizes average pooling to obtain image represen-
tation vector, ignoring the difference in importance of each
token for semantics extraction. For promotion, we append
a learnable [REP] token in front of visual token sequence
during 4th stage, which is involved in the computation of
self-attention and absorbs the weighted global image fea-
tures. After the 4th stage, we can acquire the semantics-
aggregated visual feature, and we name this advanced vi-
sual encoder as SA-Swin. Next we apply a linear layer to
project them into dimension d to obtain VSA = [Vrep,V ] ∈
Rd×(1+Nv), where Nv is the number of visual tokens, Vrep

and V are concentrated and comprehensive features respec-
tively.
Query Stream. Given a textual query q, we first split it into
character-level sequence and convert each character into a
one-hot vector. After that, we tokenize each one-hot vector
into a dense language vector in the embedding layer. Sim-
ilar to image stream, we append a [REP] token in front of
the tokenized query sequence to aggregate the global se-
mantics. Note that the visual and textual [REP] tokens are
independent for respective aggregation. Next we take all
tokens into a textual transformer to produce the semantics-
aggregated query features. Then we project them into the
common space dimension d as image stream, to obtain

QSA = [Qrep,Q] ∈ Rd×(1+Nq), where Nq is the number
of textual tokens.

3.3. Cooperative Seekers

After acquiring common space image feature VSA =
[Vrep,V ] and query feature QSA = [Qrep,Q], as Figure
2(b) shown, we design two cooperative seekers to search
the matched image and localize the object on this image.
Next we describe the responsibility of our two seekers.
Image Seekers for PR. The goal of the image seeker is to
search the image corresponds to a query. we can directly
compute the cosine distance between concentrated features
Vrep and Qrep to measure the simliarity between image and
query, which is time-efficient to search the most similar item
and ensures seeking inference is of trivial cost. Given a
batch B with B image-text pairs during training, we calcu-
late the text-to-vision similarity as

pq2v(q) =
exp(l · s(Vrep, Qrep) ·mq2v)∑
v∈B exp(l · s(Vrep, Qrep) ·mq2v)

(1)

mq2v =
exp (τ · s (Vrep, Qrep))∑
q∈B exp (τ · s (Vrep, Qrep))

(2)

where pq2v(q) is text-to-vision probability distribution, l is
a learnable logit scaling parameter, s(·, ·) denotes cosine
similarity, m denotes the prior matrix to refine the simi-
larity distribution following [14], τ represents a tempera-
ture hyperparameter. For product retrieval on our datasets,
the query (title or description of the product) can be also
retrieved by the image, and the vision-to-text similarity is
pv2q(v). Then, we treat matching pairs in the batch as posi-
tives, and all other pairwise combinations are treated as neg-
atives, thus the image seeking loss can act as

LImgS =
1

2
Ev,q∼B[H

(
pq2v(q), yq2v(q)

)
+H(pv2q(v), yv2q(v))],

(3)

where H(·, ·) is the cross-entropy formulation, y(·) is the
ground-truth binary label that positive and negative pairs are
1 and 0 respectively.
Object Seeker for PG. Different from the image seeker,
the ambition of object seeker is to localize the micro-
scopic object-level product on an image, and more sufficient
image-query interaction and fine-grained seeking are re-
quired. Thus, we leverage comprehensive image and query
features V and Q for object seeking. We consider apply
a transformer to fuse cross-modal tokens adequately, in or-
der to learn how to localize the product during interaction,
we frist append a learnable [LOC] token with visual and
textual features as TO = [Tloc,V ,Q] ∈ Rd×(1+Nv+Nq).
Then we apply a cross-modal object-seeking transformer to
embed TO into a common space by performing intra- and
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inter-modality semantic interaction. Besides, we add learn-
able modal-type embedding and position embedding to the
input of each transformer encoder layer.

We leverage the output state of the [LOC] token floc
from the object-seeking transformer and attach a regression
module to it to predict 4-dim box coordinates. Further, to
eliminate the influence of scale problem, we normalize the
coordinates of the ground-truth box by the scale of the im-
age and perform the object seeking loss as

LObjS = ∥b− b̂∥1 +G(b, b̂), (4)

where G(·, ·) is GIoU Loss [44], b = (x, y, w, h) and b̂ =

(x̂, ŷ, ŵ, ĥ) are our prediction the normalized ground-truth
box respectively.

So far, PR and PG can be solved simultaneously by the
cooperation of two seekers, and our cooperative seeking
loss is

Lcoop = λcoLImgS + LObjS , (5)

where λco ∈ R are hyperparameters to weigh two losses.

3.4. Dynamic Knowledge Transfer

As Figure 2(a) shown, we design a knowledge transfer
method for PG-DA, including a domain aligner to alleviate
feature distribution shift and a dynamic pseudo box genera-
tor to promote transfer.
Domain Aligner. As Sec 3.3, we extract visual feature
V S
SA = [V S

rep,V
S ] and textual feature QS

SA = [QS
rep,Q

S ]

from S domain, and we acquire V T
SA = [V T

rep,V
T ] and

QT
SA = [QT

rep,Q
T ] from T domain in the same way. To

alleviate the domain discrepancy, we design an alignment
approach based on Maximum Mean Discrepancy (MMD),
which compares two distributions by embedding each dis-
tribution in to Reproducing Kernel Hibert Space (RKHS) H
with a kernel function ϕ. And we utilize multiple Gaussian
Radial Basis Function kernels as ϕ. Given two marginal dis-
tributions PXS and PXT from uni-modal source and target
domain respectively, MMD can be expressed as

MMDuni(PXS , PXT ) =
∥∥µPXS

− µPXT

∥∥
H . (6)

In order to compute the inner product of vectors using the
kernel function ϕ in RKHS, we square MMD as

MMD2
uni(PXS , PXT ) =

∥∥µPXS
− µPXT

∥∥2
H

=

∥∥∥∥∥∥ 1

n2
S

nS∑
i=1

nS∑
i′=1

ϕ
(
xS
i , x

S
i
′)− 2

nSnT

nS∑
i=1

nT∑
j=1

ϕ
(
xS
i , x

T
j

)

+
1

n2
T

nT∑
j=1

nT∑
j′=1

ϕ
(
xT
j , x

T
j
′)∥∥∥∥∥∥

H

.

(7)

Then, we can minimize the distance between visual feature
distributions from different domains through MMD2

uni as

LDisV =
∑
v∈B

[MMD2
uni(V

S
rep, V

T
rep)

+MMD2
uni(µ(V

S), µ(V T ))],

(8)

where µ(·) is calculating the mean value of V on token di-
mension. In the same way, we compute LDisQ for textual
feature. After that, we can obtain domain-invariant features.

In addition to the discrepancy of uni-modal marginal dis-
tribution, we compute the multi-modal conditional distribu-
tion divergence to adjust the output distribution for better
adaptation, and the form of MMD computation becomes

MMDmul[P (Y S |XS
V , X

S
Q), P (Y T |XT

V , X
T
Q)]. (9)

Concretely, we take out the output of [LOC] token fS
loc and

fT
loc in object seeking transformer from two domains and

minimize MMD2
mul to reduce distance of output feature

distribution from different domains as

LDisO =
∑

fS
loc,f

T
loc∈B

MMD2
mul(f

S
loc, f

T
loc). (10)

The total domain alignment loss function is as follows

LDA = λDvLDisV + λDqLDisQ + LDisO, (11)

where λDv, λDq ∈ R are hyperparameters to weigh losses.
Dynamic Pseudo Box Generator. To further transfer the
knowledge from S to T , we attempt to generate pseudo
bounding boxes by model on S to train the model on T .
However, it is unlikely that all data can be precisely boxed
by source model, which may result in dissatisfactory per-
formance. Therefore, the instances from T which are close
to S are relatively reliable to be selected. For more pre-
cise selection, we compute the instance similarity between
two datasets rather than batches. Thus, given the datasets
{V S , QS} and {V T , QT }, we calculate the cosine score
of features encoded by semantics-aggregated extractor for
every pair {V S , V T } and {QS , QT } in each modality to
obtain similarity matrixs MV and MQ, and we add them
to M ∈ [−1, 1]NS×NT , where NS and NT are lengths of
source and target datasets respectively. Next, we rank the
target instances based on the counts exceed the similarity
threshold θ and select the top k percent high-score instances
{V T ′, QT ′}. Then, we generate the pseudo box b̃′ by source
object seeker and predict the coordinate b′ by target object
seeker. Like Eq. 4, we perform the pseudo object seeking
loss as

LPObjS = ∥b′ − b̃′∥1 +G(b′, b̃′). (12)

We compute M each epoch after executing box genera-
tion, and the selected instances are dynamically updated.
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Table 1. Performance of Product Retrieval (text-to-vision) on our
TMPS and TLPS datasets.

Method TMPS
R@1 R@5 R@10 R@50

Random 0.00 0.04 0.09 0.43
VSEpp 10.23 29.24 34.42 69.73
ViLT 14.39 38.42 50.74 83.23
DATE 16.32 40.54 51.23 82.58

TLPS
Random 0.03 0.14 0.23 1.59
VSEpp 3.41 15.33 29.12 43.24
ViLT 5.38 19.29 35.95 57.48
DATE 6.44 21.71 36.32 59.58

Table 2. Performance of Product Grounding on our TMPS and
TLPS datasets.

Method TMPS TLPS
mIoU Pr@1 mIoU Pr@1

Random 29.51 18.22 23.91 10.09
MAttNet 80.71 85.33 62.12 73.24
FAOA 76.24 83.72 61.31 69.13
TransVG 84.52 89.50 67.11 77.93
DATE 86.67 92.12 70.24 81.43

With the constant knowledge transfer, more instances can
be labeled correctly, and hyper-parameter ratio k will be in-
creased. The total knowledge transfer loss function is as
follows

LKT = LDA + λPOLPObjS , (13)

where λPO ∈ R are hyperparameters to weigh losses.

3.5. Training and Testing

Fully-supervised PR and PG. We perform Lcoop for train-
ing, and we search the image of product by image-seeker
for PR, and directly predict the coordinates of product on
the image by object-seeker for PG during testing.
Un-supervised PG-DA. We train the model in three stages.
First, we warm up our model under fully-supervised set-
ting on S domain by Lstage1 = LObjS . Next, we perform
Lstage2 = λOLObjS + LDA on S and T to reduce domain
gap. Then, we execute dynamic box generateing and add
LPObjS as Lstage3 = λOLObjS + LKT to further transfer
the knowledge. We test the model on T domain in the same
approach as PG.

4. Experiments
4.1. Our Product Seeking Datasets

We collect two large-scale Product Seeking datasets
from Taobao Mall (TMPS) and Taobao Live (TLPS) with

Table 3. Performance of Product Grounding-DA on our datasets.
(L→M means we transfer the knowledge from TLPS to TMPS.
And F, W, U stand for Fully-, Weakly-, Un-supervised respec-
tively.)

Method Mode TMPS TLPS
mIoU Pr@1 mIoU Pr@1

Random - 29.51 18.22 23.91 10.09
ARN W 70.72 73.32 51.31 53.24
MAF W 72.52 75.09 54.82 59.04
FAOA F 76.24 83.72 61.31 69.13
DATE F 86.67 92.12 70.24 81.43

L→M M→L
Source-only U 75.20 83.62 59.64 67.71
MMD-uni U 76.93 84.87 60.74 69.01
Pseudo-label U 77.02 86.23 62.87 71.48
DATE U 79.92 89.35 64.86 74.75

about 474k image-title pairs and 101k frame-description
pairs respectively. They are first two benchmark e-
commerce datasets involving cross-modal grounding. For
TMPS, each product item corresponds to a single title, three
levels of categories and multiple displayed images with the
manually annotated bounding box. For TLPS, we collect
frames and descriptions from the livestreamer in live video
streams, and annotate the location of described product.
Note that the language in our datasets is mainly Chinese.
The basic statistics about our datasets is in Appendix A.1.
We can see the categories of our datasets are diverse and
the number of images are tens of times larger than exist-
ing datasets. After the collection, we split each dataset into
training/validation/testing sets in a 8:1:1 ratio, and we make
sure each product is isolated within one set.

4.2. Evaluation Metrics

Product Grounding. Following [6], we measure the per-
formance by mIoU (mean Intersection over Union) and
precision (predicted object is true positive if its IoU with
ground-truth box is greater than 0.5).
Product Retrieval. We use standard retrieval metrics (fol-
lowing [1, 57]) to evaluate text-to-vision (t2v) retrieval and
vision-to-text (v2t) retrieval. We measure rank-based per-
formance by R@K.

4.3. Performance Comparison and Analysis

To evaluate the effectiveness of DATE, we compare it
with various related methods (More details of our methods
are reported in Appendix A.2). For each task, we apply un-
trained model to predict results as Random method to per-
ceive the difficulty of tasks.
Product Retrieval. We re-implement these representative
cross-modal retrieval methods to compare with our DATE.
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Table 4. Ablation study of Product Retrieval and Grounding on TMPS and TLPS datasets.

TMPS TLPS
Method Grounding T2V Retrieval Grounding T2V Retrieval

mIoU Pr@1 R@1 R@5 R@10 R@50 mIoU Pr@1 R@1 R@5 R@10 R@50
Visual Feature Extractor

ResNet 80.73 84.13 10.85 29.10 40.82 70.52 64.12 72.25 2.91 13.82 30.94 49.31
DETR 82.29 87.71 12.12 33.52 44.52 74.13 66.13 76.81 4.33 16.39 32.81 54.91
Swin 83.11 89.19 13.21 35.54 46.12 77.59 67.31 78.35 5.01 18.56 34.14 56.25
SA-DETR 84.21 90.03 14.81 36.84 47.21 78.23 68.62 79.11 5.43 19.39 35.81 57.28
SA-Swin (Ours) 86.67 92.12 16.32 40.54 51.23 82.58 70.24 81.43 6.44 21.71 36.32 59.58

Cooperative Seekers
w/o Rep 83.11 89.19 13.21 35.54 46.12 76.59 67.31 78.35 5.01 18.56 34.14 55.25
w/o ObjS 82.25 87.59 12.85 36.12 45.24 75.23 65.82 75.47 4.93 18.39 35.33 54.12
w/o Rep&ObjS 80.45 85.31 11.78 31.17 43.23 72.23 63.21 71.91 4.13 16.53 31.82 51.10
Full (Ours) 86.67 92.12 16.32 40.54 51.23 82.58 70.24 81.43 6.44 21.71 36.32 59.58

1) VSEpp [16], a respectively encoding method based on
CNN and RNN.

2) ViLT [31], a jointly encoding method based on trans-
former.

Product Grounding. In addition to cross-modal re-
trieval baselines above, we re-implement these classic vi-
sual grounding baselines to compare with our DATE.

1) MAttNet [53], a two-stage model.

2) FAOA [49], a one-stage model.

3) TransVG [10], a regression-based model under trans-
former architecture.

The PR and PG results are presented in Table 1 and Ta-
ble 2 respectively. We can see that (1) the Random results
in both tasks are pretty low, showing our PR and PG are
challenging. (2) The proposed DATE outperforms all the
baselines by a large margin, indicating the effectiveness of
our method for both PR and PG. (3) Although the perfor-
mance of TransVG and ViLT is little behind ours, they are
two separate models, and our method under unified archi-
tecture is more time-efficient and memory-saving.
Un-supervised Product Grounding-DA. To validate the
effectiveness of our DATE in DA setting, we further re-
implement these typical weakly-supervised VG baselines
for comparison.

1) ARN [35], a reconstruction-based model.

2) MAF [47], a contrast-based model.

For DA setting, we serve these methods as baselines for
comparison.

1) Source-only, which applies the model trained on
source domain to straightway test on the target dataset.

2) MMD-uni, which only utilizes MMD loss to minimize
the uni-modal marginal distribution distance for visual
and textual feature.

3) Pseudo-label, which trains the model on target domain
entirely based on the pseudo box labels generated by
the model trained on source domain.

The results are presented in Table 3, and we can
distill the following observations: (1) our un-supervised
DATE outperforms all weakly-supervised methods and
fully-supervised methods FAOA significantly, demonstrat-
ing the knowledge has been transfered to target domain
effectively. (2) Source-only method degenerates the per-
formance severely due to the huge semantic gap between
two domains, and MMD-uni only achieves slight improve-
ment as the cross-domain discrepanciy fails to reduced suf-
ficiently. (3) Pseudo-label enhances limited performance
since a number of bad instances are incorrectly labeled
which misleads the model, while our DATE can dynami-
cally select instances and generate reliable bounding boxes
for transfer and boosting performance.

4.4. Ablation Study

In this section, we study the effect of different visual fea-
ture extractors, text options (in Appendix A.3) and cooper-
ative seeking strategies in Table 4.
Visual Feature Extractor. We compare our SA-Swin to
ResNet, DETR, Swin and SA-DETR methods, where ResNet,
DETR and Swin apply ResNet-50 [19], DETR-50 [4] Swin-
base [37] to extract image features respectively, and lever-
age the average pooled feature for PR and feed the flattened
last feature map as tokens into object-seeking transformer
for PG. And SA-DETR executes the same way as the former
methods for PG, but injects the semantics-aggregated token
from beginning for PR as SA-Swin performs. From the re-
sults in Table 4, we can find following interesting points:
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Figure 4. T-SNE visualization of visual and textual features.

(1) Swin surpasses ResNet and DETR, illustrating better vi-
sual features are extracted by hierarchical transformer. (2)
SA-DETR performs better than Swin which has more pow-
erful feature extraction ability during cooperative training,
demonstrating our designed semantics-aggregated encoder
can extract concentrated and comprehensive features for
following cooperative seeking for both PR and PG.

Cooperative Seeking Strategies. We conduct ablative ex-
periments as follows: w/o Rep: using the average pooling
of two modal features for image seeking (PR) rather than
[REP] token. w/o ObjS: removing object-seeking trans-
former, and applying an MLP to fuse visual and textual
[REP] token for object seeking; w/o Rep&ObjS: using
the average pooled feature for both image and object seek-
ing. From Table 4, we observe that the performance de-
creases sharply after removing [REP] or ObjS. To analyse:
(1) more discriminative representation of image and query
can be extracted by weighted vector (i.e. [REP] token)
than average pooling, confirming the effectiveness of our
semantics-aggregated feature extractor. (2) As w/o Rep re-
sult shown, the performance of object seeking (PG) degen-
erates although [REP] is not involved in it, which demon-
strates such disadvantageous image seeking (PR) approach
drags down object seeking (PG) during multi-task learning.
(3) Image and object levels seeking falls on the shoulder of
[REP] tokens in w/o ObjS model, which is detrimental for
both levels seeking. The above two points prove the reason-
ableness of our designed cooperative seeking strategy.

4.5. Feature Visualization

To help prove the validity of our DATE, we visualise vi-
sual and textual features by T-SNE for TMPS→TLPS in
Figure 4, earned by Source-only baseline and our DATE
method. We can observe the shift between source and target
domains is apparent, meanwhile there are overlaps in two
domains, which is reasonable since a few scenes in Taobao
Mall and Live are similar. With our proposed method, the
discrepancy in feature distribution of two domains becomes
narrow significantly, suggesting our method has effectively
aligned two domains.

Query: Farmacy木瓜植萃 补水保湿 氨基酸修复肌肤 绿胖子温和洁面乳
(Farmacy Papaya Plant-Extracted Moisturizing Amino-Acid Repairing Skin 
Green Fat Mild Cleanser)

Rank1 Rank2 Rank3

DATE

ViLT

Rank4

Figure 5. Qualitative results of Product Retrieval sampled from
TMPS dataset (green: correct, red: incorrect).

4.6. Qualitative Analysis

To qualitatively investigate the effectiveness of our
DETA, we compare ViLT and our DATE for PR as Figure
5 shown. We can find that the image-level product can be
sought precisely by our DATE while ViLT fails to find the
correct image until Rank3. Further, the whole top4 results
retrieved by DATE are more relevant to the text query than
the results from ViLT, which illustrates the multi-modal se-
mantic understanding and interaction are sufficient through
our DATE. More examples and qualitative analysis are in
Appendix A.4.

5. Conclusion
In this paper, we study the fully-supervised product re-

trieval (PR) and grounding (PG) and un-supervised PG-
DA in domain adaptation setting. For research, we collect
and manually annotate two large-scale benchmark datasets
TMPS and TLPS for both PR and PG. And we propose a
DATE framework with the semantics-aggregated feature ex-
tractor, efficient cooperative seekers, multi-modal domain
aligner and a pseudo bounding box generator to solve the
problems effectively on our datasets. We will release the
desensitized datasets to promote investigations on product
retrieval, product grounding and multi-modal domain adap-
tation. In the future, we will consider more specific tech-
niques like Optical Character Recognition (OCR) and Hu-
man Object Interaction (HOI) to further improve the perfor-
mance of PR and PG.
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